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Abstract: For regional or even global geophysical problems, the curvature of the geophysical model
cannot be approximated as a plane, and its curvature must be considered. Tesseroids can fit the
curvature, but their shapes vary from almost rectangular at the equator to almost triangular at the
poles, i.e., degradation phenomena. Unlike other spherical discrete grids (e.g., square, triangular, and
rhombic grids) that can fit the curvature, the Discrete Global Grid System (DGGS) grid can not only
fit the curvature but also effectively avoid degradation phenomena at the poles. In addition, since it
has only edge-adjacent grids, DGGS grids have consistent adjacency and excellent angular resolution.
Hence, DGGS grids are the best choice for discretizing the sphere into cells with an approximate
shape and continuous scale. Compared with the tesseroid, which has no analytical solution but
has a well-defined integral limit, the DGGS cell (prisms obtained from DGGS grids) has neither an
analytical solution nor a fixed integral limit. Therefore, based on the isoparametric transformation,
the non-regular DGGS cell in the system coordinate system is transformed into the regular hexagonal
prism in the local coordinate system, and the DGGS-based forwarding algorithm of the gravitational
field is realized in the spherical coordinate system. Different coordinate systems have differences
in the integral kernels of gravity fields. In the current literature, the forward modeling research
of polyhedrons (the DGGS cell, which is a polyhedral cell) is mostly concentrated in the Cartesian
coordinate system. Therefore, the reliability of the DGGS-based forwarding algorithm is verified
using the tetrahedron-based forwarding algorithm and the tesseroid-based forwarding algorithm with
tiny tesseroids. From the numerical results, it can be concluded that if the distance from observations
to sources is too small, the corresponding gravity field forwarding results may also have ambiguous
values. Therefore, the minimum distance is not recommended for practical applications.

Keywords: gravity forward modelling; spherical hexagonal prisms; isoparametric transformation;
discrete global grid system

MSC: 86-08

1. Introduction

The curvature of the geophysical model in small/local areas can be represented as a
plane. However, its curvature must be considered for regional or even global-scale issues.
Because of the ellipsoidal shape of the Earth, the radius of curvature varies at different
positions, resulting in changes in both the acceleration of gravity and the intensity and
direction of the magnetic field with respect to longitude and latitude [1]. This change is
particularly significant on a large-scale area and has important implications for studies
such as the calculation of satellite orbits, crustal equilibrium, the inference of the internal
structure of the Earth, the origin and evolution of the geomagnetic field, and geomagnetic
navigation [2,3]. Therefore, when studying and solving these large-scale geophysical
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problems, the influence of earth curvature must be fully considered to obtain more accurate
and reliable conclusions.

Generally, the mesh (also entitled as physical property unit or cell) of the geophysical
model needs to be expressed and processed using spherical coordinates [4–7]. In the
spherical coordinate system, the gravitational potential calculation can be roughly used in
two methods: the spherical harmonic function method in the frequency domain and the
direct integration method in the spatial domain. For the former, the spherical harmonic
function method is more computationally efficient than the latter at low and middle
orders (N < 360); however, it is affected by numerical instability at (super) high orders
(N > 2700) [8]. Moreover, the spherical harmonic function method cannot properly consider
the vertical extension of a given mass distribution [9]. The calculation results are marginally
larger in amplitude, which is slightly inconsistent with the actual problem and unsuitable
for accurately modeling the global/local gravity field [10].

How to obtain the analytical or numerical solution of gravitational fields has been
one of the central problems in the selection of physical property units when performing
the forward modeling of gravitational fields based on the direct integration method in the
spherical coordinate system [11].

In practical applications, similar to physical property inversion in the Cartesian
coordinate system, the spherical shell of the geophysical model is typically split into a set of
discrete cells by using radius, latitude, and longitude as parameters. As far as the spherical
discrete meshes are concerned, which mainly includes latitude-longitude and polyhedral
meshes based on regular polyhedral subdivisions [12], such as point elements [13], line
elements [14], surface elements [15], prism cells [16], tesseroids [17], combined cells of
prism and tesseroid [18], or polyhedral cells [19].

In terms of fitting the spherical curvature of the geophysical model, the prism cell has a
rigorous analytical solution for gravitational fields. However, when dealing with large-scale
or global-scale problems, the model’s curvature needs to be corrected by reducing the
distance between adjacent prism cells and changing their direction [20]. When the cells are
excessively rough, resulting in the geophysical model is discontinuous and a reduction in
the gravitational forward modeling calculation accuracy. Therefore, the prism cell cannot fit
the model’s spherical curvature well [21]. Compared to other cells, tesseroids can efficiently
fit the model’s spherical curvature. However, tesseroids do not have gravitational analytical
solutions and must rely on numerical integration methods to obtain corresponding anomaly
responses [5,6,22,23]. As latitude increases from the equator to the poles, tesseroids will
produce a degradation phenomenon that tesseroids near the poles will degenerate into
triangular prisms, generating a large amount of data redundancy, and their calculation
error will accumulate toward high latitudes [23–25].

As far as polyhedral cells are concerned, Ren et al. [26] used Newton’s integral method
to transform the volume integrals of gravity anomalies caused by homogeneous/non-
homogeneous polyhedrons into surface integrals over polygonal faces [27]. Furthermore,
singularity-free closed solutions are obtained for these surface integrals. The experimental
results show that this method has high calculation accuracy. When polyhedral cells are
used as an alternative cell/unit in large-scale or global-scale problems [28], significant poly-
hedral cells/units are required to fit the spherical curvature [21]. Furthermore, at present,
gravity and magnetic forward modeling methods based on polyhedral cells generally
use the Gauss/divergence theorem [29] to transform the volume integral of a polyhedral
into an area/line integral of polygonal surfaces/lines of the polyhedral through various
methods [28,30,31], and subsequently obtain the corresponding analytical solution/nu-
merical solution [32]. How to effectively avoid the numerical ambiguity inherent in the
divergence theorem [31] while exploiting the efficient computational properties of area/line
integrals [33] is a core issue in the gravitational field forward modeling based on the
divergence theorem.

