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Abstract: We describe the nonabelian exterior square G∧̂G of a pro-p-group G (with p arbitrary
prime) in terms of quotients of free pro-p-groups, providing a new method of construction of G∧̂G
and new structural results for G∧̂G. Then, we investigate a generalization of the probability that two
randomly chosen elements of G commute: this notion is known as the “complete exterior degree” of
a pro-p-group and we will use it to characterize procyclic groups. Among other things, we present a
new formula, which simplifies the numerical aspects which are connected with the evaluation of the
complete exterior degree.
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1. Introduction and Formulation of the Main Results

In the present paper we deal only with topological Hausdorff groups. Topological
groups with a discrete topology are called discrete groups or abstract groups. Topological
groups with a compact topology are called compact groups. Of course, finite groups are
examples of discrete compact groups but the additive group Zp of the p-adic integers (p
prime) is an example of an infinite nondiscrete compact group, see Example 1.28 (i) and
Exercise E1.10 in [1]. The usual notion of an abelian tensor product of two abstract abelian
groups, which is described by Propositions A1.44, A1.45 and A1.46 of [1], has been adapted
to the context of profinite groups in §5.4 and §5.5 of [2], introducing the complete abelian
tensor product of two profinite abelian groups. Usually, one formulates a universal property
and then provides an explicit construction, as indicated in Lemma 5.5.1, Lemma 5.5.2 and
Proposition 5.5.4 of [2]. Brown and Loday [3,4] introduced the nonabelian tensor product
of two abstract groups, which are not necessarily abelian. Adapting the notion of Brown
and Loday to topological groups, the presence of a topology should be compatible with
the algebraic structure of the tensor product and some difficulties can appear even if we
consider compact groups.

Let us focus on a special class of compact groups. First of all, we mention from §1.1
of [2] that a topological space X, which arises as projective limit on a given (directed) set of
indices J, can be written as

X = lim←−
j∈J

Xj with Xj finite space endowed with the discrete topology ∀j ∈ J (1)
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and X is called profinite space. Secondly, we may look at finite groups and a projective limit

G = lim←−
j∈J

Gj with Gj finite p− group ∀j ∈ J (2)

is called a pro-p-group, as indicated by Definition 1.27 of [1]. These are special types
of profinite groups, that is, totally disconnected compact groups, which are described by
Theorem 1.34 of [1]. Several results of classification of compact groups involve maximal
closed subgroups which are pro-p-groups; just to give an idea, Corollaries 8.5, 8.6 and 8.8
of [1] classify compact abelian groups via their pro-p-subgroups; in particular Corollary 8.8
of [1] shows that any compact abelian group is totally disconnected if and only if it is the
direct product of pro-p-groups.

Following §3.3 of [2], if X is a profinite space, Fp(X) a pro-p-group and ι : X → Fp(X)

a continuous map such that Fp(X) = ⟨ι(X)⟩, we say that the pair (Fp(X), ι), or briefly
Fp(X), is a free pro-p-group on X, if the following universal property is satisfied

X

φ

��

ι // Fp(X)

ψ

yy
G

(3)

where φ : X → G is a continuous map into a pro-p-group G, φ(X) topologically generates
G (i.e., ⟨φ(X)⟩ = G) and ψ : Fp(X) → G is a continuous homomorphism such that (3)
commutes (i.e., ψ ◦ ι = φ). Diagram (3) describes a universal property defining Fp(X). The
reader can look at Theorem A3.28 of [1] for a more general perspective on the definition
of objects in a prescribed category by a universal property. Here, we assume that X
is nonempty and |X| ≥ 2 in order to avoid trivial examples. We also note that ι is an
embedding by Lemma 3.3.1 of [2] and that for every profinite space X there exists a unique
free pro-p-group Fp(X) on X by Proposition 3.3.2 of [2].

We recall briefly the details of the construction of Fp(X) here. For instance, if X is a
profinite space, F a free abstract group on X and N ◁ F (i.e., N is a normal subgroup of F),
then one observes that

N (F) = {N ◁ F | F/N finite p-group and X ∩ f N open in X, ∀ f ∈ F} (4)

is a filter basis which allows us to form the projective limit

lim
N∈N (F)

F/N =: Fp(X). (5)

This is a concrete construction of the free pro-p-group on X and we may check that
Fp(X) satisfies the universal property expressed by (3), as illustrated by Proposition 3.3.2
and Exercise 3.3.3 of [2]. Note also that Fp(X) possesses the topology induced by (4) and
is compatible with the structure of the projective limit. The same logic applies to any
filter basis and works in fact for free compact groups, but also for a free pro-C-group with
C an arbitrary class of finite groups closed under taking quotients and finite subdirect
products (and containing groups of order two). The reader may refer to Chapter 11 of [1],
to Chapter 3 of [2] and to [5] for more information on topological free groups.

