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Abstract: In this research work, we use the concepts of contraction mapping to establish the exis-
tence and uniqueness results and also study the averaging principle in Lp space by using Jensen’s,
Grönwall–Bellman’s, Hölder’s, and Burkholder–Davis–Gundy’s inequalities, and the interval trans-
lation technique for a class of fractional neutral stochastic differential equations. We establish the
results within the framework of the Ψ-Caputo derivative. We generalize the two situations of p = 2
and the Caputo derivative with the findings that we obtain. To help with the understanding of the
theoretical results, we provide two applied examples at the end.
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existence and uniqueness; averaging principle

MSC: 26A33; 69H07; 37C25

1. Introduction

Fractional calculus (Fr-C) provides the basis for improving our understanding as well
as our modeling skills in many different fields. Memory effects can be incorporated into
mathematical models employing Fr-C. Many real-world systems have inherited or memory
characteristics, meaning that their current actions are dependent on their previous states.
A foundation for precisely capturing these memory effects is provided by Fr-C, allowing
for more realistic modeling of complicated systems. Fr-C can represent non-local behaviors,
in contrast to integer-order calculus, which focuses mostly on local interactions. This
is especially helpful in systems where spatial correlations or long-range interactions are
important. These non-local processes can be theoretically described using fractional-order
derivatives (FrODs) and integrals. Integer-order calculus is treated as a specific instance
within the more comprehensive mathematical framework provided by Fr-C.

Fr-C has many uses, of which the following are a few: when evaluating signals with
fractal-like features or long-range correlations, Fr-C techniques prove to be beneficial
in signal-processing work. Fractional differentiation and integration operators facilitate
the meaningful information extraction process from these signals, resulting in improved
processing and analysis capacities. Materials that are viscoelastic display characteristics of
both liquids and solids. To better understand and forecast how they will respond to stress
and strain, Fr-C is used to simulate their behavior. This is crucial in fields such as material
science and structural engineering. Fr-C is used to explain electrochemical processes, such
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as charge transport in batteries and supercapacitors, and to analyze data from impedance
spectroscopy. For more details about the uses of Fr-C, see [1–7].

FrODs are developed as various types, each with its own definition based on unique
mathematical techniques and characteristics. Some of them are Grünwald–Letnikov,
Riemann–Liouville (R-L), Caputo–Fabrizio, Atangana–Baleanu, Caputo, conformable,
and Ψ-Caputo [8–14]. These are a few of the FrODs that are most frequently utilized.
The choice of which type to utilize depends on the particular problem being addressed and
the desired qualities of the FrODs.

In [15], Almeida proposed a novel FrOD concerning a kernel function known as the
Ψ-Caputo derivative (Ψ-Cap-D) and extended the results of other academics [16–19]. They
provide a flexible framework for modeling and analyzing complex dynamical systems
with memory effects and non-local behaviors. The Ψ-Cap-D has some advantages over
the classical Cap-D, such as being more flexible and having a higher order of accuracy.
The Ψ-Cap-D has been widely used in various fields of science and engineering, including
viscoelasticity, fractional control theory, and more. Some research publications in this
field have expressed interest in the Ψ-Cap-D; for example, ref. [20] proposes a numerical
investigation of the non-integer-order relaxation–oscillation equations in terms of the Ψ-
Cap-D. Research on Ulam stability in the sense of the Ψ-Cap-D for Langevin non-integer
order differential equations has been presented in [21]. An iterative technique was used by
the authors in [22] to investigate an initial value problem for differential equations in the
context of the Ψ-Cap-D.

Stochastic processes are used to describe systems that evolve over time in a random
manner. Common types of stochastic processes include Brownian motion, Poisson pro-
cesses, and Markov processes. Stochastic differential equations (SDEs) are mathematical
equations that incorporate both deterministic dynamics and random fluctuations. They are
widely used to model systems that evolve over time under the influence of both determinis-
tic forces and stochastic influences. Fractional stochastic differential equations (FrSDEs) are
differential equations that incorporate both stochastic processes and fractional derivatives.
They are used to model systems where randomness and memory effects play significant
roles. FrSDEs find applications in various fields, including physics, biology, anomalous
diffusion processes, engineering, finance, population dynamics, and economics [23–26].

Fractional neutral stochastic differential equations (FrNSDEs) are a special kind of
equation that depends on past and present values but also involves derivatives with delays
as well as the function itself, Fr-C, and stochasticity. These equations are used to model
systems where the evolution of a quantity depends not only on its current state but also on
its past states, and where Fr-C is used to describe non-local behaviors or memory effects
while incorporating randomness due to stochastic processes.

FrNSDEs find applications across various fields where systems exhibit memory effects
or hereditary properties influenced by randomness. Some notable applications include
the following: FrNSDEs can model population dynamics with memory effects, where the
growth rate depends not only on the current population size but also on past populations.
This is particularly relevant in ecological studies, where species interactions and environ-
mental factors influence population growth. In economic modeling, FrNSDEs can capture
the memory effects and long-term dependencies observed in economic time series data.
They are used in modeling financial markets to account for the impact of past market
behavior on future dynamics, such as in modeling stock price movements or interest rate
fluctuations. FrNSDEs are utilized in control theory to model systems with memory effects,
such as systems with delays or systems influenced by past inputs. They provide a more ac-
curate representation of dynamical systems with feedback mechanisms, allowing for better
control strategies in various engineering applications. For more details about applications
of FrNSDEs, see [27–30]. These applications demonstrate the versatility of FrNSDEs in
modeling diverse systems with memory effects and stochastic dynamics, offering insights
into complex phenomena across various disciplines.
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To use FrNSDEs effectively, we need to ensure that they have the properties of existence
and uniqueness (Ex-Un). Existence means that there is at least one function that satisfies the
FrNSDEs for a given set of initial conditions and random inputs. Uniqueness means that
there is only one such function, and no other function can satisfy the same FrNSDEs. Ex-Un
are important because they guarantee that the FrNSDEs has consistent and predictable
behavior and that we can find and analyze its solution using various methods. The Ex-Un
of FrNSDEs depends on the type of FrOD, the initial or boundary conditions, and the
properties of the nonlinearities involved. Establishing the Ex-Un of solutions to FrNSDEs is
crucial for several reasons, especially when dealing with complex systems exhibiting both
randomness and memory effects.

The following are the main points that show the importance of Ex-Un [31,32]:

1. Just as with deterministic fractional differential equations (FrDEs), ensuring the Ex-
Un of solutions to FrNSDEs is essential to validate the mathematical models used to
describe real-world phenomena. If solutions exist and are unique, it suggests that the
model accurately represents the underlying stochastic process and its dynamics.

2. Knowing that solutions to FrNSDEs exist and are unique provides confidence in the
predictability and stability of stochastic systems over time. Uniqueness ensures that
the solution is well defined and not affected by multiple possible outcomes, while
existence guarantees that solutions can be found for given initial conditions.

3. In fields such as finance, engineering, and control systems, where FrNSDEs are
commonly used to model stochastic processes, the Ex-Un of solutions are crucial
for risk assessment, optimal control design, and decision-making. Unambiguous
solutions enable accurate predictions and effective risk management strategies.

4. The Ex-Un of solutions to FrNSDEs is important for statistical analysis and inference,
such as estimating parameters, predicting future behavior, and assessing confidence
intervals. Having well-defined solutions allows researchers to make meaningful
interpretations and draw reliable conclusions from observed data.

5. Ex-Un results guide the development and validation of numerical methods and
algorithms for solving FrNSDEs. Knowing that solutions exist and are unique helps
ensure the accuracy, stability, and convergence of numerical simulations, providing
reliable tools for analyzing stochastic systems in practice.

6. Establishing the Ex-Un of solutions to FrNSDEs contributes to a better understanding
of the underlying stochastic processes and their behavior. It allows researchers to
interpret solutions in a physically meaningful way and gain insights into the complex
interplay between randomness, memory effects, and system dynamics.

FrNSDEs research is highly popular these days. The Ex-Un, stability, artificial intel-
ligence, electrical and electronic engineering, robust control, and most likely asymptotic
estimations of the solution as well as random periodic solutions for FrNSDEs were the
subject of study [33–41]. Approximate controllability and optimal control of FrNSDEs with
a time lag in control were found in [38,42].

A useful technique for streamlining both stochastic and deterministic systems is the
averaging principle. The averaging principle is a crucial and essential approximation
theory that serves as a foundation for averaging procedures in mathematics, engineering
mechanics, control, and other complex problems. It is an approximation principle that can
balance complicated and simple systems to some extent. The fundamental idea behind
the averaging principle is to prove an approximation theorem for SDEs, which in a way
replaces the original system, and to provide the optimal order convergence theorem that
goes along with it.