In order to avoid the singularities at the poles and non-uniformity of latitude–longitude
grids (e.g., as a particular case, tesseroids are latitude–longitude grids), many studies on
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spherical discrete grids based on regular polyhedrons have been carried out in recent
years [12]. Based on the spherical discrete grid method of regular polyhedrons, the
Discrete Global Grid System (DGGS) is a spherical fitting method different from the
latitude–longitude grids [34]. The DGGS [34,35] are composed of a series of discrete global
grids, which are considered to be a kind of earth-fitting grid. DGGS can divide the sphere
into multi-level grids with approximate or equal area and shape and a continuous scale. At
any resolution, considering the fitting curvature, it can seamlessly cover the global, and
the grids with different resolutions form a highly consistent hierarchical structure [36].
Therefore, DGGS grids are the best choice for discretizing the sphere into cells with an
approximate shape and continuous scale. To meet different needs, there are many ways
to use DGGS to deal with large-scale geospatial data, including Hierarchical Equal Area
isoLatitude Pixelisation of a 2-sphere (HEALPix) [37], Open Equal Area Global GRid
(OpenEAGGR) [38], Hierarchical Hexagonal Hierarchical Spatial Indexing System (H3) [39],
Science Collaboration Environment for New Zealand Grid (SCENZ-Grid) [40], regularized
Hierarchical Equal Area isoLatitude Pixelisation of a 2-sphere (rHEALPix) [41], Geographic
Grid System (geogrid), and International Society for the Advancement of Spatial Data
Handling (ISEA) [42]. When dealing with large-scale heterogeneous geospatial data, DGGS
has the characteristics of convenient management, fast storage, and assembly. Currently, it
has become an effective tool for efficient exploration and visualization [43].

Unlike triangles and rhombuses, both of which have edge adjacencies and are therefore
inconsistent, the pentagonal/hexagonal cell, which is a kind of DGGS cell (prisms obtained
from DGGS grids, which contain spherical pentagons and hexagons) and derived from the
ISEA3H grid [44], has only edge neighbors [31,45]. And it is easier to achieve than triangles
and rhombuses in the adjacent search of pentagonal/hexagonal grids [12,46]. Compared
with square grids (as a particular case, tesseroid are also a kind of square grids), hexagonal
grids have excellent angular resolution and also show unified and clear adjacency [34], and
their discrete distance measures are closer to Cartesian distances [47].

Essentially, the gravitational forward modeling of DGGS cells in the space domain
involves integral calculations. Although tesseroids do not have gravitational analytical
solutions, their integration limits are well-defined, so using numerical integration methods
can obtain corresponding gravity anomaly responses. However, DGGS cells neither have
gravitational analytical solutions nor fixed integration limits.

To solve optimization problems (including integrals) for dealing with complex struc-
tures, the finite element method (FEM), as a cornerstone of computational mechanics, has
become an indispensable tool of computational in scientific and engineering calculations
and numerical simulations [48–52], which plays a crucial role in geophysical research
exploring the large-scale atmosphere, oceans, and crust [50]. The target object analyzed by
FEM usually has a complex structure [49,53]. Therefore, selecting an appropriate cell is
vital to improve the discretization of the target object. Isoparametric elements are widely
used in finite element analysis of complex structures because of its excellent adaptability
and coordination [54,55].

Presently, to strengthen the use of isoparametric elements in finite element analysis
and apply them to solve various practical engineering problems, many scholars have
put forward their relevant research insights and achieved specific research results. For
example, Jeng and Wexler [56] proposed a new isoparametric finite element numerical
algorithm that resolved the variational solution of the boundary integral equations of a
general 3D field, which is based on the variational principle and not only approximates the
unknown source distributions by the calculation of polynomials but also models surfaces
at higher-order, to reduce the errors caused by geometric modeling [56,57].

Lehrenfeld [58] proposed a new geometry-based isoparametric non-fitting FEM for
solving problems on non-fitting interfaces, or marginals, and partial differential equations
on surfaces. The method is simple to use and relatively new and practical, capable of
performing higher-order numerical integration calculations using level set functions over
domains as prescribed, with good robustness and high accuracy in dealing with complex
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geometries [58,59]. Belarbi et al. [60] proposed a new hierarchical isoparametric finite
element modeling technique to obtain 2D quadrilateral isoparametric elements that satisfy
the “face-core” condition at the interface through a hierarchical method for analyzing the
bending problem in sandwich panels. The method can satisfy the continuity of stresses and
displacements at the interface, and the model comparison tests show that the algorithm has
good accuracy and convergence speed [60,61].

Therefore, drawing a lesson from the unit of analysis process in the FEM [48,62,63],
an isoparametric transformation [64,65] is used to transform a non-regular DGGS cell in
the system/spherical coordinate system to a regular hexagonal prism in the local/Cartesian
coordinate system to determine their integration limits. Then, the gravitational field forward
modeling calculation of the DGGS cell is realized under the spherical coordinate system
using an isoparametric transformation with the shape functions, integration points, and
their integration weights.

2. The Principle of Forward Modeling Tensors and Gravity Gradients

For all observation points, the gravitational effect of each physical property unit can
be calculated one by one according to the superposition principle and the corresponding
anomalous response can be obtained by cumulative summation. Therefore, the gravitational
field forward modeling can be written in matrix form:

d = Gm (1)

where d is observation data vector, which can be specifically gz, gxx, gxy, gxz, gyy, gyz or
gzz, etc., with a length of Nd; parameter vector m is the densities value of the units; G is the
corresponding forward operator (consistent with the inversion kernel matrix) with size of
Nd ×Nm; Nm and Nd are the units’ number and observation points, respectively.

The forward integral kernel of gravitational fields differs in the Cartesian coordinate
system and the spherical coordinate system [66]. Taking the tesseroid as an example, as
shown in Figure 1, it is assumed that a homogeneous geological body Q with a density
ρ(r,ϕ,λ) exists in the spherical coordinate system. The gravity vector gα(P) and the gravity
gradient tensor gαβ(P) at the source external space P(r,ϕ,λ) of the Q can be expressed
as [66], respectively:{

gα(P)
gαβ(P)

}
= υρ

∫ λ2

λ1

∫ ϕ2

ϕ1

∫ r2

r1

κ

ℓ3

{
∆α

3∆α∆βℓ−2
− δαβ

}
dr′dϕ′dλ′ (2)

where α, β ∈
{
x, y, z

}
, υ = 6.674 × 10−11 m3

· kg−1
· s−2 is the gravitational constant,

∆x = r′(cosϕsinϕ′ − sinϕcosϕ′cos(λ′ − λ)), ∆y = r′cosϕ′sin(λ′ − λ), ∆z = r′cosψ − r,