We recall now that a Cantor cube is a topological space which is homeomorphic to a
product space {0, 1}ℵ for some infinite cardinal ℵ, see Definition A4.30 in [1]. A dyadic space
is a continuous image of a Cantor cube. Our first main result provides a new approach to
the notion of a complete nonabelian tensor square G⊗̂G of a pro-p-group G, originally studied
in [6,7] for pro-p-groups, but introduced by Brown and Loday [3,4] for finite groups.
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Theorem 1. Let G = lim←−
j∈J

Gj be a pro-p-group with Gj finite p-groups for all j ∈ J.

Then, there exists a profinite space Y such that the complete nonabelian tensor square G⊗̂G
is the pro-p-group which is topologically isomorphic to the quotient group Fp(Y)/K of the free
pro-p-group Fp(Y) on Y by the smallest closed normal subgroup K of Fp(Y) containing the set

{ι(gz, h)ι(g, h)−1ι(zg, hg)−1, ι(g, ht)ι(gh, th)−1ι(g, h)−1 | g, z, h, t ∈ G}.

Moreover, ι embeds Y into Fp(Y) and, if in addition G⊗̂G is metrizable, then G⊗̂G is a
dyadic space.

We should mention that Theorem 1 has been recently proved for arbitrary compact
groups in Theorem 1.4 of [8], involving the representation theory of compact groups. Here
we do not use the representation theory and offer an argument, which involves only
constructions via projective limits. The concrete description of Theorem 1 allows us to
illustrate our second main result.

First of all, we consider ∇̂(G) = ⟨x⊗̂x | x ∈ G⟩, which turns out to be a closed normal
subgroup of G⊗̂G, called a diagonal subgroup of G⊗̂G, and then we form the quotient

(G⊗̂G)/∇̂(G) = G∧̂G (6)

which is called a complete nonabelian exterior square of the pro-p-group G. We mention that
the set

ĈG(x) = {a ∈ G | a∧̂x = 1} (7)

is a closed subgroup of G, called a complete exterior centralizer of x in G (see [7,9]), and the
Haar measure µ on G, whose properties are illustraed by Theorem 2.8 and Exercise E2.3
in [1], allows us to introduce the complete exterior degree

d̂(G) :=
∫

G
µ(ĈG(x))dµ (8)

of the pro-p-group G. In particular, if G is finite and we consider the counting measure on
G, then we find the exterior degree o f f inite groups in [10–12]. The complete exterior center

Ẑ(G) =
⋂

x∈G
ĈG(x) = {a ∈ G | a∧̂x = 1, ∀x ∈ G}, (9)

plays a relevant role in [7,9] and is always a subgroup of the usual center Z(G) of G.
Secondly, we note that the notion of the FC-center is well known (i.e., it is the set of

elements with finite conjugacy classes) and investigated by Baer in 14.5.6 of [13] and by
Neumann in 14.5.9 and 14.5.11 of [13]. In case of a pro-p-group G the complete exterior
FC-center is more recent:

F̂C(G) := {x ∈ G | |G : ĈG(x)| is finite}. (10)

This set turns out to be a closed normal subgroup of G by Lemma 3 of [9].
Thirdly, we recall that a pro-p-group P is procyclic, if it is topologically generated by

a single element. As indicated by Proposition 2.7.1 of [2], a procyclic group P is either
isomorphic to Zp or to the cyclic group Z(pn) of p-power order (with n ≥ 1). Detecting
procyclic groups among totally disconnected compact groups turns out to be relevant for
several results of classification (for instance, they are involved in the theory of near abelian
compact groups, whose structure is described by Theorems 6, 15, 26, 35 in Overview of [14].
In particular, some homological notions such as the notion of the Schur multiplier should
be involved (see [2,14] and Definition 3 below). Our second main result is devoted to
recognize procyclic groups through the complete exterior degree.
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Theorem 2. For a pro-p-group G, the following conditions are satisfied:

(i). d̂(G) = 0 if and only if F̂C(G) is not open in G;
(ii). d̂(G) = 1 if and only if G is procyclic.

In particular, if G is a nonprocyclic pro-p-group with Ẑ(G) open in G, then there exists a finite
p-group E with number of conjugacy classes k(E) such that

d̂(G) = d̂(E) =
k(E)

∑
i=1

|ĈE(xi)|
|CE(xi)|

. (11)

Note that Theorem 2 was inspired by a similar property, which was shown by Abdol-
lahi and others [15] for the probability d(G) that two randomly picked elements x, y commute in
a pro-p-group G. In fact, our third main result connects d̂(G) with d(G).

Theorem 3. If G is a pro-p-group with a trivial Schur multiplier, then there exists a finite p-group

H such that d(G) = d̂(G) = d̂(H)/|G : F̂C(G)|2.

Section 2 proves Theorem 1 and gives a formal description of complete nonabelian
tensor squares and complete nonabelian exterior squares in terms of quotients of free
pro-p-groups. Section 3 recalls some facts of homological algebra and previous bounds
on the exterior degree, setting the ground for the proofs of the remaining main theorems
which are given in Section 4. Examples appear at the end, in order to support the main
results. Notations and terminology are standard and follow [1,2,14,16].