The averaging concept of FrSDEs has drawn the interest of certain academics in
recent years. For instance, under certain innovative assumptions, Luo et al. derived an
averaging principle for the solution of a class of FrSDEs with time delays [43]. Xu et al. [44]
established the averaging principle in the mean square sense for FrSDEs with Cap-D
driven by Brownian motion. The authors in [45] studied the averaging principle for SDEs
with Poisson noises. For SDEs driven by Lévy noise, Xu [46] studied averaging principle.
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The approximation theorem was studied by the authors [47] as an averaging concept
for the solutions of Itô-Doob-type FrSDEs with non-Lipschitz coefficients in the sense
of probability and mean square. For FrSDEs in the framework of Caputo–Hadamard,
Liu et al. [48] obtained the averaging principle findings established in L2 space. Similarly,
Yang et al. [49] developed the averaging principle results for Hilfer FrSDEs driven by Lévy
noise, also in the sense of L2 space. Additionally, Liu et al. [50] established the results of the
averaging principle for impulsive FrSDEs driven by fractional Brownian motion, with the
findings also established in L2 space. Likewise, Duan et al. [51] investigated the averaging
principle of a class of Caputo FrSDEs driven by fractional Brownian motion with delays,
with the results similarly established in L2 space. Furthermore, Xu et al. [52] established
the averaging principle for FrSDEs with Lévy motion in the sense of the Cap-D, with the
results established in L2 space.

As can be seen from the foregoing discussion, the averaging principle of FrNSDEs
does not receive much attention in the literature. Furthermore, the majority of earlier
research works address the averaging principle of FrSDEs in terms of L2 convergence.
Inspired by the aforementioned results, we first demonstrate the Ex-Un of solutions to a
class of FrNSDEs using the Banach fixed-point theorem. The purpose of the second section
is to study a class of the FrNSDEs averaging principle in the sense of the pth moment by
utilizing the Grönwall–Bellman’s inequality (Grön-Bell-Ineq), Jensen’s inequality (Jen-Ineq),
Burkholder–Davis–Gundy’s (BHDG-Ineq) inequality, Hölder’s inequality (Höld-Ineq) and
the interval translation approach. Furthermore, we are establishing our results within the
framework of the Ψ-Cap-D. Additionally, we provide examples and conduct numerical
simulations to scrutinize the theoretical outcomes established in our research.

Compared with the research results of [34–54], the major contributions of this paper
include at least the following three aspects:

1. In contrast to [43–54], the system we study is more generalized because in this
manuscript we establish the results of FrNSDEs, which are more generalized than
FrSDEs.

2. In this manuscript, we successfully establish the results in Lp space. In past studies,
there have been many articles on the case of p = 2, such as [35–53].

3. In contrast to [34–54], in our research work, we establish results regarding the exis-
tence, uniqueness, and averaging principle in the sense of the Ψ-Cap-D.

We investigate a family of FrNSDEs that accurately describe real-world phenomena.
This type of model might more accurately capture the impact of the system’s historical
status. We examine the following FrNSDEs:

T ϑ,Ψ
τ

[
X(τ)−C

(
τ,X(τ),X(τ − ϖ)

)]
= Y

(
τ,X(τ),X(τ − ϖ)

)
+Z

(
τ,X(τ),X(τ − ϖ)

)dBτ
dτ , τ ∈ [0,T]

X(τ) = X(τ), τ ∈ [−ϖ, 0],

(1)

where ϑ represents the order of the Ψ-Cap-D with ϑ ∈ ( 1
2 , 1], Y : [0,T]×Rf ×Rf → Rf,

Z : [0,T]×Rf×Rf → Rf×b, each of them being a measurable, continuous function. A com-
plete probability space

(
Ω,F ,P

)
defines the b-dimensional Brownian motion. The function

X : [−ϖ, 0] → Rf is continuous. Suppose ∥.∥ with E [∥X(τ)∥2] < ∞ is the norm for Rf.
Our research work is structured as follows: We provide some definitions and funda-

mental assumptions in the section that follows, which act as a basis for deriving results
about FrNSDEs. We establish the Ex-Un of the solution of FrNSDE in the first subsection
of Section 3, establish the averaging principle theorem in the second section, and include
examples to support our findings in Section 4. Section 5 then presents the conclusion.

2. Preliminaries

In this section, we present some basic definitions and assumptions that serve as the
foundation for the results established in this paper.
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Definition 1 ([15]). The Ψ-Cap-D of order ϑ is defined as follows: assume ρ − 1 < ϑ < ρ,
G(τ) ∈ Cρ[r, q], and Ψ ∈ Cρ[r, q] is an increasing function with Ψ′(τ) ̸= 0 ∀τ ∈ [r, q], then
we have {

T ϑ,Ψ
τ G(τ) =

(
Iρ−ϑ,Ψ

τ G[ρ]
)
(τ)

= 1
Γ(ρ−ϑ)

∫ τ
r Ψ′(λ)

(
Ψ(τ)− Ψ(λ)

)ρ−ϑ−1G[ρ](λ)dλ,

where ρ = [ϑ] + 1 and G[ρ](τ) =

(
1

Ψ′(τ)
d

dτ

)ρ

G(τ) on [r, q].

Definition 2 ([15]). The Ψ-fractional integral of order ϑ for G(τ) is defined as follows: suppose
that ϑ > 0, G(τ) is an integrable function defined on [r, q] and Ψ ∈ C1[r, q] is an increasing
function with Ψ′(τ) ̸= 0 ∀τ ∈ [r, q], then we have

Iϑ,Ψ
r+ G(τ) =

1
Γ(ϑ)

∫ τ

r
Ψ′(λ)

(
Ψ(τ)− Ψ(λ)

)ϑ−1G(λ)dλ.

Definition 3. If X(τ) is F (τ)-adapted and E
[∫ T

−ϖ ∥X(τ)∥dτ
]
< ∞, X(0) = X0, and it satisfies

the following conditions, then an Rf-value stochastic process {X(τ)}−ϖ≤τ≤T is a unique solution
to Equation (1):

X(τ) = X0 −C(0,X(0),X(−ϖ)) +C(τ,X(τ),X(τ − ϖ))

+ 1
Γ(ϑ)

∫ τ
0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)Y(λ,X(λ),X(λ − ϖ))dλ

+ 1
Γ(ϑ)

∫ τ
0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)Z(λ,X(λ),X(λ − ϖ))dBλ, τ ∈ [0,T],
X(τ) = X(τ), τ ∈ [−ϖ, 0].

(2)

Now we make the assumption that coefficient C with ∥C
(
0,X(0),X(−ϖ)

)
∥ < ∞, and

the uniformly continuous functions Y and Z in Equation (1) when ∀G1, G2,Y1,Y2, G ,Y ∈
Rf, τ ∈ [−ϖ,T], there are ξ1, ξ2, ξ3 > 0 that meet the following requirements:
(A1):

∥C(τ, G1, G2)−C(τ,Y1,Y2)∥ ≤ ξ1
(
∥G1 −Y1∥+ ∥G2 −Y2∥

)
.

(A2):

∥Y(τ, G1, G2)−Y(τ,Y1,Y2)∥ ∨ ∥Z(τ, G1, G2)−Z(τ,Y1,Y2)∥
≤ ξ2

(
∥G1 −Y1∥+ ∥G2 −Y2∥

)
.

where Y∨Z = max(Y,Z).
(A3):

∥Y(τ, G ,Y)∥ ∨ ∥Z(τ, G ,Y)∥ ≤ ξ3
(
1 + ∥G ∥+ ∥Y∥

)
.

(A4): Functions Ỹ1 and Z̃2 exist and for T1 ∈ [0,T], τ ∈ [0,T], and p ≥ 2, we are able to
identify positively bound functions Y1(T1) and Y2(T1) that fulfill

1
T1

∫ T1

0
∥Y(τ, G ,Y)− Ỹ1(τ, G ,Y)∥pdτ ≤ Y1(T1)

(
1 + ∥G ∥p + ∥Y∥p),

1
T1

∫ T1

0
∥Z(τ, G ,Y)− Z̃2(τ, G ,Y)∥pdτ ≤ Y2(T1)

(
1 + ∥G ∥p + ∥Y∥p).

