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Abstract: Accurate estimation of software effort and time in the software development process is a
key activity to achieve the necessary product quality. However, underestimation or overestimation of
effort has become a key challenge for software development. One of the main problems is the estima-
tion with metrics from late stages, because the product must already be finished to make estimates. In
this paper, the use of statistical models and machine learning approaches for software estimation are
used in early stages such as software design, and a data set is presented with metric values of design
artifacts with 37 software projects. As results, models for the estimation of development time and
effort are proposed and validated through leave-one-out cross-validation. Further, machine learning
techniques were employed in order to compare software projects estimations. Through the statistical
tests, it was proven that the errors were not statistically different with the regression models for effort
estimation. However, with Random Forest the best statistical results were obtained for estimating
development time.
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1. Introduction

One of the objectives of Software Engineering is to achieve high quality of the product
and process. Quality is the “degree to which a set of inherent characteristics of an object
meets the requirements” [1], and to achieve this, it is necessary to adhere to standards and
follow methodologies for good resources management.

One of the aspects to keep in mind in the quality of a project is to make precise
estimates of software attributes. If the estimations are not made, or if they are incorrectly
calculated, the requirements of the project may not be met, and therefore, the required
quality may not be achieved.

When a software project is planned, software effort prediction is performed to assign
suitable resources in order to deliver a quality product in accordance with the established
time and requirements. There are studies that, through systematic literature reviews,
demonstrate that the most widely used variable regarding software development life cycle
effort (SDLC) is person-hours [2–8]. Software project size is often used in the SDLC effort
prediction as an explanatory variable [6]. Therefore, we selected person-hours to represent
the effort, and size and complexity (little reported in literature but extremely important) of
the software project as the explanatory factor for software effort prediction (SEP). In the
SEP field, the models commonly used have been based on statistical regression equations
and machine learning models [6].

Although the precision in software effort estimation has been become a challenge,
the main problem that is addressed lies in the fact that not all the estimates are precise, which
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leads to a low reliability of these models. In addition, these estimates are usually based
on late-stage metrics, such as the construction stage, which implies having a practically
finished product. Therefore, estimates in early stages such as the design phase, could help
to manage a project in a better way.

The No Free Lunch (NFL) theorem [9] states that there is no machine learning al-
gorithm that works best on all problems. In other words, this theorem highlights the
importance of choosing and adapting approaches to specific problems instead of looking
for one that solves all problems. Thus, we chose to explore both statistical regression
models and different machine learning approaches (such as decision trees and ensemble
algorithms) in our proposal to estimate effort with software design metrics.

To make estimates, statistical regression models are often used. Regression analysis is
a “statistical technique to determine the relationship between two or more variables” [10].
However, there are several approaches to building these models, so a comparison of
statistical models against machine learning algorithms with data of the software design
stage is the main objective of this research.

On the other hand, the characteristics of the public projects with which estimates are
made are different, and surely do not conform to the characteristics of all types of projects;
for example, for engineers who are beginning to develop software in small projects with low
complexity. The literature reports estimations based on design metrics to make software
estimates. These metrics can be defined in “terms of the probability that a design will meet
its specifications” [11]. In 1990, Kitchenham [12] determined that design metrics can be
used to rework a design and avoid anticipated problems, and they are also useful in giving
an early judgment on the success of the design process.

Therefore, we summarize our contribution in the following points.

1. We contributed to software development practitioners in providing models that allow
them to estimate development effort.

2. We generated a data set based on software design artifact metrics, since it is an early
stage of development (unlike the main data sets in the literature).

3. Our data set projects are categorized by complexity and size.
4. We made an empirical comparison of the prediction results between statistical models

and the most common machine learning approaches.
5. We used a leave-one-out cross-validation mechanism to validate the models obtained.
6. The results were compared statistically to validate significant differences between

the results.

This paper is structured as follows: in Section 2 related work is explored; in Section 3
our proposal to generate the prediction models is shown. Section 4 is dedicated to the data
acquisition process and Section 5 shows the experiments and results. Section 6 establishes
the validity threats addressed in this work. Finally, Section 7 covers the conclusions and
future work.

2. Related Work

In 2013, in the work carried out by Pomorova and Horushchenko [13], the need to
evaluate the quality of software using Artificial Neural Networks is described. In this
research, the authors used metrics from the design stage to carry out a comparative analysis
of four different software projects, where the result was that the software projects showed
similarity in cost and development time; however, they obtained different estimates in
complexity and quality of the project.