2. The First Main Theorem and Its Proof

We say that a pro-p-group G acts compatibly and continuously on itself by conjugation,
if the action (a, b) ∈ G × G 7→ ab ∈ G is continuous and the compatibility relations
x(y

z) = xz−1yz and t(z
y) = ty−1zy are satisfied for all x, y, z, t ∈ G.

Definition 1 (Continuous Crossed Pairings of Pro-p-Groups). Let A be a pro-p-group and
G another pro-p-group acting compatibly and continuously on itself by conjugation. A map
φ : G× G → A is called a continuous crossed pairing if for all g, h, t, z ∈ G we have

φ(gz, h) = φ(zg, hg) φ(g, h) and φ(g, ht) = φ(g, h) φ
(

gh, th
)

(12)

If G and A are profinite abelian groups, Definition 1 gives the notion of a bilinear contin-
uous map, or middle linear continuous map, according to §5.5 of [2]. It is possible to introduce
categorically the complete nonabelian tensor square via an appropriate universal property.

Definition 2 (Universal Property of Complete nonabelian Tensor Squares). Consider a
pro-p-group A and pro-p-group G acting compatibly and continuously on itself by conjugation.
The complete nonabelian tensor square of G is the pro-p-group G⊗̂G together with a continuous
crossed pairing ⊗̂ : (g, h) ∈ G × G 7→ g⊗̂h ∈ G⊗̂G such that for any continuous crossed
pairing φ : G× G → A there is a unique homomorphism φ̂ : G⊗̂G → A of pro-p-groups making
commutative the following diagram (i.e., φ̂ ◦ ⊗̂ = φ)

G× G

φ

��

⊗̂
// G⊗̂G

φ̂

xx
A

(13)

Note the universal property of complete abelian tensor products in §5.5 of [2]. It is
also useful to compare Lemma 5.5.1, Lemma 5.5.2 and Proposition 5.4 of [2] with Theorems
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2.1 and 3.1 of [6], in order to understand how we generalize the results on complete abelian
tensor squares of profinite groups to complete nonabelian tensor squares of profinite groups.
We now begin with the proof of our first main result.

Proof of Theorem 1. First of all, we note that Y = G× G is a profinite space since we have

Y = G× G = lim←−
i∈J

Gi × lim←−
j∈J

Gj = lim←−
i,j∈J

(Gi × Gj). (14)

If φ : (g, h) ∈ Y 7→ φ(g, h) ∈ A is a continuous crossed pairing of pro-p-groups, then
the universal property defining Fp(Y) implies that there is a continuous homomorphism
φ̂ : Fp(Y)→ A, which is unique in making commutative the following diagram:

Y ι //

φ

��

Fp(Y)

φ̂

}}

A

(15)

Here, ι is the embedding of Y into Fp(Y). Let K be the smallest closed normal subgroup of
Fp(Y) that is topologically generated by the elements

ι(gz, h)ι(g, h)−1ι(zg, hg)−1 and ι(g, ht)ι(gh, th)−1ι(g, h)−1 (16)

for all g, z, h, t ∈ G. Since φ is a crossed pairing,

φ̂
(

ι(gz, h)ι(g, h)−1ι(zg, hg)−1
)
= φ̂(ι(gz, h))φ̂

(
ι(g, h)−1

)
φ̂
(

ι(zg, hg)−1
)

(17)

= φ(gz, h)φ(g, h)−1 φ(zg, hg)−1 = φ(zg, hg)φ(g, h)φ(g, h)−1 φ(zg, hg)−1 = 1.

We also have for the same reason

φ̂
(

ι(g, ht)ι(gh, th)−1ι(g, h)−1
)
= φ̂(ι(g, ht)φ̂(ι(gh, th)−1)φ̂(ι(g, h)−1) (18)

= φ(g, ht)φ(gh, th)−1 φ(g, h)−1 = φ(g, h)φ(gh, th)φ(gh, th)−1 φ(g, h)−1 = 1.

Therefore, K ⊆ ker φ̂ and φ̂ is a continuous homomorphism of pro-p-groups vanishing on
the topological generators of K. Now, π : Fp(Y)→ Fp(Y)/K is the quotient homomorphism,
hence a surjective continuous homomorphism of pro-p-groups, and we may consider the
composition π ◦ ι : Y → Fp(Y)/K. In this situation, there is a continuous homomorphism
of pro-p-groups φ̂K : Fp(Y)/K → A, which is unique in making commutative the following
diagram

Fp(Y)/K

φ̂K

""

Yπ◦ιoo

φ

��

ι // Fp(Y)

φ̂

}}

π

yy

A

(19)

Setting G⊗̂G = Fp(Y)/K and g⊗̂h = π(ι(g, h)), Definition 2 is satisfied by the left
portion of the diagram above. Of course, we may repeat the proof taking any pro-p-group
which is topologically isomorphic to Fp(Y)/K and we reach the same conclusions. The first
part of Theorem 1 follows.
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Concerning the remaining part of the theorem, we shall note that G⊗̂G is a pro-p-group
and by a result of Alexandroff in Lemma A4.31 of [1], so it is a dyadic space, whenever it is
metrizable.