κ = r′2cosϕ′, ℓ =
√

r′2 + r2 − 2r′rcosψ, cosψ = sinϕsinϕ′ + cosϕcosϕ′cos(λ′ − λ).
Since the tesseroid has no analytical solution, it needs to be processed by numer-

ical integration methods such as the Taylor-series expansion method [23] and the 3D
Gauss–Legendre quadrature (GLQ) integration [67–69]. Therefore, the GLQ method is used
to calculate the gravity vector gα(P) and the gravity gradient tensor gαβ(P). In order to
facilitate the calculation, the integral kernel f [6] is introduced and expressed as a general
form of triple integrals [70]:

υρ

∫ λ2

λs=λ1

∫ ϕ2

ϕs=ϕ1

∫ r2

rs=r1

f (r0,ϕ0,λ0)drsdϕsdλs (3)

Using the triple-Gauss quadrature approximation calculation Equation (3) is generally
necessary [5]. However, the corresponding integration coefficients must be determined
in different integral intervals for various order integrals. It is assumed that the integral
interval of Equation (3) along longitude, latitude, and radial direction is [a, b], and the
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integration point is xk, and the following form is constructed to obtain the corresponding
approximate calculation results:∫ b

a
f (x)dx =

b− a
2

n∑
k=1

wk f (xk) (4)

where n is the number of integration points, wk is the integration weight

wk =
2(

1− x2
k

)
(Pn
′(xk))

2
(5)

where P
′

n(x) is the first derivative of the n-order Legendre function Pn(x). After scaling the
integral interval of Equation (4) to the interval [−1, 1], the corresponding zero point of Pn(x)
is the Gauss point. The root of the higher-order Legendre function Pn(x) can be obtained
using the recursive relation of its first derivative P

′

n(x).

Figure 1. View of a tesseroid in the geocentric coordinate system. In the spherical coordinate system,
integral point Q and computational point P with a local coordinate system. λ1 and λ2 (blue dashed
line) represent the lower and upper limits of the spherical azimuth; ϕ1 and ϕ2 (red dashed line) are
the lower and upper limits of the spherical center angle; r1 and r2 (black dashed line) are the lower
and upper bounds of the radius of the cell body; r and l (green dashed line) represent the distances
from the center point O and the integral point Q to the computational point P, respectively.

Using Equation (4), Equation (3) can be re-expressed as a form of the triple numerical
integration [70]

υρV
nλ∑

k=1

nϕ∑
j=1

nr∑
i=1

Wr
i Wϕ

j Wλ
k f
(
r′i,ϕ′ j,λ

′
k
)

(6)

where nλ, nϕ, nr are the number of integration points in longitude, latitude, and radial

direction, respectively, and Wr
i , Wϕ

j , Wλ
k are the corresponding integration weights. In

practical applications, the number of integration points can control the calculation’s
accuracy. The higher the number of integration points, the better the accuracy of the
GLQ, but the corresponding computational efficiency will be lower [68,71]. In this article,
nλ, nϕ, nr is equal to 2, V = (r2 − r1)(ϕ2 −ϕ1)(λ1 − λ2)/8.
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3. Forward Modeling of Gravitational Fields Based on DGGS Cells

The tesseroids and triangular or rhombus prisms derived from a discrete spherical
shell lack consistency or contain the presence of the degradation phenomenon that spherical
discrete grids obtained by subdividing the spherical shell with a regular geometry unit
differ in spatial morphology [10,12]. As shown in Figure 2, based on the definition of the
DGGS, the first-level grid is constructed on the spherical surface (e.g., other precision grids
can also be further constructed on the sphere), including 12 pentagonal and 30 hexagonal
DGGS grids. Furthermore, using these grids, the spherical shells within the research area
are discretized layer by layer along the radial direction; that is, each layer of the spherical
shell is discretized into 12 spherical pentagonal prisms and 30 spherical hexagonal prisms,
which are referred to as DGGS cells here. Namely, DGGS cells contain prisms composed of
spherical pentagons and spherical hexagons.

Resolution=1 

Resolution=2 

Resolution=3 

Resolution=4

Figure 2. Schematic representation of spherical shell based on the Discrete Global Grid System
subdivision.

Compared with the tesseroid, the DGGS cell has neither a corresponding analytical
solution nor a fixed integral limit. Therefore, drawing a lesson from the unit analysis
process in the FEM, an isoparametric transformation is used to transform a non-regular
DGGS cell from the system coordinate system to a regular hexagonal prism in the local
coordinate system.

3.1. The Isoparametric Transformation of DGGS Cells

In finite element analysis, the solution region is frequently partitioned into a finite
number of small cells, such as triangles, quadrilaterals, tetrahedrons, rectangles, and so on.
Those small cells can be connected to each other through their nodes. In order to obtain
the corresponding field values by the FEM, it is necessary to calculate the area/volume
integral of each unit in order to establish the system of equations for the corresponding
field functions f [72]. Since the forward modeling of gravitational fields in this paper only
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considers the volume effect, only the volume integral of each small unit ve is considered.
Usually, the volume integral of the field function f can be expressed as∫

ve

f dV =

∫
ve

f (x, y, z)dxdydz (7)

In Figure 1, the field function f cannot obtain the corresponding integral limit for a
non-regular hexagonal prism in the system coordinate system. Therefore, it is frequently
necessary to introduce a specific geometric transformation to transform the DGGS cell into a
regular hexagonal prism to gain a distinct integral limit. If and only if both the field function
interpolation and coordinate transformation use the same number of node parameters
and the same interpolation function, it is called the isoparametric transformation [65,73].
Isoparametric elements use a mathematical mapping to convert coordinates from one
system to another, where the original system is called the system/global coordinate system
and the second system is called the natural/local coordinate system.

As shown in Figure 3, for both the system coordinate system and the local coordinate
system, the relationship between derivatives and volume elements can be established
through isoparametric transformation based on interpolation functions or shape functions
N [53,65,74]. The shape function is an essential mathematical tool in finite element analysis
and can represent displacements, temperatures, or wave velocities in units [53]. They serve
as a bridge to transform continuous problems into equivalent discrete problems. For a
typical finite element with ne node, let the displacements u ∈ (x, y, z) at any point within
the element be approximated as:

u =

ne∑
i=1

Niui (8)

ξ

η

ζ

6

1

23

4

5

7

8
9

10

1
1

12

1

1

ξ

η

ζ

6

1

23

4

5

7

8
9

10

1
1

12

1

1

ξ

η

ζ

6

1

23

4

5

7

8
9

10

1
1

1
2

1

1

 ξ

η 

6

323

4

5

7

89

10

11 12

1

1

（b）System Coordinates

2

y 4 5

6 78

9

10 11

12

1

 

1

（a）Local Coordinates

ζ 

x

z 
(a) (b)

Figure 3. Isoparametric transformation of Discrete Global Grid System (DGGS) cells. (a) Local
coordinate system. (b) System coordinate system. The numbers 1 to 12 represent the serial number of
the integration point i.