In [14], the authors explain that the low success rate in the conclusion of software
projects is a consequence of an overestimation or underestimation of software attributes,
which leads to failures. On the other hand, in [15] the authors state that “the most challeng-
ing task in software effort estimation is managing complexity in software development”.
According to this research, an estimation of software attributes, cost and effort especially,
influence product quality. In addition, the authors focused on creating a software effort
estimation prediction model using the Desharnais data set.
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In [16], the authors used three different prediction algorithms (Linear Regression,
Support Vector Machine, and Multi-Layer Perceptron), to compare them and determine the
one with the best performance for estimating software effort. In this research, the SEERA
data set was used, and the values of Mean Square Error (MSE), Mean Absolute Error
(MAE), and R-Squared evaluation metrics were analyzed. It was determined that the Linear
Regression model calculated the best effort prediction.

In [17], the authors applied the Long Short-Term Memory (LSTM) algorithm to dis-
cover its accuracy in software effort estimation, with the purpose of comparing it to
models that they previously had. The authors used two data sets: China, which contains
499 projects; and the Kitchenham data set, with 145 projects. In addition, to measure the
accuracy of the models, they used the values of Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), and R-Squared.

Table 1 gives a summary of works where some data sets have been used; however,
none of them establish design metrics that allow for estimating the development effort for
a project based on early-stage measurements.

Table 1. Data from studies related to software effort prediction models.

Data Source Size Study

Albrecht 24 [18–22]
NASA 60 60 [23,24]
NASA 93 93 [25,26]

Desharnais 77 [19,21,27,28]
Kemerer 15 [22,29–31]
Maxwell 62 [21,25,26,31]

COCOMO 81 63 [21,27,32,33]
China 499 [21,26,34]

Nevertheless, in the previously mentioned works, an estimation of software effort and
time using design metrics is not observed, which is very important due to making estimates
based on early stages of software development metrics and not with metrics of a finished
product. Therefore, this research paper presents the comparison of the efficiency of software
development time and effort estimates, using design metrics and regression models, such
as Simple Linear Regression, LARS Regression, LASSO Regression, and machine learning
techniques such as Decision Tree and Random Forest.

3. Proposal

The innovation of this work falls on two important aspects of software effort estima-
tion. The first one is that it is commonly estimated by calculating metric values (or variables
in a model) after the implementation stage. In this work, we propose to consider metrics
from early stages such as design, since the characteristics of the system have already been
identified. Regarding the second aspect, we propose effort estimates with statistical models,
unlike classic machine learning algorithms. Statistical models and machine learning algo-
rithms (such as those mentioned in the previous section) have different advantages and
disadvantages, and the choice between them will depend on the specific problem and the
available data. We chose to experiment with statistical prediction models (little investigated
in the area of software estimation) due to the following four reasons:

1. Statistical models are often more interpretable than machine learning algorithms.
This means that it is easier to understand how the variables are related and how the
predictions are arrived at.

2. For smaller-scale problems, statistical models can be more powerful than machine
learning algorithms. Statistical models typically require fewer data and computational
resources than machine learning algorithms.

3. Statistical models are good for generalizing results to new populations, since they are
designed to capture the essence of the problem and not just fit the training data.
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4. Statistical models allow for more control of model complexity, which can be useful for
avoiding overfitting in problems with a limited number of observations.

The aspects taken for each of the proposed innovations are specified below. These
two elements are the independent variables (taken from metrics applied to software design
artifacts) and the statistical models to be compared.

3.1. Design Metrics

In [35], the design metrics found after performing a Systematic Literature Review (SLR)
are presented. The authors mention that the metrics mainly measure the classes modeled
in Unified Modeling Language (UML), with their respective attributes and methods, plus
other aspects such as encapsulation, inheritance, polymorphism, cohesion, or coupling
between classes were measured. The selected metrics used in this work are those identified
in [35], which are a selection of the metrics of Chidamber and Kemerer, Lorenz and Kidd,
Abreu and Melo, and unknown authors, as shown in Table 2.

Table 2. Design metrics by author.