From Theorem A4.16 of [1], it can be useful to mention that first countable pro-p-groups
are always metrizable. This happens for instance when pro-p-groups are topologically
finitely generated. Therefore, one could also note from the proof above that if G is topo-
logically finitely generated, then so is G⊗̂G and in this situation automatically G⊗̂G is
metrizable, hence a dyadic space.

3. Some Observations on the Schur Multipliers

In the present section we report some results on the exterior degree in [2,7,9] but also
some results of homological algebra in [1,2,16]. Here, [G, G] denotes the closure of the
commutator subgroup

[G, G] = ⟨[x, y] | x, y ∈ G⟩ = ⟨x−1y−1xy | x, y ∈ G⟩. (20)

While in general Z(G) is a closed subgroup of a pro-p-group G, it can easily be seen that
this is not the case for [G, G], and so we need to consider [G, G] if we want to preserve both
its algebraic and topological structure in a pro-p-group, see [1].

Definition 3 (See [6,16]). The Schur multiplier M(G) of a pro-p-group G is defined to be the
second homology group H2(G,Zp) with coefficients in the ring Zp of the p-adic integers.

The above notion is largely used in [7,16–18] but it is useful to recall how Definition 3
should be interpreted in case of a finite p-group. For instance, we may consider a pro-p-
group on a countable set of indices, that is, G = lim←−

m∈N
Gm with each Gm finite p-group. The

situation does not change if G = lim←−
j∈J

Gj and J is an arbitrary set of indices, but take J being

countable as a temporary assumption.
From Proposition 6.5.7 of [2], there is a continuous homomorphism of pro-p-groups

such that

H2(G,Zp) = H2

(
lim←−
m∈N

Gm, lim←−
m∈N

Z
pmZ

)
≃ lim←−

m∈N
H2

(
Gm,

Z
pmZ

)
, (21)

where Z/pmZ = Z(pm) denotes the cyclic group of order pm as per Example 1.28 (i) of [1].
Let us carefully examine the construction of the above homology groups with coefficients
in Zp. Consider a free homogeneous Bar resolution (with each Ln free profinite Zp-modules on
the profinite space {(1, x1, . . . , xn) | xi ∈ G}) according to §6.2 in [2]

. . . −→ Ln
∂n−→Ln−1 −→ . . . L1 −→ L0

ϵ−→Zp −→ 0, (22)

where ∂n is the boundary map defined by

∂n(x0, x1, . . . , xn) =
n

∑
i=0

(−1)i (x0, x1, . . . xi−1, xi+i, . . . , xn), (23)

and ϵ is the augmentation map defined by

ϵ : x ∈ L0 7→ ϵ(x) = 1 ∈ Zp. (24)

Both (23) and (24) are continuous homomorphisms of pro-p-groups. Now, G is a
pro-p-group, Zp is a commutative pro-p-ring and we may consider B which is a pro-p right
[[ZpG]]-module, that is, a pro-p-module on the complete group algebra [[ZpG]]. See §5.1,

§5.2 and §5.3 of [2] for definitions and details. In this situation, Tor
[[ZpG]]
n (B,Zp) is the n-th
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left derived functor of the complete abelian tensor product, ⊗̂[[ZpG]] Zp, as noted in [2]
(§6.3), and so we have

. . . −→ B⊗̂[[ZpG]]Ln
∂n−→B⊗̂[[ZpG]]Ln−1 −→ . . .

∂2−→B⊗̂[[ZpG]]L1
∂1−→B⊗̂[[ZpG]]L0

ϵ−→Zp −→ 0. (25)

Since u⊗̂(x0, x1, . . . , xn) ∈ B⊗̂[[ZpG]]Ln 7→ u⊗̂∂n(x0, x1, . . . , xn) ∈ B⊗̂[[ZpG]]Ln−1, we
may use the symbol ∂n in (23) also in (25), because it is induced by (23). In particular,
B = Zp can be regarded as a pro-p-module on [[ZpG]] and so we have

H2(G,Zp) = Tor
[[ZpG]]
2 (Zp,Zp) =

ker ∂2

im ∂3
. (26)

A careful examination of §6.8 of [2] suggests that we have a short exact sequence

0 −−−−→ Zp
p−−−−→ Zp

q−−−−→ Z
pZ −−−−→ 0 (27)

where p denotes the multiplication by p in Zp and q the limit map from Zp to Z/pZ arising
from the structure of the projective limit of Zp, and so there is a long exact sequence of
abelian pro-p-groups

. . . −−−−→ H2(G,Zp)
p2−−−−→ H2(G,Zp)

q2−−−−→ H2(G,Z/pZ) δ2−−−−→
δ2−−−−→ H1(G,Zp)

p1−−−−→ H1(G,Zp)
q1−−−−→ H1(G,Z/pZ) δ1−−−−→

δ1−−−−→ H0(G,Zp)
p0−−−−→ H0(G,Zp)

q0−−−−→ H0(G,Z/pZ)