According to the chain rule in calculus, the partial derivative concerning ξ is obtained
for the shape function Ni of the i node of the DGGS cell. Then,

∂Ni
∂ξ

=
∂Ni
∂x

∂x
∂ξ

+
∂Ni
∂y

∂y
∂ξ

+
∂Ni
∂z

∂z
∂ξ

(9)

For the other two coordinates (η, ζ), a similar expression can also be written. Now, the
partial derivatives of Ni to ξ, η and ζ are written in the matrix form

∂N
∂ξ
∂N
∂η
∂N
∂ζ

 =

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ




∂N
∂x
∂N
∂y
∂N
∂z

 = J


∂N
∂x
∂N
∂y
∂N
∂z

 (10)
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where J is a Jacobi matrix. In finite element analysis, the physical meaning of |J| is the
volume of the corresponding small unit. Thus, according to Equation (10), there are

J =
∂(x,y,z)
∂(ξ,η,ζ) =


∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ



=



nv∑
i=1

∂N
′

i
∂ξ xi

nv∑
i=1

∂N
′

i
∂η xi

nv∑
i=1

∂N
′

i
∂ζ xi

nv∑
i=1

∂N
′

i
∂ξ yi

nv∑
i=1

∂N
′

i
∂η yi

nv∑
i=1

∂N
′

i
∂ζ yi

nv∑
i=1

∂N
′

i
∂ξ zi

nv∑
i=1

∂N
′

i
∂η zi

nv∑
i=1

∂N
′

i
∂ζ zi


=


∂N
′

1
∂ξ

∂N
′

2
∂ξ · · ·

∂N
′

nv
∂ξ

∂N
′

1
∂η

∂N
′

2
∂η · · ·

∂N
′

nv
∂η

∂N
′

1
∂ζ

∂N
′

2
∂ζ · · ·

∂N
′

nv
∂ζ




x1 y1 z1
x2 y2 z2
...

...
...

xnv ynv znv



(11)

Here, nv is the number of unit nodes. Then Equation (10) can be rewritten as
∂N
∂x
∂N
∂y
∂N
∂z

 = J−1


∂N
∂ξ
∂N
∂η
∂N
∂ζ

 (12)

where the inverse matrix J−1 = J∗/|J|, |J|, and J∗ are the determinant and adjoint matrices of
J, respectively.

After the geometric transformation from the system coordinate system to the local
coordinate system, the integral of the field function f in the integral domain ve in the
original system coordinate system can have a definite integral limit in the local coordinate
system. Assuming that the corresponding integral limit is [aξ, bξ] × [aη, bη] × [aζ, bζ], then
the integral of the field function f in the local coordinate system can be expressed as∫ bζ

aζ

∫ bη

aη

∫ bξ

aξ
f ∗(ξ, η, ζ)dξdηdζ (13)

where,
f ∗(ξ, η, ζ) = f (x(ξ, η, ζ), y(ξ, η, ζ), z(ξ, η, ζ))|J| (14)

Using the triple-Gauss quadrature [67,75] in conjuction with Equation (7), Equation (13)
can be rewritten as:

I =
)

ve
f (x, y, z)dV =

ni∑
i=1

n j∑
j=1

nk∑
k=1

wiw jwk f (ξi, ηi, ζi)det(J) (15)

where ni, n j, nk and wi, w j, wk are the number of integration points and the integration
weights of the Cartesian coordinate system along the x, y, z axis direction, respectively.

Referring to the article [53,76] and according to the definition of FEM, ensure that the
shape function satisfies the following three conditions [77]: (a) only at node i can have
a unit value while all other nodes have zero value; (b) disappears on any boundary of
element that does not include node i; (c) the determinant of the Jacobian matrix of the



Mathematics 2024, 12, 885 9 of 28

resulting shape function concerning the node coordinates is equal to the volume of the
regular hexagon prism. Then, the following set of shape functions is given

N1 = − 1
12 (ζ+ 1)(ξ+ 1)

(
4η2
− 3
)

N2 = 1
12 (ζ+ 1)(2ξ+ 1)

(
2η+

√
3
)
η

N3 = − 1
12 (ζ+ 1)(2ξ− 1)

(
2η+

√
3
)
η

N4 = 1
12 (ζ+ 1)(ξ− 1)

(
4η2
− 3
)

N5 = − 1
12 (ζ+ 1)(2ξ− 1)

(
2η−

√
3
)
η

N6 = 1
12 (ζ+ 1)(2ξ+ 1)

(
2η−

√
3
)
η

N7 = 1
12 (ζ− 1)(ξ+ 1)

(
4η2
− 3
)

N8 = − 1
12 (ζ− 1)(2ξ+ 1)

(
2η+

√
3
)
η

N9 = 1
12 (ζ− 1)(2ξ− 1)

(
2η+

√
3
)
η

N10 = − 1
12 (ζ− 1)(ξ− 1)

(
4η2
− 3
)

N11 = 1
12 (ζ− 1)(2ξ− 1)

(
2η−

√
3
)
η

N12 = − 1
12 (ζ− 1)(2ξ+ 1)

(
2η−

√
3
)
η

(16)

3.2. Integral Weights of DGGS Cells

In finite element analysis, integration points are typically placed at specific locations,
such as their equipartition points for line/surface elements (see Tables 1 and 2) and their
line/surface equipartition points and barycenter (see Figure 4) for volume elements [78].

Table 1. 1D Gauss quadrature scheme for line elements.

Number of
Integration Points n Integration Position ξi Integration Weights wi Position of Points

1 ξ1 = 0 w1 = 2

2 ξ1 = +1/
√

3 w1 = 1
ξ2 = +1/

√
3 w2 = 1

3
ξ1 = −1/

√
3/5 w1 = 5/9

ξ2 = 0 w2 = 8/9
ξ3 = +1/

√
3/5 w3 = 5/9

Table 2. 2D Gauss quadrature scheme for rectangular elements.