Lemma 1 ([43]). Assume that there are real numbers σ1, σ2, . . . , συ(υ ∈ N) and meet
σȷ ≥ 0, (ȷ = 1, 2, . . . , υ). Then,( υ

∑
ȷ=1

σȷ

)p

≤ υp−1
υ

∑
ȷ=1

σ
p
ȷ , ∀p > 1.
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3. The Main Results

In this part, first of all, we determine a useful lemma, and then, by utilizing the Banach
fixed-point theorem (BFPT), we establish the results of Ex-Un of Equation (1). The BFPT
is an effective method widely used by researchers to study the Ex-Un of solutions to FrS-
DEs [52,54–56]. The BFPT guarantees the Ex-Un of solutions to certain types of mappings
in complete metric spaces. This is particularly valuable in the context of FrSDEs, where
ensuring the Ex-Un of solutions is crucial for understanding the behavior of the underlying
stochastic processes. BFPT offers a powerful tool for generalizing classical results from
deterministic differential equations to stochastic and fractional settings. By establishing Ex-
Un results using Banach’s theorem, researchers extend classical theories to more complex
systems governed by FrSDEs.

The importance of BFPT relative to other fixed-point theorems lies in its generality,
simplicity of formulation, and wide applicability. BFPT does not impose strong assumptions
on the nature of the mapping or the structure of the space, making it applicable to a wide
range of mathematical problems. Its statement is concise and easy to understand, involving
a simple contraction condition on the mapping, which is straightforward to verify in many
cases. This simplicity facilitates its use in various mathematical contexts and makes it
accessible to a wide range of researchers.

Lemma 2. For every T1 ∈ [0,T], we can derive the following growth requirements for Z̃2, utilizing
assumptions (A3), (A4):

∥Z̃2(G ,Y)∥p ≤ ξ4(1 + ∥G ∥p + ∥Y∥p),

where ξ4 =
(

2p−1Y2(T1) + 6p−1ξ
p
3

)
.

Proof. Considering Jen-Ineq and assumptions (A3), (A4), we derive the following result:

∥Z̃2(G ,Y)∥p ≤ 2p−1∥Z(τ, G ,Y)− Z̃2(G ,Y)∥p + 2p−1∥Z(τ, G ,Y)∥p

≤ 2p−1Y2(T1)(1 + ∥G ∥p + ∥Y∥p) + 2p−1ξ
p
3 (1 + ∥G ∥+ ∥Y∥)p

≤
(

2p−1Y2(T1) + 6p−1ξ
p
3

)
(1 + ∥G ∥p + ∥Y∥p).

Theorem 1. If (A1) and (A2) are valid, then the problem Equation (1) has a unique solution with
the following condition:

S =2 · 6p−1ξ
p
1D+ 6p−1ξ

p
2
(
Ψ(τ)− Ψ(0)

)pϑ
(

p − 1
ϑp − 1

)p−1 1
Γp(ϑ)

+D
p
2

2p3p−1ξ
p
2
(
Ψ(τ)− Ψ(0)

) (2ϑ−1)p
2

(2ϑ − 1)
p
2

(
pp+1

2(p − 1)p−1

) p
2 1

Γp(ϑ)
, (3)

where S is a non-negative number, and S < 1

Proof. We construct an operator A : β → β by X(τ) = X(τ), τ ∈ [−ϖ, 0] and the subse-
quent equality is valid:

A
(
X(τ)

)
=X0 −C(0,X(0),X(−ϖ)) +C

(
τ,X(τ),X(τ − ϖ)

)
+

1
Γ(ϑ)

∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)Y
(
λ,X(λ),X(λ − ϖ)

)
dλ

+
1

Γ(ϑ)

∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)Z
(
λ,X(λ),X(λ − ϖ)

)
dBλ. (4)
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Step 1: We are going to first demonstrate that A maps β into β. Suppose X(τ) ∈ β, and here
X(τ) is arbitrary. We have the following ∀τ ∈ [0,T] from the description of A

(
X(τ)

)
as in

Equation (4) and the Jen-Ineq:

E
[
∥A(X(τ))∥p] ≤ 4p−1E

[
∥X0∥p]

+ 4p−1E
[
∥C(τ,X(τ),X(τ − ϖ))−C

(
0,X0,X(−ϖ)

)
∥p]

+ 4p−1 1
Γp(ϑ)

E

[∥∥∥ ∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)Y(λ,X(λ),X(λ − ϖ))dλ
∥∥∥p
]

+ 4p−1 1
Γp(ϑ)

E

[∥∥∥ ∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)Z(λ,X(λ),X(λ − ϖ))dBλ

∥∥∥p
]

= I1 +I2 +I3 +I4. (5)

By employing (A1) and Jen-Ineq, we achieve the following:

I2 = 4p−1E
[
∥C(τ,X(τ),X(τ − ϖ))−C

(
0,X0,X(−ϖ)

)
∥p]

≤ 4p−1ξ
p
1E
[
∥X(τ)− X0∥+ ∥X(τ − ϖ)− X(−ϖ)∥

]p

≤ 8p−1ξ
p
1

(
E
[
∥X(τ)− X0∥p]+ E

[
∥X(τ − ϖ)− X(−ϖ)∥p])

≤ 4 · 8p−1ξ
p
1E ∥X∥p. (6)

Applying Höld-Ineq, Jen-Ineq, and (A3), we extract the subsequent outcomes:

I3 = 4p−1 1
Γp(ϑ)

E

[∥∥∥ ∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)Y(λ,X(λ),X(λ − ϖ))dλ
∥∥∥p
]

≤ 4p−1 1
Γp(ϑ)

( ∫ τ

0

(
Ψ(τ)− Ψ(λ)

) p(ϑ−1)
p−1

(
Ψ′(λ)

) p
p−1 dλ

)p−1

E

[ ∫ τ

0
∥Y(λ,X(λ),X(λ − ϖ))∥pdλ

]
≤ 4p−1D 1

Γp(ϑ)

(
Ψ(τ)− Ψ(0)

)pϑ−1
(

p − 1
pϑ − 1

)p−1

E

[ ∫ τ

0
ξ

p
3
(
1 + ∥X(λ)∥+ ∥X(λ − ϖ)∥

)pdλ

]
≤ 8p−1Dξ

p
3
(
Ψ(τ)− Ψ(0)

)pϑ 1
Γp(ϑ)

(
p − 1

pϑ − 1

)p−1(
1 + 2pE

[
∥X∥p]). (7)

where, D = supλ∈[−ϖ,T] Ψ′(λ). Now, applying the BHDG-Ineq, Jen-Ineq, and (A3), we get

I4 ≤ 4p−1 1
Γp(ϑ)

E

[
sup

τ∈[−ϖ,T]

∥∥∥ ∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)Z(λ,X(λ),X(λ − ϖ))dBλ

∥∥∥p
]

≤
(

(p)p+1

2(p − 1)p−1

) p
2 4p−1

Γp(ϑ)
E

[ ∫ τ

0

(
Ψ(τ)− Ψ(λ)

)2ϑ−2(Ψ′(λ)
)2
∥∥∥Z(λ,X(λ),X(λ − ϖ))

∥∥∥2
dλ

] p
2

≤ D
p
2

2
p
2 4p−1

(2ϑ − 1)
p
2

(
Ψ(τ)− Ψ(0)

) (2ϑ−1)p
2 ξ

p
3

1
Γp(ϑ)

(
2(p − 1)1−p pp+1) p

2
(
1 + 2E

[
∥X∥2]) p

2

≤ D
p
2

8p−1ξ
p
3
(
Ψ(τ)− Ψ(0)

) (2ϑ−1)p
2

(2ϑ − 1)
p
2

(
2(p − 1)1−p(p)p+1) p

2 1
Γp(ϑ)

(
1 + 2

p
2 E
[
∥X∥p]). (8)

By utilizing Equations (6)–(8) in (5), we achieve the following outcomes:
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E
[
∥A(X(τ))∥p] ≤ 4p−1E

[∥∥X0
∥∥p]

+ 4 · 8p−1ξ
p
1E
[
∥X∥p]

+
(
1 + 2pE

[
∥X∥p])ξ p

3
(
Ψ(τ)− Ψ(0)

)pϑ
(

p − 1
pϑ − 1

)p−1

8p−14p−1 D
Γp(ϑ)

+
8p−1ξ

p
3
(
Ψ(τ)− Ψ(0)

) (2ϑ−1)p
2

(2ϑ − 1)
p
2

(
2(p − 1)1−p pp+1) p

2
(
1 + 2

p
2 E
[
∥X∥p])4p−1 1

Γp(ϑ)
D

p
2 . (9)

When put together with the information from the previous discussion, it is simply
gained that the following condition is satisfied by a constant C :

E
[
∥A(X(τ))∥p] ≤ C

(
1 + E

[
∥X∥p]).