Author(s) Design Metric

Chidamber and Kemerer WMC: weighted method per class
Chidamber and Kemerer CBO: coupling between objects
Chidamber and Kemerer DIT: depth of inheritance tree
Chidamber and Kemerer NOC: number of children

Lorenz and Kidd PM: number of public methods
Lorenz and Kidd NM: number of methods
Lorenz and Kidd NPV: number of public variables per class
Lorenz and Kidd NV: number of variables per class
Lorenz and Kidd NMI: number of methods inherited by a subclass
Lorenz and Kidd NMO: number of methods overridden by a subclass
Lorenz and Kidd NMA: number of methods added by a subclass
Abreu and Melo PF: polymorphism factor
Abreu and Melo CF: coupling factor
Abreu and Melo MHF: method hiding factor
Abreu and Melo AHF: attribute hiding factor
Abreu and Melo MIF: method inheritance factor
Abreu and Melo AIF: attribute inheritance factor

Unknown authors ExCoupling: total number of incoming methods calls to an object
Unknown authors ImpCoupling: total number of outgoing method invocations of an object

3.2. Statistical Regression Models

In this research paper, three different regressions were used to estimate software
effort and software development time. These three models were selected based on the
results of [36], where various statistical models in Software Engineering were analyzed.
Polynomial regression was not selected because it only uses one independent variable and
for this work a multivariate analysis is needed. The regressions used are described below.

Simple Linear Regression: this regression is an extension of the Simple Linear Regres-
sion. It has multiple predictor variables and one outcome [37]. This regression shows a
relationship between a dependent variable and p number of independent variables [38].
This regression is defined as (1).

Y = β0 + β1X1 + ... + βpXp + ϵ (1)

LASSO Regression: this regression was proposed in 1996 by Robert Tibshirani. This
statistical method “minimizes the residual sum of frames subject to the absolute value sum
of the coefficients being less than a constant” [39]. LASSO regression aims to “identify
the variables and the corresponding regression coefficients that conform to a model that
minimizes the prediction error” [40].
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Lasso regression has the capability to automatically select the most important variables
for the regression model and assign a value of zero to the coefficients for less important
variables. This means that you can handle large data sets with many explanatory variables
and avoid overfitting. Furthermore, this regression uses a regularization technique that
helps to avoid overfitting and improve the generalizability of the model. This technique
penalizes large coefficients and reduces them to zero.

Least Angle Regression (LARS): this regression is a model selection algorithm, and it
is relatively new. Defined as “a useful and less greedy version of traditional direct selection
methods” [41], it is a kind of democratic version of stepwise regression, and it is closely
connected to LASSO regression, providing an algorithm to compute the entire LASSO
path [42].

The LARS regression formula is similar to that of Linear Regression. The differences
lie in the method used to calculate the regression coefficients and the technique used
to the variable selection. In LARS regression, the coefficients are fitted iteratively as
explanatory variables are added, rather than fitting simultaneously for all variables as in
Linear Regression. LARS regression is a robust method that can handle data containing
outliers or errors in the explanatory variables.

4. Data Adquisition Process

A total of 37 software development projects belonging to students from the B.Sc.
program in Software Engineering were collected. The projects’ authors were interviewed
in order to obtain the effort value (man-hours) for each project. Some of the interviewed
authors had their PSP (Personal Software Process) [43] record. However, most of them did
not have it, thus an approximation of effort was used. Because of this, it must be admitted
that such an estimation affects the results.

Figure 1 shows the process that was followed to obtain the final data set after data
preprocessing. Each stage of the process is detailed in the following subsections.

Figure 1. Data processing stages.

4.1. Project Characteristics

When building prediction models, it is necessary to explain the characteristics of
the projects used, since the more similar the projects used to make estimates, the more
accurate the estimates will be. These characteristics were divided into project size and
project complexity.

4.1.1. Project Size

To calculate the size of each project, Use Case Points (UCPs) were used. UCP is
a method developed in 1993 by Gustav Karner to estimate software [44]. This method
“analyzes the use case actors, scenarios, and various technical and environmental factors
and abstracts them into an equation” [45]. The UCP equation is shown in (2), where UUPC
is the Unadjusted Use Case Points, TCF refers to the Technical Complexity Factor and it
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is calculated by (3), and the Environment Complexity Factor is denoted by ECF and it is
computed by (4).

UCP = TCF ∗ ECF ∗ UUCP (2)

TCF = 0.6 + 0.01
n

∑
i=1

wi ∗ Fi (3)

ECF = 1.4 + (−0.03)
n

∑
i=1

wi ∗ Fi (4)

TCF is determined by assigning a subjective score between 0 (the factor is irrelevant)
and 5 (the factor is essential) to each of the 14 technical factors described in [46]. The final
value of the TCF is calculated by dividing the total sum obtained in the previous step by
100 and adding a constant equal to 0.6.