(28)

where p1 and p2 are induced by p, q1 and q2 by q, and δ1 and δ2 are connecting continuous

homomorphisms. Since H0(G,Zp)
p0−→H0(G,Zp) = Zp

p−→Zp is a monomorphism, we have

H1(G,Zp)
p1−→H1(G,Zp) −→ H1(G,Z/pZ) −→ 0 (29)

and so (28) becomes

. . . −−−−→ H2(G,Zp)
p2−−−−→ H2(G,Zp)

q2−−−−→ H2(G,Z/pZ) δ2−−−−→
δ2−−−−→ H1(G,Zp)

p1−−−−→ H1(G,Zp)
q1−−−−→ H1(G,Z/pZ) −−−−→ 0

(30)

On the other hand, Lemma 6.8.6 of [2] allows us to conclude that H1(G,Z/pZ) ≃ G/Gp[G, G]
and H1(G,Zp) ≃ G/[G, G]; hence, (23) becomes (up to isomorphisms of abelian pro-p-
groups) the following long exact sequence of abelian pro-p-groups

. . . −−−−→ H2(G,Zp)
p2−−−−→ H2(G,Zp)

q2−−−−→ H2(G,Z/pZ) δ2−−−−→
δ2−−−−→ G/[G, G]

p1−−−−→ G/[G, G]
q1−−−−→ G/Gp[G, G] −−−−→ 0

(31)

We make two observations on the basis of the homological algebra, which was used.

Remark 1. Assume we start with G = G1 finite p-group, that is, G = G1 = G2 = G3 = . . .
in the projective limit describing G. Then, there is a presentation 1→ R→ F → G → 1 for
G = F/R with F a free abstract group and R a normal subgroup of F. Applying Theorem
9.5.10 of [16], we obtain the isomorphism of finite abelian p-groups

H2(G,Z/pZ) ≃ R ∩ (F′Fp)

[R, F]Fp , (32)
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where Fp = ⟨ap | a ∈ F⟩ denotes the subgroup of p-powers of F, [F, F] = F′ the commutator
subgroup of F and [R, F] = ⟨[a, b] | a ∈ R, b ∈ F⟩ ⊆ F′. In particular, the long exact
sequence (31) becomes in this situation

. . .
q2−−−−→ R ∩ (F′Fp)/[R, F]Fp δ2−−−−→ G/[G, G]

p1−−−−→ (33)

G/[G, G]
q1−−−−→ G/Gp[G, G] −−−−→ 0

so we may concretely visualize Definition 3 in the case of finite p-groups.

Note that (32) modifies the Hopf’s Formula for the Schur multiplier, which is available
in Theorem 9.5.6 of [16] and usually formulated as

H2(G,Z) ≃ R ∩ F′

[R, F]
, (34)

when G = F/R is an arbitrary abstract group with presentation 1 → R → F → G → 1,
so not necessarily a finite p-group. Now, we make our second observation as a further
description of Definition 3.

Remark 2. Comparing (34) with (32), we note that the terms Fp and pZ are significant in the
case of finite p-groups and this justifies the construction of H2(G,Zp), which is designed for
infinite pro-p-groups as large projective limits of finite p-groups. The temporary assumption
of working with J countable facilitates the understanding of the functorial behavior in
(21), where H2(G,Zp) preserves the structure of projective limit. This relevant observation
and general versions of Hopf’s Formula such as (32) allow us to consider H2(G,Zp) as a
projective limit of smaller homology groups H2(Gm,Z/pmZ) when m tends to infinity. The
reader can find in [19] details of a categorical nature on Hopf Formulas.

Now we remove the temporary assumption to have a countable J and consider a
pro-p-group G which is a projective limit of Gj with an arbitrary set J of indices. Note that
Theorem 1 involves the nonabelian tensor square G⊗̂G of an arbitrary pro-p-group G and
one has the following maps

κ̂ : x⊗̂y ∈ G⊗̂G 7→ [x, y] ∈ [G, G] and κ̂′ : x∧̂y ∈ G∧̂G 7→ [x, y] ∈ [G, G], (35)

which are continuous surjective homomorphisms of pro-p-groups such that

Ĵ2(G) = ker κ̂ ⊇ ∇̂(G) and ker κ̂′ ≃ M(G). (36)

We give a proof of the following result for convenience of the reader.

Lemma 1. In a pro-p-group G, the maps κ̂ and κ̂′ in (35) are continuous surjective homomorphisms
of pro-p-groups and the following diagram has rows which are central extensions of pro-p-groups

1 −−−−→ Ĵ2(G) −−−−→ G⊗̂G κ̂−−−−→ [G, G] −−−−→ 1

ε̂|

y ε̂

y ∥∥∥
1 −−−−→ M(G) −−−−→ G∧̂G κ̂′−−−−→ [G, G] −−−−→ 1.