In other words, A maps β into β.
Step 2: Now, we will prove that the map A is contractive for this purpose. Let X(τ), E(τ)
be arbitrary. We obtain the following ∀τ ∈ [0,T] from Equation (4) and Jen-Ineq:

E
[
∥A(X(τ))−A(E(τ))∥p]

≤3p−1E
[
∥C(τ,X(τ),X(τ − ϖ))−C(τ,E(τ),E(τ − ϖ))∥p]

+3p−1E

[∥∥∥∥ 1
Γ(ϑ)

∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)
(
Y(λ,X(λ),X(λ − ϖ))−Y(λ,E(λ),E(λ − ϖ))

)
dλ

∥∥∥∥p]
+3p−1E

[∥∥∥∥ 1
Γ(ϑ)

∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)
(
Z(λ,X(λ),X(λ − ϖ))−Z(λ,E(λ),E(λ − ϖ))

)
dBλ

∥∥∥∥p]
=I5 +I6 +I7. (10)

Employing Jen-Ineq and (A1), the following is achieved as a result:

I5 = 3p−1E
[
∥C(τ,X(τ),X(τ − ϖ))−C(τ,E(τ),E(τ − ϖ))∥p]

≤ 3p−1ξ
p
1E
[
∥X(τ)−E(τ)∥+ ∥X(τ − ϖ)−E(τ − ϖ)∥

]p

≤ 6p−1ξ
p
1

(
E
[
∥X(τ)−E(τ)∥p]+ E

[
∥X(τ − ϖ)−E(τ − ϖ)∥p])

≤ 2 · 6p−1ξ
p
1 sup

τ∈[−ϖ,T]
E
[
∥X(τ)−E(τ)∥p]. (11)

Using the Höld-Ineq and (A2), we obtain

I6 ≤3p−1 1
Γp(ϑ)

( ∫ τ

0

(
Ψ(τ)− Ψ(λ)

) (ϑ−1)p
p−1

(
Ψ′(λ)

) p
p−1 dλ

)p−1

E

[ ∫ τ

0
∥Y(λ,X(λ),X(λ − ϖ))−Y(λ,E(λ),E(λ − ϖ))∥pdλ

]
≤3p−1D

(
Ψ(τ)− Ψ(0)

)pϑ−1 1
Γp(ϑ)

(
p − 1

ϑp − 1

)p−1

∫ τ

0
ξ

p
2E
[
∥X(λ)−E(λ)∥+ ∥X(λ − ϖ)−E(λ − ϖ)∥pdλ

]
≤6p−1D 1

Γp(ϑ)
ξ

p
2
(
Ψ(τ)− Ψ(0)

)ϑp
(

p − 1
ϑp − 1

)p−1

sup
τ∈[−ϖ,T]

E
[
∥X(τ)−E(τ)∥p]. (12)

However, using (A2) and the BHDK-Ineq, we have
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I7 = 3p−1E

[
sup

τ∈[−ϖ,T]

∥∥∥ 1
Γ(ϑ)

∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)(
Z(λ,X(λ),X(λ − ϖ))−Z(λ,E(λ),E(λ − ϖ))

)
dBλ

∥∥∥p
]

≤3p−1
(

(p)p+1

2(p − 1)p−1

) p
2 1

Γp(ϑ)

E

[ ∫ τ

0

(
Ψ(τ)− Ψ(λ)

)2ϑ−2(Ψ′(λ)
)2∥∥Z(λ,X(λ),X(λ − ϖ))−Z(λ,E(λ),E(λ − ϖ))∥2dλ

] p
2

≤D
p
2

2p3p−1ξ
p
2
(
Ψ(τ)− Ψ(0)

) (2ϑ−1)p
2

(2ϑ − 1)
p
2

(
pp+1

2(p − 1)p−1

) p
2 1

Γp(ϑ)
sup

τ∈[−ϖ,T]
E
[
∥X(τ)−E(τ)∥p]. (13)

By utilizing Equations (11)–(13) in (10), we extract the following outcomes:

E
[
∥A(X(τ))−A(E(τ))∥p]
≤
(

2 · 6p−1ξ
p
1D+ 6p−1ξ

p
2
(
Ψ(τ)− Ψ(0)

)pϑ
(

p − 1
ϑp − 1

)p−1 1
Γp(ϑ)

+D
p
2

2p3p−1ξ
p
2
(
Ψ(τ)− Ψ(0)

) (2ϑ−1)p
2

(2ϑ − 1)
p
2

(
pp+1

2(p − 1)p−1

) p
2 1

Γp(ϑ)

)
sup

τ∈[−ϖ,T]
E
[
∥X(τ)−E(τ)∥p]

≤ S∥X(τ)−E(τ)∥p. (14)

From Equation (3), we obtain S < 1, the operator A is a contractive map, so there is a
single fixed point X(τ) ∈ β of this map, with the initial function X(τ) = X(τ), τ ∈ [−ϖ, 0],
according to the BFPT.

Averaging Principle Result

The averaging principle of FrNSDEs in the sense of Lp is first examined in this section.
Initially, the standard form of Equation (2) will be examined:

Xε(τ) =X0 −C(0,X(0),X(−ϖ)) +C
(
τ,Xε(τ),Xε(τ − ϖ)

)
+ ε

1
Γ(ϑ)

∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)Y
(
λ,Xε(λ),Xε(λ − ϖ)

)
dλ

+
√

ε
1

Γ(ϑ)

∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)Y
(
λ,Xε(λ),Xε(λ − ϖ)

)
dBλ, (15)

where ε ∈ (0, ε0] is a positive small parameter, ε0 is a fixed point, and C, Y, and Z satisfy
the assumptions (A1), (A2), and (A3). The averaged representation of Equation (15) is
thus depicted below:

X∗
ε (τ) =X0 −C(0,X(0),X(−ϖ)) +C

(
τ,X∗

ε (τ),X∗
ε (τ − ϖ)

)
+ ε

1
Γ(ϑ)

∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)Ỹ1
(
λ,X∗

ε (λ),X∗
ε (λ − ϖ)

)
dλ

+
√

ε
1

Γ(ϑ)

∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)Z̃2
(
λ,X∗

ε (λ),X∗
ε (λ − ϖ)

)
dBλ, (16)

where Ỹ1 : Rf ×Rf → Rf, Z̃2 : Rf ×Rf → Rf×b
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Theorem 2. Consider that assumptions (A1) through (A4) are met. We can determine the
corresponding ε1 ∈ (0, ε0], φ > 0, χ ∈ (0, 1) satisfies for all ε in (0, ε1] when p ∈

[
2, (1 − ϑ)−1)

and for V > 0, which is an arbitrarily small number. The formula for this is obtained as follows:

E
[

sup
τ∈[−ϖ,φε−χ ]

∥∥Xε(τ)−X∗
ε (τ)

∥∥p
]
≤ V. (17)

Proof. We achieve the following outcome for any τ ∈ [0,T] via Equations (15) and (16):

Xε(τ)−X∗
ε (τ)

= C
(
τ,Xε(τ),Xε(τ − ϖ)

)
−C

(
τ,X∗

ε (τ),X∗
ε (τ − ϖ)

)
+ ε

1
Γ(ϑ)

∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)
(
Y
(
λ,Xε(λ),Xε(λ − ϖ)

)
− Ỹ1

(
X∗

ε (λ),X∗
ε (λ − ϖ)

))
dλ

+
√

ε
1

Γ(ϑ)

∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)
(
Z
(
λ,Xε(λ),Xε(λ − ϖ)

)
− Z̃2

(
X∗

ε (λ),X∗
ε (λ − ϖ)

))
dBλ. (18)

When Q ∈ (0, 1),℘1,℘2 ∈ Rf, p ≥ 2, we have

∥℘1 + ℘2∥p ≤ ∥℘1∥p

Qp−1 +
∥℘2∥p

(1 −Q)p−1 . (19)

Take Q = ξ1; when we use Equation (18) in Equation (19), and then use (A1) and
Jen-Ineq, we obtain the following as a result:∥∥Xε(τ)−X∗

ε (τ)
∥∥p

≤ ξ
1−p
1

∥∥C(τ,Xε(τ),Xε(τ − ϖ)
)
−C

(
τ,X∗

ε (τ),X∗
ε (τ − ϖ)