ECF is calculated in order to have environmental considerations of the system. Simi-
larly, ECF is determined by assigning a score between 0 (no experience) and 5 (expert) to
each of the 8 environmental factors whose are presented in [46]. This information should
be collected from the development team that participated in the project. The final value of
the ECF is calculated multiplying the sum of the multiplications of the factors and their
weights, by a constant of −0.03 and adding a constant equal to 1.4.

According to [45], the UUPC is composed of computations: Unadjusted Use Case
Weight (UUCW) and the Unadjusted Actor Weight (UAW) as (5).

UUCP = UUCW + UAW (5)

To calculate the value of UUCW, use cases are divided into three categories: simple,
average, and complex, according to the number of transactions for each use case identified,
which are assigned a factor of 5, 10, and 15, respectively. So, UUCW can be defined as (6).

UUCW =
n

∑
i=1

Total type of use case * factor (6)

UAW is calculated by adding the number of actors in each category and multiplying
each total by its specified weighting factor. Actors are divided into three categories: Simple,
where the actor represents another system with a defined application programming inter-
face (factor = 1); Medium, where the actor represents another system that interacts through
a protocol (factor = 2); and Complex, where the actor is a person who interacts through a
graphical user interface (factor = 3). Therefore, the UAW equation is represented as (7).

UAW =
n

∑
i=1

Total type of actor * factor (7)

After calculating the complexity of each project, none of the projects exceeded a UUCW
value of 300, so it can be concluded that the complexity of the projects varies between
simple and medium. Once the UCP values for each project have been calculated, they were
analyzed, and their values had a minimum value of 73.92 and a maximum value of 183.551.
Therefore, the estimates made in this study will be more precise for projects that have a
similar complexity.

4.1.2. Project Complexity

As shown in Table 2, the Coupling Factor (CF) metric measures the coupling of a
system. According to the authors of the metric, the coupling between classes can have a
negative impact on the system, since as the coupling between classes increases, the density
of defects and normalized rework are also expected to increase [47].

Given the above, it is recommended that the Coupling Factor value not be too high,
to avoid increasing complexity, and reducing encapsulation and reuse [47]. The CF values
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for the projects oscillate between 0 and 1. Of the total projects, only 3 have a CF above
0.5, so these projects are more complex. The remaining set of projects has a low CF, so it is
concluded that the majority of the data set is made up of projects whose complexity is low,
which is because they are expected to have greater encapsulation and reuse.

4.2. Design Metrics Calculation

The selected metrics were calculated for each one of the 37 projects. The values
obtained can be consulted in [48]. It was observed that from Chidamber and Kemerer
metrics, and the Abreu and Melo metrics, several values are obtained for each project,
and therefore it was decided to work with a representative value. The chosen value was
the median, since that the median is not as sensitive to outliers as the mean is.

The Lorenz and Kidd metrics values are discrete for each project. On the other hand,
the metrics of unknown authors could not be used with the 37 projects, because the needed
artifacts to calculate them were not available.

4.3. Exploratory Data Analysis

Once the value of the metrics was calculated, an exploratory analysis of the data was
carried out. Table 3 show descriptive statistics of the data set with 37 and it is available
in [48].

Table 3. Descriptive statistics of the 37 project data set.

Variable Type Missing
Values Min Max Mean Median SD

WMC numeric 11 0 17.5 6.521 5 5.544
CBO numeric 1 1 1 1.549 2 0.404
DIT numeric 22 1 1 1 1 0

NOC numeric 20 0 4 1.735 2 0.868
PM numeric 15 0 17.5 6.818 6.5 5.622
NM numeric 15 0 17.5 6.818 6.5 5.622
NPV numeric 0 0 8 0.722 0 2.132
NV numeric 0 0.5 8 3.902 3.75 1.831

NMI numeric 22 0 16 2.866 0 5.692
NMO numeric 22 0 14 1 0 3.605
NMA numeric 22 0 8 1.633 0.5 2.341

PF numeric 15 0 0 0.168 0 0.496
CF numeric 0 0 1 0.210 0.136 0.280

MHF numeric 25 0.003 0.024 0.008 0.00765 0.005
AHF numeric 4 0 1 0.481 0.161 0.454
MIF numeric 26 0 0.2576 0.085 0 0.110
AIF numeric 25 0 0.2871 0.080 0 0.112

ExCoup numeric 26 0.05 0.72 0.343 0.31 0.221
ImpCoup numeric 27 0.05 0.67 0.342 0.33 0.221
EFFORT numeric 0 18.333 864.333 200.7783874 147.25 183.315

TIME numeric 0 38.5 2593 533.408 375 578.798

Next, box plots were obtained. Box plots are used to understand the way in which the
data of the independent variables behave, being defined as “a plot used when you want to
explain how a series of quantitative data is distributed” [49]. Therefore, this kind of plot
lets us see the variability of the values obtained for each calculated metric, as well as the
way in which each metric behaved.