(37)

Moreover, we have ker κ̂ ⊇ ∇̂(G) and there is a continuous isomorphism of pro-p-groups such that
ker κ̂′ ≃ M(G).

Proof. From Definition 2, there are continuous crossed pairings ⊗̂ : (x, y) ∈ G × G 7→
x⊗̂y ∈ G⊗̂G and κ : (x, y) ∈ G × G → [x, y] ∈ [G, G] of pro-p-groups, inducing the
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map κ̂ : x⊗̂y ∈ G⊗̂G 7→ [x, y] ∈ [G, G], which is a continuous crossed pairing such that
κ̂ ◦ ⊗̂ = κ and the upper part of the following diagram is commutative

G× G

κ

��

⊗̂
// G⊗̂G

κ̂

xx

ε̂

��

[G, G] oo
κ̂′ G∧̂G

(38)

This shows that κ̂ is a continuous homomorphism of pro-p-groups. Note that κ̂ is surjective,
because κ̂ ◦ ⊗̂ = κ and κ is surjective by construction. Concerning κ̂′, we look at the lower
part of the same diagram, where ε̂ : G⊗̂G → G∧̂G is the natural projection of G⊗̂G onto
G∧̂G with ker ε̂ = ∇̂(G). Then, κ̂′ is induced by κ̂ modulo ∇̂(G) and is a continuous
homomorphism of pro-p-groups such that κ̂′ ◦ ε̂ = κ̂. Of course, ker ε̂ ⊆ ker κ̂ and, if
x⊗̂x ∈ ker ε̂ = ∇̂(G), then for all y⊗̂z ∈ G⊗̂G we have

(x⊗̂x) (y⊗̂z) (x⊗̂x)−1
= (y⊗̂z)[x,x]

=⇒ (x⊗̂x) (y⊗̂z) = (y⊗̂z) (x⊗̂x) (39)

showing that ker ε̂ ⊆ Z(G⊗̂G). Note that more generally the same argument applies to any
element a⊗̂b ∈ ker κ̂, in fact

(a⊗̂b) (y⊗̂z) (a⊗̂b)−1
= (y⊗̂z)[a,b]

=⇒ (a⊗̂b) (y⊗̂z) = (y⊗̂z) (a⊗̂b) (40)

hence, ker κ̂ ⊆ Z(G⊗̂G). We may conclude that both the sequence

1 −−−−→ Ĵ2(G) −−−−→ G⊗̂G κ̂−−−−→ [G, G] −−−−→ 1 (41)

and the sequence

1 −−−−→ ker κ̂′ −−−−→ G∧̂G κ̂′−−−−→ [G, G] −−−−→ 1. (42)

are short exact sequences, which describe central extensions of pro-p-groups. Considering
the restriction ε̂ | of ε̂ to Ĵ2(G) we may conclude that

1 −−−−→ Ĵ2(G) −−−−→ G⊗̂G κ̂−−−−→ [G, G] −−−−→ 1

ε̂|

y ε̂

y ∥∥∥
1 −−−−→ ker κ̂′ −−−−→ G∧̂G κ̂′−−−−→ [G, G] −−−−→ 1.

(43)

is a commutative diagram whose rows are central extensions of pro-p-groups. It re-
mains to show that ker κ̂′ is isomorphic as a pro-p-group to M(G). This is proved in [6]
(Proposition 2.2), so we omit the details here. The result follows.

Even if in principle ∇̂(G) may be a proper subgroup of Ĵ2(G), the computations show
that most of the time Ĵ2(G) = ∇̂(G) in case of finite groups (see [3,4]) and so (37) becomes
most of the time

1 −−−−→ ∇̂(G)
α−−−−→ G⊗̂G κ̂−−−−→ [G, G] −−−−→ 1

ε̂|

y ε̂

y ∥∥∥
1 −−−−→ M(G)

β−−−−→ G∧̂G κ̂′−−−−→ [G, G] −−−−→ 1

(44)

where α embeds ∇̂(G) into G⊗̂G and β is induced by α and by ε̂ | : x⊗̂x ∈ ∇̂(G) 7→ x∧̂x ∈
M(G). Of course, if Ĵ2(G) ̸= ∇̂(G), then Im α ⊆ ker κ̂ and Im β ⊆ ker κ̂′, so we have
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inclusions and lose the exactness of the sequences, that is, the diagram (44) is no longer
formed by central extensions as rows but it is still (44) a commutative diagram.

Remark 3. In a finite p-group G, the quotient CG(x)/ĈG(x) is isomorphic to a subgroup of
the abelian group H2(G,Z) by the results in [7,10]. In particular, groups with H2(G,Z) = 1
have CG(x) = ĈG(x) for all x ∈ G and Z(G) = Ẑ(G) as well.