)∥∥p

+
2p−1(

1 − ξ1
)p−1∥∥∥∥ε

1
Γ(ϑ)

∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)

(
Y
(
λ,Xε(λ),Xε(λ − ϖ)

)
− Ỹ1

(
X∗

ε (λ),X∗
ε (λ − ϖ)

))
dλ

∥∥∥∥p

+
2p−1(

1 − ξ1
)p−1∥∥∥∥√ε

1
Γ(ϑ)

∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)

(
Z
(
λ,Xε(λ),Xε(λ − ϖ)

)
− Z̃2

(
X∗

ε (λ),X∗
ε (λ − ϖ)

))
dBλ

∥∥∥∥p

≤ 2p−1ξ1
(∥∥Xε(τ)−X∗

ε (τ)
∥∥p

+
∥∥Xε(τ − ϖ)−X∗

ε (τ − ϖ)
∥∥p)

+
1

Γp(ϑ)

2p−1εp(
1 − ξ1

)p−1∥∥∥∥ ∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)

(
Y
(
λ,Xε(λ),Xε(λ − ϖ)

)
− Ỹ1

(
X∗

ε (λ),X∗
ε (λ − ϖ)

))
dλ

∥∥∥∥p

+
1

Γp(ϑ)

2p−1ε
p
2(

1 − ξ1
)p−1∥∥∥∥ ∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)

(
Z
(
λ,Xε(λ),Xε(λ − ϖ)

)
− Z̃2

(
X∗

ε (λ),X∗
ε (λ − ϖ)

))
dBλ

∥∥∥∥p

. (20)

Utilizing Equation (20) in Equation (17):

E

[
sup

0≤τ≤c

∥∥Xε(τ)−X∗
ε (τ)

∥∥p
]
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≤ 2p−1ξ1

1 − 2p−1ξ1
E

[
sup

0≤τ≤c

∥∥Xε(τ − ϖ)−X∗
ε (τ − ϖ)

∥∥p
]

+
1

Γp(ϑ)

2p−1εp(
1 − ξ1

)p−1(1 − 2p−1ξ1
)

E

[
sup

0≤τ≤c

∥∥∥∥ ∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)

(
Y
(
λ,Xε(λ),Xε(λ − ϖ)

)
− Ỹ

(
X∗

ε (λ),X∗
ε (λ − ϖ)

))
dλ

∥∥∥∥p
]

+
1

Γp(ϑ)

2p−1ε
p
2(

1 − ξ1
)p−1(1 − 2p−1ξ1

)
E

[
sup

0≤τ≤c

∥∥∥∥ ∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)

(
Z
(
λ,Xε(λ),Xε(λ − ϖ)

)
− Z̃

(
ξ∗ε (λ),X∗

ε (λ − ϖ)
))

dBλ

∥∥∥∥p
]

= V1 +V2 +V3. (21)

From V1

V1 ≤ 22p−2ξ1

1 − 2p−1ξ1

(
E

[
sup

0≤τ≤c

∥∥Xε(τ − ϖ)
∥∥p
]
+ E

[
sup

0≤τ≤c

∥∥X∗
ε (τ − ϖ)

∥∥p
])

. (22)

From V2

V2 ≤ 1
Γp(ϑ)

22p−2εp(
1 − ξ1

)p−1(1 − 2p−1ξ1
)

E

[
sup

0≤τ≤c

∥∥∥∥ ∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)
(
Y
(
λ,Xε(λ),Xε(λ − ϖ)

)
−Y

(
λ,X∗

ε (λ),X∗
ε (λ − ϖ)

))
dλ

∥∥∥∥p
]

+
1

Γp(ϑ)

22p−2εp(
1 − ξ1

)p−1(1 − 2p−1ξ1
)

E

[
sup

0≤τ≤c

∥∥∥∥ ∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)
(
Y
(
λ,X∗

ε (λ),X∗
ε (λ − ϖ)

)
− Ỹ1

(
X∗

ε (λ),X∗
ε (λ − ϖ)

))
dλ

∥∥∥∥p
]

= V21 +V22. (23)

Using Höld-Ineq, Jen-Ineq, and (A2) on V21, we obtain the following result:

V21 ≤ 1
Γp(ϑ)

22p−2εp

(1 − ξ1)
p−1(1 − 2p−1ξ1

)(∫ c
0

(
Ψ(c)− Ψ(λ)

) (ϑ−1)p
p−1

(
Ψ′(λ)

) p
p−1 dλ

)p−1

E

[
sup

0≤τ≤c

∫ τ

0
∥Y(λ,Xε(λ),Xε(λ − ϖ))−Y(λ,X∗

ε (λ),X∗
ε (λ − ϖ))∥pdλ

]

≤ D
Γp(ϑ)

23p−3εp(Ψ(c)− Ψ(0)
)pϑ−1

ξ
p
2

(1 − ξ1)
p−1(1 − 2p−1ξ1

) (
p − 1

pϑ − 1

)p−1

E

[
sup

0≤τ≤c

∫ τ

0
∥Xε(λ)−X∗

ε (λ)∥
pdλ

]
+ E

[
sup

0≤τ≤c

∫ τ

0
∥Xε(λ − ϖ)−X∗

ε (λ − ϖ)∥pdλ

]

=F21εp(Ψ(c)− Ψ(0)
)pϑ−1

( ∫ c
0

E

[
sup

0≤ϱ≤λ

∥Xε(ϱ)−X∗
ε (ϱ)∥

p
]

dλ

+
∫ c

0
E

[
sup

0≤ϱ≤λ

∥Xε(ϱ − ϖ)−X∗
ε (ϱ − ϖ)∥p

]
dλ

)
, (24)
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where F21 = D 23p−3ξ
p
2

(1−ξ1)
p−1(1−2p−1ξ1)

(
p−1

pϑ−1

)p−1 1
Γp(ϑ)

.

Using Höld-Ineq, Jen-Ineq, and (A4) on V22, we obtain the following result:

V22 ≤ 1
Γp(ϑ)

22p−2εp(
1 − ξ1

)p−1(1 − 2p−1ξ1
)
( ∫ c

0

(
Ψ(c)− Ψ(λ)

) (ϑ−1)p
p−1

(
Ψ′(λ)

) p
p−1 dλ

)p−1

E

[
sup

0≤τ≤c

∫ τ

0

∥∥∥∥Y(λ,X∗
ε (λ),X∗

ε (λ − ϖ)
)
− Ỹ1

(
X∗

ε (λ),X∗
ε (λ − ϖ)

)∥∥∥∥p

dλ

]

≤ D
Γp(ϑ)

22p−2εp(
1 − ξ1

)p−1(1 − 2p−1ξ1
)( p − 1

pϑ − 1

)p−1(
Ψ(c)− Ψ(0)

)pϑ−1
cY1(c)(

1 + E ∥X∗
ε (λ)∥

p + E
∥∥X∗

ε (λ − ϖ)
∥∥p)

=F22εp(Ψ(c)− Ψ(0)
)pϑ−1, (25)

where F22 =
22p−2Y1(c)(1+E ∥X∗

ε (λ)∥
p+E ∥X∗

ε (λ−ϖ)∥p)
(1−ξ1)

p−1(1−2p−1ξ1)

(
p−1

pϑ−1

)p−1 c
Γp(ϑ)

D.

Through the use of Jen-Ineq, V3 provides the following:

V3 ≤ 1
Γp(ϑ)

22p−2ε
p
2

(1 − ξ1)
p−1(1 − 2p−1ξ1

)(
E

[
sup

0≤τ≤c

∥∥∥∥ ∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)

[
Z
(
λ,Xε(λ),Xε(λ − ϖ)

)
−Z

(
λ,X∗

ε (λ),X∗
ε (λ − ϖ)

)]
dBλ

∥∥∥∥p
])

+

1
Γp(ϑ)

22p−2ε
p
2

(1 − ξ1)
p−1(1 − 2p−1ξ1

)(
E

[
sup

0≤τ≤c

∥∥∥∥ ∫ τ

0

(
Ψ(τ)− Ψ(λ)

)ϑ−1Ψ′(λ)

[
Z
(
λ,X∗

ε (λ),X∗
ε (λ − ϖ)

)
− Z̃

(
λ,X∗

ε (λ),X∗
ε (λ − ϖ)

)]
dBλ

∥∥∥∥p
])

= V31 +V32. (26)

Using (A2), Höld-Ineq, and BHDG-Ineq on V31, we achieve the following outcomes:

V31 ≤ 1
Γp(ϑ)