As can be seen in Figure 2, where the values of the WMC metric are plotted, the boxplot
indicates that WMC is a metric that has great variability, because the size of the box is large
and covers almost the entire range. Furthermore, the orange line indicates the average of
the values obtained in the WMC metric, where it can be observed that although the range
of values is large, on average the projects have a WMC value of four. So, it is concluded
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that the class diagrams have a varied number of methods, having at least a value of zero
methods and at most a value of about 17.

Figure 2. WMC variable boxplots.

However, not all variables behaved in the same way; the boxplots also showed vari-
ables with not great variability in the data. For example, in Figure 3, the boxplots of the
PF, CF, and MHF variables (in this order) are shown, where it is observed that the PF
variable has some outliers (indicated by the circles), but its mean of values is at 0. So, it is
concluded that PF does not provide much information to the prediction model, in addition
to disclosing that there are almost no projects that involve polymorphism. The CF variable
has greater variability, while the MHF metric does not have variability, its mean being zero
and having only some outliers (circles), which indicates that there is not a strong relation-
ship between hidden methods; like the PF metric, it does not provide much information to
the models.

Figure 3. PF, CF, and MHF variable boxplot.

4.4. Variable Processing

After obtaining the values of the explanatory variables and performing an exploratory
analysis of the data, it was observed that the metrics could not be calculated for all the
projects, therefore, the projects had a null value. In addition, there were projects that did
not have enough artifacts in order to calculate the variables. For this reason, considering
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the behavior of some variables, metrics, and projects began to be eliminated, in order to
avoid empty or null spaces in the data set.

First, those metrics with little variability (those variables that only had a maximum of
two different values) or null were discarded, since they were variables that did not provide
information to the models. These variables were those corresponding to the DIT, NPV,
NMI, NMO, NMA, PF, MHF, and NOC metrics.

Subsequently, those metrics that could not be applied in the projects, or that in most of
them were not possible to calculate, were eliminated. These dropped metrics were MIF, AIF,
ExCoupling, and ImpCoupling. In addition, those projects for which more than 5 metrics
could not be calculated were discarded, so that each project had at least 5 variables to
contribute to the model.

Finally, an analysis of the relationship between variables was performed. For this,
a correlation matrix was generated, since it is an “indicator of the strength of the statistical
relationship between two random variables or two signals” [50]. A correlation matrix
indicates a possible dependency between the variables, in order to identify if there were
variables that measured the same characteristic. It was found that three variables were
related to each other: NM, PM, and WMC. In order to avoid redundancy and have a simpler
model, the WMC and PM variables were discarded.

Once this procedure was completed, a data set was built consisting of 6 variables
corresponding to the design metrics, in addition to the effort and time variables as shown
in Table 4, and 21 project records.

Table 4. Selected variables for experimentation.

Explanatory Variable Response Variable

CBO: Coupling Between Objects Effort (human-hours)
NM: Number of Methods Time (hours)

NV: Number of Variables per class
CF: Coupling Factor

MHF: Method Hiding Factor
AHF: Attribute Hiding Factor

Table 5 show descriptive statistics of the 21 project data set used, which it is available
in [51].

Table 5. Descriptive statistics of the 21 project data set.

Variable Missing
Values Min Max Mean Median SD

CBO 0 1 2 1.833 2 0.365
NM 0 0 17.5 7.142 8 5.545
NV 0 1 8 3.785 3.5 1.529
CF 0 0 1 0.2604 0.214 0.267

MHF 0 0 0.024 0.004 0.003 0.005
AHF 0 0.009 1 0.461 0.161 0.482

ESFUERZO 0 18.333 575 169.572 109.25 143.492
TIEMPO 0 55 2300 511.809 320 556.629

5. Experiments and Results

The design of the experiments, the method of validation of the models and the main
results obtained are presented below.