We recall that the commutativity degree of a pro-p-group G is defined by the formula

d(G) :=
∫

G
µ(CG(x))dµ, (45)

where µ is the Haar measure on G. This notion has been studied extensively in [20–23]
both in the finite case and in the infinite case. Of course, (45) represents for finite groups
the probability that a randomly picked pair (x, y) of elements of G× G commutes, that is,
satisfies the condition [x, y] = 1. Following the same notion at the level of elements for the
operator of exterior degree, instead of commutator, we find the probability that the same
randomly picked pair (x, y) of elements of G× G satisfies x∧̂y = 1 (instead of [x, y] = 1).
The two notions are related by the following result:

Lemma 2 (See [7], Theorem 1.1). A pro-p-group G satisfies the following inequality

d̂(G) ≤ d(G)−
(

p− 1
p

)(
µ(Z(G))− µ(Ẑ(G))

)
.

Furthermore, if M(G) is finite, then

d̂(G) ≥ µ(Ẑ(G)) +
1

|M(G)|

(
d(G)− µ(Ẑ(G))

)
.

It is also useful to mention that the abelian pro-p-group Z(G)/Ẑ(G) can be embedded
in the abelian pro-p-group M(G), involving some numerical invariants such as the rank of a
pro-p-group G

rk(G) = sup{m(H) | H = H subgroup of G}, (46)

where m(H) is the minimal number of elements which topologically generate H. If G is a
torsion-free pro-p-group, rk(G) = tf(G) is called the torsion-free rank, see [17].

Lemma 3 (See [7], Theorem 1.2). Let G be a pro-p-group such that rk(G/Ẑ(G)) = a, rk(M(G))
= b and tf(M(G)) = c.

(i). If M(G) is finite, then |Z(G)/Ẑ(G)| divides |M(G)|a.
(ii). If M(G) is infinite, then rk(Z(G)/Ẑ(G)) ≤ ba. In particular, if M(G) is torsion-free, then

tf(Z(G)/Ẑ(G)) ≤ ca.

Now, we recall a characterization for the extremal cases of exterior degree equal
to zero, or equal to one, via the notions of the complete exterior center and complete
exterior centralizer.

Lemma 4 (See [7], Proposition 3.3). A pro-p-group G has d̂(G) = 1 if and only if Ẑ(G) = G.

We report a result similar to that of Abdollahi and others [15] for compact groups.
This was at the origin of our investigations.

Lemma 5 (See [15], Theorem 1.1). In a pro-p-group G of d(G) > 0 there exists a finite p-group
H such that d(G) is proportional to d(H) via a constant α = |G : FC(G)|−2 depending only on
the FC-center FC(G) = {g ∈| |G : CG(g)| is f inite} of G. In particular, d(G) = α d(H).
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We note explicitly that the formulation above is designed for our present context.
It is also useful to collect some bounds, which can be obtained in terms of subgroups
and quotients.

Lemma 6 (See [7], Proposition 3.6 and Corollary 5.3). Assume that G is a pro-p-group.

(i). If N is a closed normal subgroup of G, then d̂(G) ≤ d̂(G/N) and the equality holds if
N ≤ Ẑ(G);

(ii). If G is abelian nonprocyclic, then

d̂(G) ≤ p2 + p− 1
p3

and the equality holds if and only if G/Ẑ(G) is p-elementary abelian of rank two;
(iii). If G is nonabelian and Ẑ(G) is a proper subgroup of Z(G), then

d̂(G) ≤ p3 + p− 1
p4 .

While the upper bounds on d̂(G) are useful to measure how far we are from the
extremal case d̂(G) = 1 in [0, 1], the lower bounds on d̂(G) may reveal the presence of
quotients, which are small enough.

Remark 4. From Lemma 2, a pro-p-group G always has d̂(G) ≤ d(G), and, if M(G) is
finite, µ(Ẑ(G)) is finite and µ(Ẑ(G)) ̸= d(G), then d(G) is nontrivially bounded from
below. Note that nontrivial lower bounds for d(G) imply that G is virtually abelian by [22].

4. Proofs of the Main Theorems

With the results of the previous section at hand, we show Theorem 2.

Proof of Theorem 2. (i). The normalized Haar measure µ on the pro-p-group G is a left
invariant Borel probability measure which respects the closed subgroups of G (see [22] for
terminology); hence, for any closed subgroup M of G and k ≥ 1, we have

µ(M) =


1
pk , if |G : M| = pk

0, if |G : M| = ∞.
(47)

Consider
d̂(G) =

∫
G

µ(ĈG(x))dµ(x). (48)

We have from (47) that µ(ĈG(x)) > 0 iff ĈG(x) has p-power index in G, that is, µ(ĈG(x)) =
0 iff ĈG(x) has infinite index in G iff x ̸∈ F̂C(G). Since µ is a nonnegative normalized Haar
measure on G, we have

0 = d̂(G) =
∫

G
µ(ĈG(x))dµ(x) ⇐⇒ µ(ĈG(x)) = 0, ∀x ∈ G (49)

iff x ̸∈ F̂C(G) for all x ∈ G iff there are no elements in the interior F̂C(G), i.e., F̂C(G)◦ = ∅
but we know that (any set so in particular) F̂C(G) is open iff F̂C(G)◦ = F̂C(G). This cannot
happen since 1 ∈ F̂C(G) and F̂C(G) ̸= ∅. Therefore, d̂(G) = 0 happens iff F̂C(G)◦ = ∅ iff
F̂C(G) is not open.