22p−2ε
p
2

(
2(p − 1)1−p(p)p+1

) p
2 1

(1 − ξ1)
p−1(1 − 2p−1 p1

)
E

[∫ c
0

(
Ψ(c)− Ψ(λ)

)2ϑ−2(Ψ′(λ)
)2∥Z(λ,Xε(λ),Xε(λ − ϖ))−Z(λ,X∗

ε (λ),X∗
ε (λ − ϖ))∥2dλ

] p
2

≤ 1
Γp(ϑ)

22p−2ε
p
2 c

p
2 −1

(1 − ξ1)
p−1(1 − 2p−1ξ1

)((p)p+12(p − 1)1−p
) p

2

E

[∫ c
0

(
Ψ(c)− Ψ(λ)

)(ϑ−1)p(Ψ′(λ)
)(ϑ−1)p∥Z(λ,Xε(λ),Xε(λ − ϖ))−Z(λ,X∗

ε (λ),X∗
ε (λ − ϖ))∥pdλ

]
≤ 1

Γp(ϑ)
23p−3ε

p
2 c

p
2 −1ξ

p
2
(
(p)p+12(1 − p)p−1) p

2 1

(1 − ξ1)
p−1(1 − 2p−1ξ1

)
∫ c

0

(
Ψ(c)− Ψ(λ)

)(ϑ−1)p(Ψ′(λ)
)(ϑ−1)p
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E

[
sup

0≤ϱ≤S

[
∥Xε(ϱ)−X∗

ε (ϱ)∥
p + ∥Xε(ϱ − ϖ)−X∗

ε (ϱ − ϖ)∥p]dλ

]

= F31ε
p
2 c

p
2 −1

( ∫ c
0

(
Ψ(c)− Ψ(λ)

)(ϑ−1)p(Ψ′(λ)
)(ϑ−1)p

E

[
sup

0≤ϱ≤λ

∥Xε(ϱ)−X∗
ε (ϱ)∥

pdλ

]

+
∫ c

0

(
Ψ(c)− Ψ(λ)

)(ϑ−1)p(Ψ′(λ)
)(ϑ−1)p

E

[
sup

0≤ϱ≤λ

∥Xε(ϱ − ϖ)−X∗
ε (ϱ − ϖ)∥pdλ

])
, (27)

where F31 =
23p−3ξ

p
2

(1−ξ1)
p−1(1−2p−1ξ1)

(
(p)p+1

2(p−1)p−1

) p
2 1

Γp(ϑ)
.

Again using (A2), Höld-Ineq, and BHDG-Ineq on V32, we achieve the following outcomes:

V32 ≤ 1
Γp(ϑ)

22p−2(2(p − 1)1−p−(p)p+1) p
2 1

(1 − ξ1)
p−1(1 − 2p−1ξ1

) ε
p
2

E

[∫ c
0

∥∥∥Y(λ,X∗
ε (λ),X∗

ε (λ − ϖ))− Z̃2(λ,X∗
ε (λ),X∗

ε (λ − ϖ))
∥∥∥2(

Ψ(c)− Ψ(λ)
)2ϑ−2(Ψ′(λ)

)2dλ

] p
2

≤ 1
Γp(ϑ)

22p−2ε
p
2 c

p
2 −1 1

(1 − ξ1)
p−1(1 − 2p−1ξ1

) (2(p − 1)p−1(p)p+1) p
2

E

[ ∫ c
0

(
Ψ(c)− Ψ(λ)

)(ϑ−1)p(Ψ′(λ)
)(ϑ−1)p

(
∥Z(λ,X∗

ε (λ),X∗
ε (λ − ϖ))∥p +

∥∥Z̃2(X∗
ε (λ),X∗

ε (λ − ϖ))
∥∥p
)

dλ

]

≤ 1
Γp(ϑ)

c
p
2 −1

23p−33p−1ε
p
2
(
Ψ(c)− Ψ(0)

)pϑ−p+1
ξ

p
3

(
ξ

p
3 + ξ4

)p

(1 − ξ1)
p−1(1 − 2p−1ξ1

)
[(ϑ − 1)p + 1](

2(p − 1)1−p(p)p+1) p
2
(
1 + E [∥X∗

ε (λ)∥p] + E
[
∥X∗

ε (λ − ϖ)∥p])
=F32ε

p
2
(
Ψ(c)− Ψ(0)

)pϑ−p+1, (28)

where

F32 =
1

Γp(ϑ)
c

p
2 −1 1

(1 − ξ1)
p−1 23p−33p−1ξ

p
3

(
ξ

p
3 + ξ4

)p 1(
1 − 2p−1ξ1

)
((ϑ − 1)p + 1)(

2(p − 1)1−p(p)p+1) p
2
(
1 + E [∥X∗

ε (λ)∥p] + E [∥X∗
ε (λ − ϖ)∥p]

)
.

By utilizing Equations (22)–(28) in (21), as a result, we obtain the following outcomes:

E

[
sup

0≤τ≤c
∥Xε(τ)−X∗

ε (τ)∥
p
]

≤ 22p−2ξ1

1 − 2p−1ξ1

(
E

[
sup

0≤τ≤c
∥Xε(τ − ϖ)∥p

]
+ E

[
sup

0≤τ≤c
∥X∗

ε (τ − ϖ)∥p
])

+ F22εp(Ψ(c)− Ψ(0)
)pϑ−1

+ F32ε
p
2
(
Ψ(c)− Ψ(0)

)pϑ−p+1

+
∫ c

0

[
F21εp(Ψ(c)− Ψ(0)

)pϑ−1
+ F31ε

p
2
(
Ψ(c)− Ψ(0)

) p
2 −1(Ψ(c)− Ψ(λ)

)(ϑ−1)p(Ψ′(λ)
)(ϑ−1)p

]
(
Ψ(c)− Ψ(λ)

)(ϑ−1)p(Ψ′(λ)
)(ϑ−1)p

E

[
sup

0≤ϱ≤λ

∥Xε(ϱ)−X∗
ε (ϱ)∥

pdλ

]
+
∫ c

0

[
F21εp(Ψ(c)− Ψ(0)

)pϑ−1
+ F31ε

p
2
(
Ψ(c)− Ψ(0)

) p
2 −1

λ(ϑ−1)p
]
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E

[
sup

0≤ϱ≤λ

∥Xε(ϱ − ϖ)−X∗
ε (ϱ − ϖ)∥pdλ

]
. (29)

Taking ℵ
((

Ψ(c)− Ψ(0)
))

= E

[
sup0≤τ≤c∥Xε(τ)−X∗

ε (τ)∥
p
]

and E

[
sup−ϖ≤τ≤0 ∥Xε(τ)

−X∗
ε (τ)∥p

]
= 0.

Based on the assumptions mentioned above, it is achievable:

E

[
sup

0≤ϱ≤λ

∥∥Xε(ϱ − ϖ)−X∗
ε (ϱ − ϖ)

∥∥p
]
= ℵ(λ − ϖ).

Consequently

ℵ(c) ≤ 22p−2ξ1

1 − 2p−1ξ1

(
E

[
sup

0≤τ≤c
∥Xε(τ − ϖ)∥p

]
+ E

[
sup

0≤τ≤c
∥X∗

ε (τ − ϖ)∥p
])

+F22εp(Ψ(c)− Ψ(0)
)pϑ−1

+ F32ε
p
2
(
Ψ(c)− Ψ(0)

)pϑ−p+1

+
∫ c

0

[
F21εp(Ψ(c)− Ψ(0)

)pϑ−1
+ F31ε

p
2
(
Ψ(c)− Ψ(0)

) p
2 −1(Ψ(c)− Ψ(λ)

)(ϑ−1)p(Ψ′(λ)
)(ϑ−1)p

]
(ℵ(λ) + ℵ(λ − ϖ))dλ. (30)

Suppose γ(c) = supα∈[−ϖ,c] ℵ(α). Therefore, when ∀c ∈ [0,T], we get ℵ(λ) ≤ γ(λ),
and ℵ(λ − ϖ) ≤ γ(λ).

So, we have the following outcomes from Equation (29):

ℵ
((

Ψ(c)− Ψ(0)
))

≤ 22p−2ξ1

1 − 2p−1ξ1

(
E

[
sup

0≤τ≤c
∥Xε(τ − ϖ)∥p

]
+ E

[
sup

0≤τ≤c
∥X∗

ε (τ − ϖ)∥p
])

+ F22εp(Ψ(c)− Ψ(0)
)pϑ−1

+ F32ε
p
2
(
Ψ(c)− Ψ(0)

)pϑ−p+1
+ 2∫ c

0

[
F21εp(Ψ(c)− Ψ(0)

)pϑ−1
+ F31ε

p
2
(
Ψ(c)− Ψ(0)

) p
2 −1(Ψ(c)− Ψ(λ)

)(ϑ−1)p(Ψ′(λ)
)(ϑ−1)p

]
γ(λ)dλ.