5.1. Models Validation

To verify that the model values were valid and representative for the model, it was
necessary to perform a validation of the models. To do this, leave-one-out cross-validation
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(LOOCV) was used. Cross-validation is a “technique used to assess the quality of machine
learning models and select reliable and stable models” [52].

In LOOCV, each value works as a test, and the other n-1 elements as a training set.
Thus, “the first validation set contains only the first case, x1, the second validation set
contains only the second case, x2, and so on” [53].

We used LOOCV because it is ideal for a small data set. In addition, LOOCV can be
useful to detect overfitting in a model. If the model performs high on the training data
but poorly on the test data, this may be an indicator that the model is overfitting the data.
Since the data set contains 21 projects, the LOOCV was performed with 21 iterations, one
for each method.

5.2. Prediction Models Building

To generate the prediction models, the Python programming language was used,
using the scikit-learn library. Statistical models were created for the previously mentioned
regressions, where the value of the coefficients belonging to the selected metrics was
obtained, in addition to the value of the independent variable.

To compare these statistical models of our proposal, predictions were also generated
with two machine learning approaches mentioned in the literature, such as Decision Trees
and an ensemble algorithm such as Random Forest. Figure 4 shows the flow for the
experimentation proposed in this study.

Figure 4. Description of the process followed for experimentation.

Because Random Forest has the disadvantage that a model cannot be generated,
but instead takes an average of n trees from random samples, the numbers of 1, 5, 10, and
100 trees were used. In the same way, the error of the estimation of effort and time was
generated, using from 1 to 500 random trees.

For the Decision Tree algorithm, the prediction of the attributes for time and effort was
performed. For the depth of the tree, a value of 5 was used, since the number of variables is
6, and we wanted to avoid overfitting. Finally, the conclusions of the tree were obtained in
sentences constructed in the if–then manner.

5.3. Results Analysis

After building the models for each of the estimation techniques, the prediction of
effort and software development time of each of the projects belonging to the data set was
carried out, and their results were compared. For the proposed regressions, it was possible
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to obtain the value of the coefficients of each explanatory variable (unlike machine learning
algorithms used), and with them, build a model. Tables 6 and 7 show the coefficients of
each statistical model built, where it can be observed that the coefficients obtained with a
LASSO model are not similar to LARS and Linear Regression (the latter two are similar).

It can also be observed that to estimate the effort from design artifacts, Attribute
Hiding Factor (AHF) and Coupling Between Objects (CBO) are the most influential, since
they have coefficients farthest from zero, while Method Hiding Factor (MHF) is the metric
that least influences the model. In addition, it can be seen with this type of model that AHF
influences positively and CBO negatively. To estimate the development time, Coupling
Factor (CF) is the most influential.

Using the data in Tables 6 and 7, software engineers and project managers can make
estimates from their design artifacts. For example, for the Linear Regression Model,
the weighting of the metrics and the intercept were calculated in order to substitute the
values and obtain a model as shown in (8).

e f f ort = −7.435CBO − 1.994NM − 5.405NV + 1.995CF − 1.275MHF + 9.179AHF + 354.1187 (8)

Similarly, the value of the coefficients for the LARS regression and the LASSO regres-
sion were obtained. In addition to this, the Mean Square Error (MSE) value and Mean
Absolute Error (MAE) also were calculated.

Table 6. Coefficients of statistical models for effort estimation.

Coefficient Linear LARS LASSO

CBO −7.435 −7.436 −8.581
NM 1.994 1.995 2.426
NV −5.405 −5.405 −34.235
CF 1.995 1.996 127.598

MHF −1.275 −1.275 0
AHF 9.179 9.197 220.671

Independent Term 354.118 354.1187 162.543

Table 7. Coefficients of statistical models for time estimation.

Coefficient Linear LARS LASSO

CBO 3.614 1.173 −37.902
NM −1.780 −1.734 2.019
NV −1.682 −1.627 −126.944
CF 7.707 7.891 674.039

MHF −4.417 −1.068 0
AHF 6.960 −2.214 634.994

Independent Term 1246.867 3106.842 578.956

Table 8 shows the comparison of the MSE and MAE of each model in effort estimation.
As can be seen in Table 8, Linear Regression has the lowest MSE and MAE values. As can be
seen in Figures 5 and 6, for Random Forest, as the number of trees increases, the error value
tends to decrease, becoming constant from approximately 5 trees for effort, and 10 trees
for time. Therefore, it is concluded that if Random Forest is used for estimation, it is not
necessary to include more than 5 or 10 trees. On the other hand, the highest error value
corresponds to the Decision Tree.