(ii). Assume that G is procyclic. If G ≃ Z(pn) or G ≃ Zp, then M(G) is trivial.
Hence, Ẑ(G) = Z(G) by Lemma 3 and so Ẑ(G) = Z(G) = G is abelian. The bounds of
Lemma 2 imply d̂(G) = 1. Conversely, assume that G is a pro-p-group with d̂(G) = 1.
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From Lemma 4, d̂(G) = 1 if and only if Ẑ(G) = G. Hence, G is abelian. Therefore, we
are assuming that G is an abelian pro-p-group of d̂(G) = 1. Either G is procyclic or G is
nonprocyclic. In the first case, the result follows. In the second case, Lemma 6 (ii) implies
p3 ≤ p2 + p− 1, which is a contradiction. Then, G must be necessarily procyclic.

(iii). Of course, d̂(G) ∈ [0, 1]. From (ii) above d̂(G) ̸= 1 iff G is nonprocyclic. On
the other hand, (i) above shows that d̂(G) = 0 iff F̂C(G)◦ = ∅. Since Ẑ(G) ⊆ F̂C(G)
and Ẑ(G) is open in G, we have Ẑ(G)◦ ⊆ F̂C(G)◦ hence F̂C(G)◦ ̸= ∅. This implies that
d̂(G) > 0. Therefore, a nonprocyclic pro-p-group G with Ẑ(G) open in G automatically
has d̂(G) ∈ (0, 1) and we may proceed with the proof of the formula for the computation
of the complete exterior degree. Consider Lemma 6 (i) and that Ẑ(G) is also closed in
G by Proposition A4.25 (ii) of [1] (in fact any open subgroup is closed). It follows that
G/Ẑ(G) ≃ E is a finite p-group but also that

d̂(G) = d̂

(
G

Ẑ(G)

)
= d̂(E) =

k(E)

∑
i=1

|ĈE(xi)|
|CE(xi)|

, (50)

where the last equality is due to [10] (Lemma 2.2).

Now, we proceed to prove another main result.

Proof of Theorem 3. From Lemmas 2 and 3 we have µ(Ẑ(G)) = µ(Z(G)) and d(G) = d̂(G).
Moreover, ĈG(x) = CG(x) for all x ∈ G in this situation; hence, F̂C(G) = FC(G). From
Lemma 5, we have a finite p-group H such that d(G) = d(H)/|G : FC(G)|2, that is,

d̂(G) = d̂(H)/|G : F̂C(G)|2.

As evidence of Theorem 2, we present the following construction.

Example 1. The present example appears in [9], so we report the main information only
and a few new computations. Consider the elementary abelian p-group

A = Z(p)(N) (51)

of countable rank, where Ai = ⟨ai⟩ = Z(p) is cyclic of order p and i ∈ N. Then, consider

B = Z(p)n = A1 × . . .× An (52)

elementary abelian p-subgroup of rank n of A. We have that

1 = d(B) > d̂(B) =
pn + pn−1 − 1

p2n−1 and 1 = d(A) ≥ p2 + p− 1
p3 > d̂(A). (53)

Note that the complete exterior degree of abelian pro-p-groups is also described by
Lemma 6 (ii). In fact, Theorem 2 shows that computations such as those in Lemma 6 are in
general tedious, so that formulas of reduction are very useful. In addition to Example 1, we
mention below a pro-p-group, whose structure is described in [17].

Example 2. Consider the infinite pro-2-group (with r ≥ 1 arbitrary)

G = ⟨a, t | a2r = 1, a−1ta = t−1⟩ = Z2 ⋊Z(2r), (54)

which appears also in §1 of [18]. We have M(G) = 1 and so Z(G) = Ẑ(G) = 1, but also
d̂(G) = d(G) and ĈG(x) = CG(x) for all x ∈ G.

The following computations were carried out in Example 5.2 of [7] and are pre-
sented here for the convenience of the reader. First of all, we note that for i = 0 we have
µ(ĈG(ti)) = 1 but, for all i ̸= 0, µ(ĈG(ti)) = 1/2r and for all i and 1 ≤ j ≤ 2r − 1 instead
µ(ĈG(ajti)) = 0.
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If T = ⟨t⟩ = Z2, then

d̂(G) = µ(Ẑ(G)) +
∫

T−Ẑ(G)
µ(ĈG(x))dµ(x) +

∫
G−T

µ(ĈG(x))dµ(x) (55)

=
1
2r µ(T − {1}) = 1

2r µ(T) =
1
4r .

Theorem 2 cannot be used here and FC(G) = F̂C(G) = T is closed and open in G.
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