For ∀α ∈ [0, c], we have

ℵ(α) ≤ 22p−2ξ1

1 − 2p−1ξ1

(
E

[
sup

0≤τ≤α
∥Xε(τ − ϖ)∥p

]
+ E

[
sup

0≤τ≤α
∥X∗

ε (τ − ϖ)∥p
])

+ F22εpαpϑ−1 + F32ε
p
2 αpϑ−p+1

+ 2
∫ α

0

[
F21εpαpϑ−1 + F31ε

p
2 α

p
2 −1(α − λ)(ϑ−1)p

]
γ(λ)dλ

22p−2ξ1

1 − 2p−1ξ1

(
E

[
sup

0≤τ≤c
∥Xε(τ − ϖ)∥p

]
+ E

[
sup

0≤τ≤c
∥X∗

ε (τ − ϖ)∥p
])

+ F22εpcpϑ−1 + F32ε
p
2 cpϑ−p+1

+ 2
∫ c

0

[
F21εpcpϑ−1 + F31ε

p
2 c

p
2 −1(Ψ(c)− Ψ(λ)

)(ϑ−1)p(Ψ′(λ)
)(ϑ−1)p

]
γ(λ)dλ.

As a result,

γ
((

Ψ(c)− Ψ(0)
))

= sup
α∈[−ϖ,c]

ℵ(α)

≤max

{
sup

α∈[−ϖ,0]
ℵ(α), sup

α∈[0,c]
ℵ(α)

}
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≤ 22p−2ξ1

1 − 2p−1ξ1

(
E

[
sup

0≤τ≤c
∥Xε(τ − ϖ)∥p

]
+ E

[
sup

0≤τ≤c
∥X∗

ε (τ − ϖ)∥p
])

+ F22εp(Ψ(c)− Ψ(0)
)pϑ−1

+ F32ε
p
2
(
Ψ(c)− Ψ(0)

)pϑ−p+1
+ 2∫ c

0

[
F21εpcpϑ−1 + F31ε

p
2 c

p
2 −1(Ψ(c)− Ψ(λ)

)(ϑ−1)p(Ψ′(λ)
)(ϑ−1)p

]
γ(λ)dλ.

By Grön-Bell-Ineq, we have the following:

γ(c) ≤
(

22p−2ξ1

1 − 2p−1ξ1

(
E

[
sup

0≤τ≤c
∥Xε(τ − ϖ)∥p

]
+ E

[
sup

0≤τ≤c
∥X∗

ε (τ − ϖ)∥p
])

+ F22εp(Ψ(c)− Ψ(0)
)pϑ−1

+ F32ε
p
2
(
Ψ(c)− Ψ(0)

)pϑ−p+1
)

exp
(

2F21εp(Ψ(c)− Ψ(0)
)pϑ−1

+
2F31

(ϑ − 1)p + 1
ε

p
2
(
Ψ(c)− Ψ(0)

)pϑ−p+1
)

.

Consequently, we obtain the subsequent outcome from Equation (30):

E

[
sup

0≤τ≤c
∥Xε(τ)−X∗

ε (τ)∥
p
]

≤
(

22p−2ξ1

1 − 2p−1ξ1

(
E

[
sup

0≤τ≤c
∥Xε(τ − ϖ)∥p

]
+ E

[
sup

0≤τ≤c
∥X∗

ε (τ − ϖ)∥p
])

+ F22εp(Ψ(c)− Ψ(0)
)pϑ−1

+ F32ε
p
2
(
Ψ(c)− Ψ(0)

)pϑ−p
+ 1

)

exp
(

2F21εp(Ψ(c)− Ψ(0)
)pϑ−1

+
2F31

(ϑ − 1)p + 1
ε

p
2
(
Ψ(c)− Ψ(0)

)pϑ−p+1
)

.

This implies that for any ∀τ ∈ [0, φε−χ] ⊆ [0,T], there are φ > 0 and χ ∈ (0, 1) as well:

E

[
sup

0≤τ≤φε−χ

∥Xε(τ)−X∗
ε (τ)∥

p

]
≤ U ε1−χ, (31)

where

U =

(
22p−2ξ1ε1−χ

1 − 2p−1ξ1

(
E

[
sup

0≤τ≤φε−χ

∥∥Xε(τ − ϖ)
∥∥p
]
+ E

[
sup

0≤τ≤φε−χ

∥∥X∗
ε (τ − ϖ)

∥∥p
])

+ F22εp(Ψ(φε−χ)− Ψ(0)
)pϑ−1

+ F32ε
p
2
(
Ψ(φε−χ)− Ψ(0)

)pϑ−p
+ 1

)

exp
(

2F21εp(Ψ(φε−χ)− Ψ(0)
)pϑ−1

+
2F31

(ϑ − 1)p + 1
ε

p
2
(
Ψ(φε−χ)− Ψ(0)

)pϑ−p+1
)

is a constant. As a result, when ∀V > 0, finding ε1 ∈ (0, ε0] that satisfies ∀ε ∈ (0, ε1] and
τ ∈ [−ϖ, φε−χ] allows us to deduce

E

[
sup

−ϖ≤τ≤φε−χ

∥Xε(τ)−X∗
ε (τ)∥

p

]
≤ V.
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Corollary 1. Assume that the assumptions (A1) and (A4) are valid. Considering any arbitrary
number V1 > 0, the subsequent criteria are established: χ ∈ (0, 1), φ > 0 and ε1 ∈ (0, ε0) occur
for ∀ε ∈ (0, ε1], and we possess

lim
ε→0
P
(

sup
τ∈[−ϖ,φε−χ

∥∥Xε(τ)−X∗
ε (τ)

∥∥ > V1

)
= 0. (32)

Proof. Using the Chebyshev-Markov inequality and Theorem 2, one can deduce the fol-
lowing for any number V1 > 0:

P
[

sup
τ∈[−ϖ,φε−χ ]

∥∥Xε(τ)−X∗
ε (τ)

∥∥ > V1

]
≤ 1
V2

1
E
[

sup
τ∈[−ϖ,φε−χ ]

∥∥Xε(λ)−X∗
ε (λ)

∥∥2
]

≤ U ε1−χ

V2
1

≤ 0 as ε → 0,

It ends the proof.

In the following section, we provide two examples to demonstrate the usefulness of
our established theoretical outcome.

4. Examples

The following two numerical examples demonstrate how the average principle result
can be used to obtain the average system of a complex system.

Example 1. Consider the following FrNSDE:
T 0.8,Ψ

τ

[
Xε(τ)− τ

1
8 − 1

2 sin(Xε(τ))
]

= ε sin2(τ)Xε(τ − ϖ) +
√

ε sin(Xε(τ)
dBτ
dτ , τ ∈ [0,T],

X(τ) = X(τ), τ ∈ [−ϖ, 0],

(33)

From the above system, we have the following: ϑ = 0.8, Ψ(τ) = τ
1
2 , and

C(τ,X(τ),X(τ − ϖ)) = −τ
1
8 − 1

2
sin(Xε(τ)),

Y(τ,X(τ),X(τ − ϖ)) = sin2(τ)Xε(τ − ϖ),

Z(τ,X(τ),X(τ − ϖ)) = sin(Xε(τ)).

The following forms represent the averages of Y and Z:

Ỹ(τ,X(τ),X(τ − ϖ)) =
1
π

∫ π

0
sin2(λ)Xε(λ − ϖ)dλ =

1
2
X∗

ε (τ − ϖ),

Z̃(τ,X(τ),X(τ − ϖ)) =
1
π

∫ π

0
sin(Xε(τ))dλ = sin(Xε(τ)).

To construct the average form concerning Equation (33), use the simplified solution X∗
ε (τ)

in place of the original solution Xε(τ). As a result, the simplified averaged equation is presented
as follows: 

T 0.8,Ψ
τ

[
X∗

ε (τ)− τ
1
8 − 1

2 sin(X∗
ε (τ))

]
= 1

2 εX∗
ε (τ − ϖ) +

√
ε sin(X∗

ε (τ))
dBτ
dτ

X(τ) = X(τ), τ ∈ [−ϖ, 0].