In Table 9, the MSE and MAE values of each model to predict software time are shown.
As can be seen, the technique with the lowest MSE and MAE corresponds to Random Forest,
followed by Decision Tree. The technique with the highest MSE and MAE corresponds to
LASSO Regression.
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Table 8. Accuracy metrics of the different models in effort estimation.

Prediction Model MSE MAE

Multiple Linear
Regression 18,236.402 92.588

LARS Regression 23,063.221 102.550
LASSO Regression 25,644.562 109.492

Random Forest
(Estimators = 1) 25,191.2457 113.216

Random Forest
(Estimators = 5) 22,979.584 105.562

Random Forest
(Estimators = 10) 20,910.574 100.521

Random Forest
(Estimators = 100) 18,751.494 99.103

Random Forest
(Estimators = 500) 18,535.951 97.334

Decision Tree 30,593.138 119.466

Figure 5. Effort estimation error increasing the number of estimators (trees) in Random Forest.

Figure 6. Time estimation error increasing the number of estimators (trees) in Random Forest.
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Table 9. Accuracy metrics of the different models in time estimation.

Prediction Model MSE MAE

Multiple Linear
Regression 499,625.814 485.094

LARS Regression 499,650.702 485.116
LASSO Regression 534,830.176 503.375

Random Forest
(Estimators = 1) 413,663.855 398.633

Random Forest
(Estimators = 5) 349,224.904 353.035

Random Forest
(Estimators = 10) 309,150.506 343.638

Random Forest
(Estimators = 100) 305,221.572 345.514

Random Forest
(Estimators = 500) 288,001.178 338.384

Decision Tree 382,961.926 385.577

When the prediction results using the different prediction models are analyzed, it can
be noted that the Random Forest and Decision Tree techniques are the ones that, in the
prediction results, have the time values closest to the actual time values. In contrast,
the LARS and LASSO regressions were the least effective, due to the fact that the results of
the time prediction are further away from the actual values of time.

Tables 10 and 11 show four normality tests (χ2, Shapiro–Wilk, Skewness, and Kurtosis)
for each set of errors (MSE and MAE) for effort prediction. Since not all prediction errors
met the assumption of normality, it was decided to apply the Friedman test to establish if it
had at least one set of prediction errors different from the others. Since we did not obtain
significant results between the groups, tests were no longer carried out between each pair
of groups.

Table 10. Normal statistical test of MSE values for effort predictions.

Model χ2 SW Skewness Kurtosis Friedman

Linear 0.0000 0.0000 0.0000 0.0001
LARS 0.0000 0.0000 0.0001 0.0045

LASSO 0.0000 0.0000 0.0001 0.0045 0.3568
Random Forest (10 estimators) 0.0000 0.0000 0.0000 0.0007

Decision Tree 0.0000 0.0000 0.0000 0.0024

Table 11. Normal statistical test of MAE values for effort predictions.

Model χ2 SW Skewness Kurtosis Friedman

Linear 0.0001 0.0001 0.0008 0.0111
LARS 0.0036 0.0001 0.0038 0.1049

LASSO 0.0001 0.0001 0.0006 0.0089 0.3568
Random Forest (10 estimators) 0.0000 0.0000 0.0003 0.0075

Decision Tree 0.0003 0.0000 0.0008 0.0247

Similarly, in Tables 12 and 13 the same normality tests were run for the MSE and MAE
errors for time prediction.

In Tables 12 and 13, it is observed that there is at least one set of errors statistically
different from 95%. For this reason, it was compared for each set of errors if there was
a statistically significant difference between each pair of differences. If all normality
tests are met, the t-paired test was executed, otherwise the non-parametric Wilcoxon test
was executed.
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Table 12. Normal statistical test of MSE values for time predictions.

Model χ2 SW Skewness Kurtosis Friedman

Linear 0.0000 0.0000 0.0000 0.0000
LARS 0.0000 0.0000 0.0000 0.0000

LASSO 0.0000 0.0000 0.0000 0.0000 0.0011
Random Forest (10 estimators) 0.0000 0.0000 0.0000 0.0025

Decision Tree 0.0000 0.0000 0.0000 0.0003

Table 13. Normal statistical test of MAE values for time predictions.