Number of Integration
Points n Integration Position ξi Integration Position ηi Integration Weights wi Position of Points

1 ξ1 = 0 η1 = 0 w1 = 4

4

ξ1 = −1/
√

3 η1 = −1/
√

3 w1 = 1
ξ2 = +1/

√
3 η2 = −1/

√
3 w2 = 1

ξ3 = −1/
√

3 η3 = +1/
√

3 w3 = 1
ξ4 = +1/

√
3 η4 = +1/

√
3 w4 = 1

9

ξ1 = −1/
√

3/5 η1 = −1/
√

3/5 w1 = 25/81
ξ2 = 0 η2 = −1/

√
3/5 w2 = 40/81

ξ3 = +1/
√

3/5 η3 = −1/
√

3/5 w3 = 25/81
ξ4 = −1/

√
3/5 η4 = 0 w4 = 40/81

ξ5 = 0 η5 = 0 w5 = 64/81
ξ6 = +1/

√
3/5 η6 = 0 w6 = 40/81

ξ7 = −1/
√

3/5 η7 = +1/
√

3/5 w7 = 25/81
ξ8 = 0 η8 = +1/

√
3/5 w8 = 40/81

ξ9 = +1/
√

3/5 η9 = +1/
√

3/5 w9 = 25/81
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Figure 4. Schematic representation of traditional integration points for a regular hexagonal prism.

There is some challenge in determining the location of the integration points and the
integration weights for a regular hexagon or hexagonal prism. As shown in Figure 5a, a
cross-section of a regular hexagonal prism is taken as the object of study, and nxy integration
points are arranged on the horizontal hexagon in Figure 5b; while the 1D Gauss quadrature
scheme (see Table 1) is employed along the vertical direction of the regular hexagonal prism
in Figure 5, setting the nr (the quantity of 1D Gauss integration points) layer of integration
points and the corresponding weight coefficients wr

k for the k-th layer of integration points.
By the definition of the triple-Gauss quadrature, Equation (13) is rewritten as

I( f ) =
nxy×nr∑

j=1

w j f
(
ξ j, η j, ζ j

)
det(J) (17)

where, the triple-Gauss quadrature integration weights w j = wxy
i wr

k, subscripts j ≡ (k− 1)
× nr + i, the number of integration points nw = nxy × nr, 1 ≤ j ≤ nw, 1 ≤ i ≤ nxy, 1 ≤ k ≤ nr,
and ξ j, η j, ζ j are the coordinates of the j-th integration point, respectively.

y

x

−1,1)(
x y,2 2 )x3, y3 )( ( 0 ,1 )(

，1 0 )(

x y,1 1 )(

x y,6 6 )(

，−1 1)(x y,5 5 )(
，−0 1)(

x y,4 4 )(

，−1 0)(





(a) (b)

Figure 5. Integration points on a regular hexagon. (a) Integral point position (nxy = 6), the dash line
and colors are represented as auxiliary lines to differentiate six regular triangles. (b) Integral point
weight (nxy = 7), the asterisk ∗ of the numbers 1–6 represents the vertex number, where a and b (i.e., red
dots in the middle of the regular hexagon) correspond to the positions of the integration points.

In this paper, especially, nr = 3 and nxy = 7, the 1D Gauss integration scheme is used
along the vertical direction of the regular hexagonal prism (see Table 1) and the customized
integration scheme as shown in Figure 5b.
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4. Forward Modeling of Gravitational Fields Based on Arbitrary Tetrahedral Cells

How to analyze the accuracy of the gravitational field forward modeling calculation
is essential in verifying the correctness of the DGGS-based forwarding algorithm of the
gravitational field under the spherical coordinate system proposed in this paper. Since
the DGGS cell is a particular case of the polyhedral cell, the polyhedral-based forwarding
algorithm can be used to verify the correctness of the DGGS-based forwarding algorithm
proposed in this paper [26,28]. However, most existing studies on polyhedral-based
forwarding algorithms focus on the Cartesian coordinate system, whereas this paper is
involved in the spherical coordinate system. Therefore, there are several points to consider:

1. Describing the two spherical surfaces (curved surfaces) above and below the
DGGS cell in the spherical coordinate system using the facets of polyhedrons is
somewhat challenging;

2. A significant number of units and nodes are required if polyhedrons (e.g., tetrahedrons)
are directly used to fit the DGGS cell [21,28];

3. The gravity field integration kernels under the two coordinate systems are not the
same [23,26,66].

Based on the above three factors, considering that the DGGS cell does not have the
gravitational field analytical solution, and the polyhedral cell does not have the analytical
solution/closed solution of gravitational fields under the spherical coordinate system.
Therefore, referring to Grombein et al. [23], the forward integral kernel in the Cartesian
coordinate system of the tesseroid is given, and a tetrahedron-based forwarding algorithm
is introduced to verify the effectiveness and reliability of the DGGS-based forwarding
algorithm proposed in this paper (Figure 6).

(a) (b)

Figure 6. The coordinate transformation of a tetrahedron. (a) Local coordinate system. (b) System
coordinate system.

Referring to Duczek et al. [79], the shape functions of the tetrahedron can be written
as follows:

N1 = 1− x− y− z, N2 = x, N3 = y, N4 = z (18)

Subsequently, the tetrahedron-based forwarding algorithm of the gravitational field
can be calculated using the Gauss integration.

Cao et al. [80] employed the 3D Hammer integration to derive the gravitational field
analytical solution for the tetrahedron. The following Equation (2) is utilized to calculate
the volume integral of the tetrahedron:

1∫
0

1−L1∫
0

1−L1−L2∫
0

F(L1, L2, L3, L4)dL3L2L1

= A1F
(

1
4 , 1

4 , 1
4 , 1

4

)
+ B4

{
F(a, b, b, b) + F(b, a, b, b) + F(b, b, a, b) + F(b, b, b, a)

} (19)
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where L1, L2, L3, L4 are volume or natural coordinates, and f and F correspond to the field
functions of the system and the natural coordinate system (a kind of local coordinate
system), respectively. Parameters A1, B4, a, and b are detailed in Table 3.

Then, Equation (18) is used as the shape function for tetrahedrons. The 3D first-order
Haar integration scheme is utilized to obtain the corresponding gravity vector and its
gradient tensor value using Equation (19).

Table 3. Integration weights and position of points of the 3D Hammer integration.

Order Number of Integration Points Integration Weights Position of Points

1 1 A1 = 1 1/4, 1/4, 1/4, 1/4

2 4 B4 = 1/24 a = 0.585 410 20
b = 0.138 196 60

5 3 a = 1/2, b = 1/6

When the integration point is situated within the isoparametric element, an isopara-
metric transformation is utilized to establish the connection between the integration point
in the local coordinate system and the system coordinate system. This relationship ensures
the avoidance of the numerical ambiguity problem that tends to occur in traditional volume
integration during the implementation of the volume integration process [27,28].