(34)
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Thus, all the requirements stated in Theorem 2 are fulfilled. As a result, in the context of
ε → 0, the original solution Xε(τ) and the average solution X∗

ε (τ) are equivalent in the sense
of Lp. The solution Xε(τ) of the original Equation (33) and the solution X∗

ε (τ) of the averaged
Equation (34) are then compared numerically in Figure 1. Figure 1 demonstrates a high degree of
agreement between Xε(τ) and X∗

ε (τ), confirming the accuracy of our established theoretical results.
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25

30

35

Time

S
ol

ut
io

ns
Solutions of fractional neutral stochastic differential equations

Figure 1. The red color indicates the solution of the original equation, while the blue color represents
the solution of the averaged equation, when ϵ = 0.001.

Example 2. Consider the subsequent FrNSDE:
T 0.9,Ψ

τ

[
Xε(τ)− 1

8 τ
1
5 − 1

9 sin(Xε(τ))
]

= 1
2 εXε(τ − ϖ) + 3π

4
√

ε sin3 τ.Xε(τ)
dBτ
dτ , τ ∈ [0,T],

X(τ) = X(τ), τ ∈ [−ϖ, 0],

(35)

where ϑ = 0.9, Ψ(τ) = τ
1
2 , and we have the following:

C(τ,X(τ),X(τ − ϖ)) = −1
8

τ
1
5 − 1

9
sin(Xε(τ)),

Y(τ,X(τ),X(τ − ϖ)) =
1
2
Xε(τ − ϖ),

Z(τ,X(τ),X(τ − ϖ)) =
3π

4
sin3 τ.Xε(τ).

The averages of Y and Z are presented in the following forms:

Ỹ(τ,X(τ),X(τ − ϖ)) =
1
π

∫ π

0

1
2
Xε(λ − ϖ)dλ =

1
2
X∗

ε (τ − ϖ),

Z̃(τ,X(τ),X(τ − ϖ)) =
1
π

3π

4

∫ π

0
sin3 τ.Xε(τ)dλ = X∗

ε (τ).

To construct the average form concerning Equation (35), use the simplified solution X∗
ε (τ) in

place of the original solution Xε(τ). Thus, the corresponding averaged FrNSDE of Equation (35) is
given below:
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T 0.9,Ψ

τ

[
X∗

ε (τ)− 1
8 τ

1
5 − 1

9 sin(X∗
ε (τ))

]
= 1

2 εX∗
ε (τ − ϖ) +

√
εX∗

ε (τ)
dBτ
dτ

X(τ) = X(τ), τ ∈ [−ϖ, 0].

(36)

Obviously, every condition mentioned in Theorem 2 is satisfied. Therefore, the original
solution Xε(τ) and the average solution X∗

ε (τ) are equivalent in the sense of Lp in the context of
ε → 0. In Figure 2, the solution Xε(τ) of the original Equation (35) and the solution X∗

ε (τ) of the
averaged equation Equation (36) are compared numerically. Figure 2 demonstrates the overlapping
of solutions Xε(τ) and X∗

ε (τ), indicating the reliability of our established theoretical results.

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

Time

S
ol

ut
io

ns

Solutions of fractional neutral stochastic differential equations

Figure 2. The red color indicates the solution of the original equation, while the blue color represents
the solution of the averaged equation, when ϵ = 0.001.

5. Conclusions

In this research work, we generalize the results of the existence and uniqueness of
solutions to FrNSDEs and the averaging principle in the framework of Ψ-Caputo derivatives
in the Lp space. The concept of contraction mapping is used to investigate the existence
and uniqueness of the discussed problem. The averaging principle for FrNSDEs on the Lp

space is demonstrated in this study using the following: Grönwall–Bellman’s inequality,
Gronwall’s inequality, Burkholder–Davis–Gundy’s inequality, Hölder’s inequality, Jensen’s
inequality, and the interval translation approach. Ultimately, two examples are carried
out to comprehend the established outcomes and to demonstrate the correctness of our
findings. We will use numerical techniques in our future work to solve various kinds of
real-world challenges modeled with FrNSDEs.
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44. Xiao, G.; Fečkan, M.; Wang, J. On the averaging principle for stochastic differential equations involving Caputo fractional

derivative. Chaos Interdiscip. J. Nonlinear Sci. 2022, 32, 101105. [CrossRef]
45. Stoyanov, I.M.; Bainov, D.D. The averaging method for a class of stochastic differential equations. Ukr. Math. J. 1075, 26, 186–194.

[CrossRef]
46. Xu, Y.; Pei, B.; Li, Y. Approximation properties for solutions to non-Lipschitz stochastic differential equations with Lévy noise.

Math. Meth. Appl. Sci. 2015, 38, 2120–2131. [CrossRef]
47. Abouagwa, M.; Li, J. Approximation properties for solutions to Itô-Doob stochastic fractional differential equations with

non-Lipschitz coefficients. Stoch. Dyn. 2019, 19, 1950029. [CrossRef]
48. Liu, J.; Wei, W.; Wang, J.; Xu, W. Limit behavior of the solution of Caputo-Hadamard fractional stochastic differential equations.

Appl. Math. Lett. 2023, 140, 108586. [CrossRef]
49. Yang, M.; Lv, T.; Wang, Q. The averaging principle for Hilfer fractional stochastic evolution equations with Lévy noise. Fractal

Fract. 2023, 7, 701. [CrossRef]
50. Liu, J.; Wei, W.; Xu, W. An averaging principle for stochastic fractional differential equations driven by FBm involving impulses.

Fractal Fract. 2022, 6, 256. [CrossRef]
51. Duan, P.; Li, H.; Li, J.; Zhang, P. Averaging principle for Caputo fractional stochastic differential equations driven by fractional

Brownian motion with delays. Complexity 2021, 2021, 6646843. [CrossRef]
52. Xu, W.; Duan, J.; Xu, W. An averaging principle for fractional stochastic differential equations with Lévy noise. Chaos Interdiscip. J.

Nonlinear Sci. 2020, 30, 083126. [CrossRef] [PubMed]
53. Wang, X.; Luo, D.; Luo, Z.; Zada, A. Ulam–Hyers stability of Caputo-type fractional stochastic differential equations with time

delays. Math. Probl. Eng. 2021, 2021, 5599206. [CrossRef]
54. Huong, P.T.; Kloeden, P.E.; Son, D.T. Well-posedness and regularity for solutions of Caputo stochastic fractional differential

equations in Lp spaces. Stoch. Anal. Appl. 2023, 41, 1–15. [CrossRef]
55. Hu, W.; Zhu, Q.; Caraballo, T. Random attractors for a stochastic nonlocal delayed reaction-diffusion equation on a semi-infinite

interval. IMA J. Appl. Math. 2023, 88, 576–601.
56. Mchiri, L.; Ben Makhlouf, A.; Rguigui, H. Ulam-Hyers stability of pantograph fractional stochastic differential equations. Math.

Methods Appl. Sci. 2023, 46, 4134–4144. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/oca.2515
http://dx.doi.org/10.1016/j.cam.2021.113845
http://dx.doi.org/10.1080/17442508.2019.1625903
http://dx.doi.org/10.1080/27690911.2022.2142219
http://dx.doi.org/10.1080/00207179.2018.1530431
http://dx.doi.org/10.1016/j.apnum.2019.01.014
http://dx.doi.org/10.1155/2018/8353065
http://dx.doi.org/10.1016/j.jfranklin.2018.04.044
http://dx.doi.org/10.1186/s13662-017-1106-5
http://dx.doi.org/10.1016/j.chaos.2020.110253
http://dx.doi.org/10.1007/s12346-021-00538-x
http://dx.doi.org/10.1093/imamci/dnx014
http://dx.doi.org/10.1016/j.aml.2020.106290
http://dx.doi.org/10.1063/5.0108050
http://dx.doi.org/10.1007/BF01085718
http://dx.doi.org/10.1002/mma.3208
http://dx.doi.org/10.1142/S0219493719500291
http://dx.doi.org/10.1016/j.aml.2023.108586
http://dx.doi.org/10.3390/fractalfract7100701
http://dx.doi.org/10.3390/fractalfract6050256
http://dx.doi.org/10.1155/2021/6646843
http://dx.doi.org/10.1063/5.0010551
http://www.ncbi.nlm.nih.gov/pubmed/32872803
http://dx.doi.org/10.1155/2021/5599206
http://dx.doi.org/10.1080/07362994.2021.1988856
http://dx.doi.org/10.1002/mma.8745

	Introduction
	Preliminaries
	The Main Results
	Examples
	Conclusions
	References