Model χ2 SW Skewness Kurtosis Friedman

Linear 0.0001 0.0000 0.0001 0.0019
LARS 0.0000 0.0000 0.0001 0.0019

LASSO 0.0001 0.0001 0.0006 0.0089 0.0011
Random Forest (10 estimators) 0.0009 0.0000 0.0014 0.0505

Decision Tree 0.0003 0.0000 0.0009 0.0231

In Table 14, it can be seen that the only significant differences at 95% confidence are
the following:

• Linear Regression and Random Forest;
• LARS and Random Forest;
• LASSO and Random Forest.

On the other hand, the results of Linear Regression and LARS are practically identical.
Finally, there is no difference between a Decision Tree and any type of statistical regression
for time prediction in this data set.

Table 14. Statistical tests for data distribution between models by data set for time prediction.

Model χ2 SW Skewness Kurtosis T-Paired or
Wilcoxon Test

Linear-LARS 0.0000 0.0000 0.0000 0.0000 0.9999
Linear-LASSO 0.0000 0.0000 0.0000 0.0008 0.4733

Linear-Random Forest 0.0020 0.0000 0.4460 0.0005 0.0126
Linear-Decision Tree 0.0048 0.0000 0.4239 0.0015 0.0759

LARS-LASSO 0.0000 0.0000 0.0000 0.0008 0.4733
LARS-Random Forest 0.0020 0.0000 0.4450 0.0005 0.0126
LARS-Decision Tree 0.0048 0.0000 0.4246 0.0015 0.0759

LASSO-Random Forest 0.0004 0.0000 0.0968 0.0004 0.0080
LASSO-Decision Tree 0.0063 0.0000 0.9884 0.0014 0.0759

Random Forest-
Decision Tree 0.0173 0.0002 0.1359 0.0152 0.3737

6. Threats to Validity

According to [54], there are four categories of valid threats in search-based predictive
modeling for Software Engineering: conclusion, internal, external, and construction. In
Table 15 we show the threats to validity, indicating how we addressed each one if it applied
to our study.
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Table 15. Validity threats addressed.

Categorty Description How It Was Addressed

C Is there any statistical
verification of the results?

All our conclusions were
based on the results of

statistical tests.

C
Does the study verify all the
assumptions of the chosen

statistical test?

We selected the statistical tests
based on the data distribution.

C
Do the results of the study

take into account validation
bias if any?

To reduce any bias in the
validation, a leave-one-out

cross-validation method
was used.

I

Does the study ensure that
there is no confounding effect
on the relationship between

the explanatory and the
dependent variables due to

extraneous attributes?

We propose to estimate effort
and time with design artifacts.

CT

Does the study use effective
representatives of the

concepts which represent
explanatory variables?

Metrics at the design stage are
the core of our proposal.

CT

Does the study use
performance measures that

are effective representatives of
the capability of the
developed models?

We used the MSE
(a most-used metric in the

literature) and MAE.

ET Are the data sets used by the
study real industrial data sets?

In the industry, the data set
with metrics in the design
stage is novel in the area of

software engineering.

ET Does the study provide proper
details for replicability?

The process used for
prepossessing and processing
are detailed for replicability.

7. Conclusions and Future Work

The objective of this work was to compare the estimates of software projects based on
effort and time, between machine learning techniques and different statistical regression
techniques, based on software design artifacts.

The projects selected to carry out the experiments were works belonging to university
students of the Software Engineering career path. These projects have the characteristic of
being mainly small and do not have high complexities.

Furthermore, according to the analysis of the results of the models, it can be observed
that the model that has a lower error in the prediction of effort is Multiple Linear Regression.
For time estimation, Random Forest has lowest error.

However, for effort estimation using design artifacts, there is no 95% significant
difference when using any model. For time estimation, the assembled machine learning
method is statistically different from the other models.

Furthermore, since the statistical models can be better interpreted by seeing the
weights of each design metric value, it is concluded that using these regressions for software
estimation is feasible.

It is important to mention that to carry out this research, there were limitations. Mainly
student projects were evaluated because the public data sets belonging to the industry did
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not have design metrics, being above all techniques of the construction stage. In addition
to the fact that those data sets that did have metrics from the design stage were not public.

Finally, as future work, it is expected to be able to test other Machine Learning
algorithms as assembled algorithms, to make estimates in the design stage. Likewise,
there is a need to have strategies to systematize the collection of historical data belonging
to student projects, but they were not public.
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