In order to validate the effectiveness and reliability of the DGGS-based forwarding
algorithm proposed in this paper, the following three phases are required:

Phase 1. Since the forward integral kernel varies in different coordinate systems, and
considering the influence of the number of integration points and KU criteria [22] on the
calculation accuracy of tesseroids, it is therefore necessary to compare the computational
accuracy of the tetrahedron-based forwarding algorithm and the analytical solution of right
rectangular prisms [80], under the Cartesian coordinate system, to verify the correctness of
the tetrahedron-based forwarding algorithm.

Phase 2. Considering that the DGGS cell has neither an analytical solution nor a clear
integration limit in the spherical coordinate system. Therefore, it is necessary to compare
the difference in calculation accuracy between tetrahedrons and tesseroids to verify the
correctness of the tetrahedron-based forwarding algorithm Equation (2) in the spherical
coordinate system [23].

Phase 3. Based on the algorithm verification of the above two phases in the spherical
coordinate system, the difference in calculation accuracy between the tetrahedron-
based and DGGS-based forwarding algorithms is compared in order to verify the
correctness of the DGGS-based forwarding algorithm proposed in this paper based on
isoparametric transformation.

5. Algorithm Verification
5.1. Phase 1: To Verify the Tetrahedron-Based Forwarding Algorithm in the Cartesian
Coordinate System

In the first step, to verify the correctness of a tetrahedron-based forwarding algo-
rithm [80]. A cube model with a density of 0.3 g/cm3 is specially constructed with a center
point at (0 m, 0 m, 650 m) and a side length of 400 m, as shown in Figure 7. The observation
grid ranges from x: −1000 m to 1000 m; y: −1000 m to 1000 m. The spacing of the observation
points is 50 m × 50 m, and the points are located on the earth’s surface.



Mathematics 2024, 12, 885 13 of 28

Figure 7. Schematic of cube discretized by tetrahedrons.

In the second step, the cube is subdivided into tetrahedrons using Delaunay trian-
gulation [81]. It should be noted that if the quality of the tetrahedrons obtained from
the Delaunay triangulation discretization is poor, the results of the calculations using
Equation (19) may be susceptible to distortion. To ensure calculation accuracy, when using
Delaunay triangulation software TetGen (version 1.5) [82], discretizing the cube is necessary
to ensure that the odd intensity is less than 1.4.

In the third step, the gravity vector and its gradient tensor values are obtained
using the analytical solution of the right rectangular prism [83] and the tetrahedron-based
forwarding algorithm [80]. By comparing with Figure 8, it can be seen that under the
Cartesian coordinate system, using the forward integral kernel [80], the tetrahedron-
based forward modeling using 3D Hammer integration has high computational accuracy.
This demonstrates the tetrahedron-based forwarding algorithm as an instrument for the
subsequent analysis of the DGGS-based forwarding algorithm.

Generally, mesh generation is divided into structured and unstructured mesh gener-
ation. The so-called structured mesh generation refers to the number of cells adjacent to
each internal node after the subdivision is the same, such as in the case of 3D, where the
generated cells are generally hexahedrons; unstructured is the opposite of structured, which
means that each node can have different adjacent cells. It is easy to make the geometric
fitting error [84] larger by using the structured mesh to fit the curved edge/surface, leading
to a large error in the numerical solution [80]. Moreover, the nodes of the structured meshes
cannot be reasonably distributed in a gradient shape, so the error caused by the geometric
discretization of the model cannot be eliminated to the maximum extent. Even if it can be
distributed in a certain gradient, it is easy to reduce the shape quality of the structured cells,
thus affecting the accuracy of the numerical calculation [85]. Compared with the structured
mesh generation method, tetrahedrons have a certain degree of variability and flexibility,
i.e., the nodes and units obtained using Tetgen are distributed in a gradient shape in a
certain way [86], or some discrete points are inserted (using Tetgen software for multiple
time refinement) in the gradient change area [87], which can greatly reduce the geometric
fitting error [84].
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Figure 8. Results for the cubic model using tetrahedron-based forwarding algorithm (see Figure 7).

Cao et al. [80] pointed out that the computational error of the tetrahedron-based
forwarding algorithm is proportional to the quality of the tetrahedrons and the geometric
fitting error for fitting the model using tetrahedrons [84,88]. Figure 9 shows that the
geometric fitting error induced by fitting the cube with tetrahedrons in the Cartesian
coordinate system is small, and the residuals between the results of the tetrahedron-based
forwarding algorithm Equation (19) and the analytical solutions [83] for the cubic model.

Figure 9. Residuals between the results of the tetrahedron-based forwarding algorithm Equation (19)
and analytical solutions [83] for the cubic model.
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5.2. Phase 2: To Verify the Tetrahedron-Based and Tesseroid-Based Forwarding Algorithms in the
Spherical Coordinate System

To facilitate comparative analysis, the second stage uses the four model settings
given by Uieda et al. [5], whose names are Experiment 1 (pole), Experiment 2 (equator),
Experiment 3 (260 km), and Experiment 4 (30◦ size). Each of them contains a tesseroid with a
thickness of 1 km, and its latitude and longitude range are 89∼90◦ N/0∼1◦ E, 0∼1◦ N/0∼1◦ E,
89∼90◦ N/0∼1◦ E, and 60∼90◦ N/0∼30◦ E, respectively. All grids corresponding to the above
four models are composed of 51 × 51 evenly distributed calculation points, and the fixed
altitudes are 2 km, 2 km, 260 km, and 2 km, respectively.

Subsequently, the Delaunay triangulation technique is used in the spherical coordinate
system to discretize the tesseroid into a series of subcells. Due to the difference between
the latitude and longitude interval of the tesseroid and the proportional coefficient of the
thickness, the latitude and longitude interval is 1◦, but the thickness is 1 km. Therefore,
the interval of tesseroids can be scaled by referring to the small circle radius or arc length
of the latitude in which the tesseroid is located. This is to avoid the distortion of the
generated tetrahedron in the spherical coordinate system due to the direct use of latitude
and longitude information for Delaunay triangulation, i.e., to ensure that the odd intensity
is less than 1.4.

To determine whether a tesseroid must be divided, Uieda et al. [5] introduced an
inequality as follows

d
Li
≥ D (20)

where, the distance d between the observation point and the geometric center of the tesseroid,
and Li, i ∈ (r,ϕ,λ), is the dimensions of the tesseroid (the “side lengths” of Li et al. [89])
along longitude, latitude, and radius, respectively. D denotes the “distance-size ratio”,
which is a positive scalar [5].

If the inequality is satisfied for all pairs of observation points and tesseroids, then the
tesseroid is undivided. Hence, the distance-size ratio dictates the proximity at which the
computation point can be located before necessitating the division of the tesseroid. The
value of D indirectly influences the accuracy and computation time of the solution. The d is
too short, resulting in ambiguity points in the forward modeling results of gravity fields
using the tesseroid, especially at the coincidence of the observation point and the source
projection, as shown in Figure 10. Uieda et al. [5] noted that the calculation accuracy of the
tesseroid-based forwarding algorithm of the gravitational field is influenced by the location
of tesseroids, the height of the observation point, and the distance-size ratio.

To verify the computational accuracy of the tetrahedron-based forwarding algorithm
in the spherical coordinate system proposed in this paper, the tesseroid is refined by setting
D = 80, yielding 28,130,947 subcells, then the results of the tetrahedron-based forwarding
algorithm, which is obtained using Equation (2), and the tesseroid-based forwarding
algorithm as shown in Figures 10 and 11, for Experiment 1 and Experiment 3, respectively.

With a more detailed subdivision of the model, i.e., the corresponding forward
modeling, results are smoother as D increases. However, as D increases, more refined
tesseroids are involved in the computation, especially when d is small. Therefore, too
small d is not common in practical applications. The Tetgen software uses Delaunay
triangulation technology to discretize tesseroids into tetrahedrons in the spherical coordinate
system. Considering that it is difficult to describe the curved edges/faces of tesseroids by
PLC/PSLG [80,90,91], it is also easy to introduce significant geometric errors. The geometric
results were refined several times by Tetgen software (see Figure 12).
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Figure 10. Results for Experiment 1 with D = 80 and 28,130,947 subcells using tesseroid-based
forwarding algorithm.

Figure 11. Results for Experiment 3 with D = 80 and 4096 subcells using tesseroid-based
forwarding algorithm.

Figure 13 shows that when the distances d are minimal, even after seven refinements
using Tetgen, yielding 423,853 subcells, the residuals between the results of the tetrahedron-
based and tesseroid-based forwarding algorithms are still significant. The minimal dis-
tances d are also one of the reasons for the large relative error values in Figures 4 and 5
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of Uieda et al. [5]. Therefore, small distances d should be avoided for the forwards and
inversions of gravitational fields.

Figure 12. Schematic diagram of a tesseroid with a size of 1◦ × 1◦ × 1 km discretized by 10,315
tetrahedrons (after 4 refinements).

Figure 13. Residuals between the results of the tetrahedron-based (after 7 refinements) and tesseroid-
based forwarding algorithms (see Figure 8) for Experiment 1.

Figures 13–16 reveal that as the tetrahedrons obtained by Tetgen are further refined,
residuals between the results of the tetrahedron-based and tesseroid-based forwarding
algorithms gradually approach 0.

By analyzing Figures 10–16 simultaneously, when the number of subcells required
to refine a cell is small, the tetrahedron-based forwarding results have better accuracy
than the tesseroid-based results. These tests indicate that the tetrahedron-based for-
warding algorithm proposed in this paper is correct. Therefore, the tetrahedron-based
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forwarding algorithm can be used as a reference algorithm for analyzing the DGGS-based
forwarding algorithm.

Figure 14. Residuals between the results of the tetrahedron-based (after 2 refinements with
144 subcells) and tesseroid-based forwarding algorithms (see Figure 11) for Experiment 3.

Figure 15. Residuals between the results of the tetrahedron-based (after 3 refinements with
526 subcells) and tesseroid-based forwarding algorithms (see Figure 11) for Experiment 3.
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Figure 16. Residuals between the results of the tetrahedron-based (after 4 refinements with
10,315 subcells) and tesseroid-based forwarding algorithms (see Figure 11) for Experiment 3.

5.3. Phase 3: To Verify the DGGS-Based Forwarding Algorithm

Phase 3 is to validate the correctness of the DGGS-based forwarding algorithm proposed
in this paper. In the first step, the corresponding DGGS grid is generated using Dggrid version
V7.0 [92]. For simplicity, the DGGS grid with a resolution of seven and a serial number of
2136 is selected. The top and bottom plates are set to be 40 km and 60 km, respectively, to
obtain the corresponding DGGS cell, as shown in Figure 2, in the spherical coordinate system.

In the second step, the DGGS cell is discretized into tetrahedrons using Tetgen software,
as shown in Figure 17. In the third step, taking Equation (2) as the gravitational field
forward integral kernel for both tetrahedron-based and DGGS-based forwarding algorithms.
Then, the result of the DGGS-based forwarding algorithm was calculated by Equation (17)
with Equation (16) as the shape function, nxy = 7 (see Figure 5b) and nr = 3 (see Table 1).

Referring to Figures 4 and 5 in the paper of Uieda et al. [5], when the observation
altitude is 10 km, the accuracy of the tesseroid-based forwarding algorithm is more than 10%
when D ≤ 3. When the observation altitude is 260 km, the accuracy of the tesseroid-based
forwarding algorithm is about 0.1% when D ≤ 2. For this reason, the two remaining
tests to validate the DGGS-based and tetrahedron-based forwarding algorithms assume
that the observation point is located at 260 km and 10 km above the surface for Earth
and Luna satellites, respectively, referring to the paper by Uieda et al. [5] for the forward
parameter settings.

As shown in Figures 18–21 by increasing the observed height and indirectly increasing
the distance–size ratio, the residuals between the results of the DGGS-based (see Figure 18)
and tetrahedron-based forwarding algorithms are significantly reduced, with a difference
of about 10−3 orders of magnitude.

Referring to Figures 4 and 5 in the paper of Uieda et al. [5], the results in Figures 19 and 21
show that under the same parameter conditions, the computational accuracy of the DGGS-
based forwarding algorithm via the isoparametric transformation is equivalent to that of the
tesseroid-based forwarding algorithm via the GLQ.
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Figure 17. Schematic diagram of a DGGS cell discretized by tetrahedrons after 3 refinements with
12,762 subcells.

Figure 18. Results for the DGGS (see Figure 17) using DGGS-based forwarding algorithm,
r = 6378.137 km and the observation height is 260 km.
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Figure 19. Residuals between the results of the DGGS-based (see Figure 18) and tetrahedron-based
forwarding algorithms (after 6 refinements with 15,491 subcells).

Figure 20. Results for the DGGS (see Figure 17) using DGGS-based forwarding algorithm, r = 1738 km
and the observation height is 10 km.
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Figure 21. Residuals between the results of the DGGS-based (see Figure 20) and tetrahedron-based
forwarding algorithms (after 6 refinements with 15,491 subcells).

5.4. Additional Test: To Verify the DGGS-Based Forwarding Algorithm Via the Tesseroid-Based
Forwarding Algorithm with Tiny Tesseroids

To enhance the credibility of the DGGS-based forwarding algorithm proposed in
this paper, by referring to the adaptive tesseroid-based forwarding algorithm proposed
in Uieda et al. [5] , the 3D space enclosed by the maximum and minimum values of the
longitude, latitude, and radial directions of the DGGS cell is divided equally into tiny
same-sized tesseroids 8000 = nx × ny × nz = 20 × 20 × 20 along the longitude, latitude, and
radial directions, respectively. Those tiny tesseroids whose center coordinates are outside
the DGGS cell are discarded, while those whose tesseroid center coordinates are inside
the DGGS cell are retained. The tesseroid-based forwarding algorithm is used to compute
the gravity vector and gravity gradient tensor values of these retained tiny tesseroids.
Figure 22 shows the residuals between this experiment and the result of DGGS-based
forward modeling (see Figure 18), which are about ∼10−2 and comparable to the accuracy
of Figure 19.

When analyzing the lunar DGGS cell, the residual between the results of the DGGS-
based and tesseroid-based forwarding algorithms using tiny tesseroids obtained by setting
nxyz ≡ nx ≡ ny ≡ nz = 25, 50, and 100 (see Figure 22), respectively. Results similar to
Figure 23 can be obtained, indicating the correctness of the DGGS-based forwarding
algorithm. However, the residuals do not decrease with increasing nxyz. Compared with
Figure 20, it is inferred that this may be caused by the intrinsic influence of the observation
source distances on the tesseroid-based forwarding algorithm. Another indication that the
tesseroid-based forwarding algorithm cannot satisfy the computational requirements for
too-small observation heights.



Mathematics 2024, 12, 885 23 of 28

Figure 22. Residuals between the results of the DGGS-based (see Figure 18) and tesseroid-based
forwarding algorithms with 4978 tiny same-sized tesseroids.

Figure 23. Residuals between the results of the DGGS-based (see Figure 20) and tesseroid-based
forwarding algorithms with 694,287 tiny same-sized tesseroids.

6. Conclusions and Recommendations

The curvature of the geophysical model cannot be approximated as a plane for regional
and even global-scale problems. However, if the spherical curvature is taken into account,
the prism cell cannot effectively fit the curvature; otherwise, it could reduce the accuracy
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of the forward computation. The tesseroid can effectively fit the curvature. However,
the tesseroid has no gravitational analytical solution, which must be approximated by
numerical methods. The greater the number of integration points, the higher the accuracy,
but the lower the calculation efficiency.

Although tesseroids do not have gravitational analytical solutions, their integration
limits are well-defined; DGGS cells have neither gravitational analytical solutions nor fixed
integration limits. The isoparametric transformation converts the non-regular DGGS cell
in the system coordinate system to the regular hexagonal prism in the local coordinate
system. Thus, the DGGS-based forwarding algorithm is realized in the spherical coordinate
system. Similar to the tesseroid-based algorithm, the integral of the proposed algorithm is
implemented in the spherical coordinate system using the spherical gravity integral kernel.
Therefore, the DGGS-based forwarding algorithm can also accurately fit the curvature.

Due to the difficulty of directly describing the curved surfaces of DGGS cells using
facets of polyhedrons, if polyhedrons (i.e., tetrahedrons) are directly used to fit DGGS
spherical shell cells, a large number of cells and nodes are required [21,28]. Further-
more, the gravitational field integral kernels are not the same under different coordinate
systems [23,66]. Therefore, referring to the paper of Grombein et al. [23] on the forward
integral kernel of the tesseroid in the Cartesian coordinate system given, the tetrahedron-
based forwarding algorithm under different coordinate systems is used as a “bridge” to
compare and analyze the difference in the calculation accuracy of tetrahedrons, rectangular
elements, tesseroids, and DGGS cells. The experimental results show that the DGGS-based
forwarding algorithm under the spherical coordinate system proposed in this chapter
is correct. As shown in Figures 22 and 23, the same accuracy as the tetrahedron-based
forwarding algorithm is achieved when fitting the DGGS cell using tiny tesseroids.

With a more detailed subdivision of the model, i.e., the corresponding forward
modeling results are smoother as D increases, which results in more refined tesseroids
being involved in the computation, especially when d is small. Therefore, too small d or too
large D are not common in practical applications.

By increasing the observation height and indirectly increasing the distance-size
ratio D, the residuals between the results of the DGGS-based and the tesseroid-based
forwarding algorithms are significantly reduced. Under the same parameter conditions,
the computational accuracy of the DGGS-based forwarding algorithm is equivalent to that
of the tesseroid-based forwarding algorithm.

The DGGS system is based on icosahedron, there are 12 pentagons for the whole globe.
For the research area not greater than 36◦ × 36◦, existing grid data under the software DGGRID
(version 7.0) can be directly used by rotating it to cover the measurement area; otherwise, the
parameters must be manually adjusted to obtain the corresponding DGGS grid.

Author Contributions: Conceptualization, S.C.; methodology, S.C.; software, S.C., P.C. and D.Z.;
validation, P.C., D.Z. and Y.D.; formal analysis, S.C. and P.C.; investigation, D.Z.; resources, G.L.;
data curation, D.Z.; writing—original draft preparation, S.C., P.C. and G.L.; writing—review and
editing, S.C., P.C., G.L. and X.C.; visualization, S.C. and Y.D.; supervision, G.L. and X.C.; project
administration, S.C., G.L. and X.C.; funding acquisition, G.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under Grant
41704138, Grant 41974148, and in part by the Hunan Provincial Science & Technology Department of
China under Grant 2017JJ3069, and in part by the Project of Doctoral Foundation of Hunan University
of Science and Technology under Grant E51651, and in part by the Hunan Provincial Key Laboratory
of Share Gas Resource Exploitation under Grant E21722.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.



Mathematics 2024, 12, 885 25 of 28

Abbreviations

The following abbreviations are used in this manuscript:

DGGS Discrete Global Grid System
FEM Finite Element Method
GLQ Gauss–Legendre Quadrature
PLC Piecewise Linear Complex
PSLG Planar Straight Line Graph
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