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Abstract: The calibration of cameras plays a critical role in close-range photogrammetry because the
precision of calibration has a direct effect on the quality of results. When handling image capture
using a camera, traditional swarm intelligence algorithms such as genetic algorithms and particle
swarm optimization, in conjunction with Zhang’s calibration method, frequently face difficulties
regarding local optima and sluggish convergence. This study presents an enhanced hybrid optimiza-
tion approach utilizing both the principles of differential evolution and particle swarm optimization,
which is then employed in the context of camera calibration. Initially, we establish a measurement
model specific to the camera in close-range photogrammetry and determine its interior orientation pa-
rameters. Subsequently, employing these parameters as initial values, we perform global optimization
and iteration using the improved hybrid optimization algorithm. The effectiveness of the proposed
approach is subsequently validated through simulation and comparative experiments. Compared to
alternative approaches, the proposed algorithm enhances both the accuracy of camera calibration and
the convergence speed. It effectively addresses the issue of other algorithms getting trapped in local
optima due to image distortion. These research findings provide theoretical support for practical
engineering applications in the field of control theory and optimization to a certain extent.

Keywords: camera calibration; hybrid optimization; particle swarm optimization; honey badger
optimization algorithm; differential evolution

MSC: 9308; 37N40; 68W50

1. Introduction

Photogrammetric technology is an important measurement technique that can be
applied to rotating machinery, to capture images of the objects inside the machinery using
cameras. By analyzing the captured images, the displacement and structure of the targets
can be measured.

Firstly, in the design and manufacturing of rotating machinery, photogrammetric
technology can be employed to measure the position and shape of the internal components,
as well as dynamic behavioral parameters during machinery operation. Secondly, in the
maintenance and monitoring of rotating machinery, photogrammetric technology can
be utilized to monitor the position, deformation, and vibration of rotating components.
Through real-time monitoring, faults and defects can be promptly detected for repair and
adjustment, thus enhancing their reliability and operational safety. Finally, the essential role
of camera calibration in the context of photogrammetry is indispensable for the application
of rotating machinery. The precision of camera calibration directly impacts the measurement
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results and reliability of photogrammetry, which in turn influences the effectiveness and
benefits of the design, manufacturing, and maintenance aspects of rotating machinery.

Camera calibration, serving as the foundation of photogrammetry, is a technical
process carried out to enable a camera to accurately capture objects in the real world
and map them onto images. The implementation of camera calibration relies on the
determination of specific camera parameters, encompassing focal length, principal point
position, distortion, as well as external parameters like the camera’s spatial position and
orientation. This facilitates precise measurements of objects in the real world and their
projection onto images through photogrammetry.

Camera calibration methods have their own characteristics in the selection of cali-
bration techniques. Commonly used methods include the Direct Linear Transformation
(DLT), Tsai’s two-step calibration, and Zhang’s calibration. The DLT method establishes
a geometric imaging model for the camera and directly solves the model parameters us-
ing linear equations. However, it does not consider distortion and is not practical [1].
Tsai’s two-step calibration combines the DLT method with nonlinear optimization, which
improves the calibration accuracy compared to traditional methods. Nevertheless, it is
complex and cannot meet industrial requirements [2]. Zhang’s calibration method is based
on planar chessboard patterns and overcomes the need for highly accurate calibration
objects required in traditional methods by only requiring a printed chessboard pattern for
experimentation [3]. However, Zhang’s method exhibits drawbacks such as inaccurate
calibration results and being too time-consuming when applied to practical engineering
problems. Therefore, this paper proposed improvements to Zhang’s method, aiming to
achieve a faster and more accurate calibration approach.

To achieve better calibration results, previous studies have conducted research based
on the traditional Zhang’s calibration method. In 2020, Rui, Z. integrated feedforward
artificial neural networks into the traditional calibration method to correct model errors,
resulting in a twofold improvement in accuracy. However, the paper did not account
for issues such as image blurring and lack of clarity [4]. In 2009, a simple and adaptable
calibration method was proposed by Sarkka, S., utilizing neural networks to tackle the
challenging calibration problem that arises when the object plane is nearly parallel to the
image plane. However, the paper failed to consider the camera’s nonlinear distortion and
imposed stringent data prerequisites [5]. In 2020, Xu, H. introduced a neural network
structure for binocular stereo vision camera calibration but did not specify the dataset
or application methods [6]. In 2001, Liang, Y. introduced a new method for monocular
camera calibration by combining the Harris corner detection algorithm with artificial neural
networks, introducing camera-to-template angles into the calibration process. However,
the paper did not detail specific application scenarios and usage restrictions [7]. In 2016,
Jiang W et al. optimized the Zhang calibration method using a combination of genetic and
particle swarm algorithms, ultimately discovering that combining these algorithms can
improve calibration accuracy. However, the experiment did not explain the susceptibility
of the algorithm to local optima [8]. In 2019, Liu, J.Y. utilized the Structure-from-Motion
(SFM) principle to calibrate cameras internally and externally based on the paired relation-
ships between cameras, but the impact of radial distortion on the algorithm remains to be
verified in practice [9]. In 2010, Huang, D. applied Back-Propagation Neural Networks
(BPNN) to calibrate Kinect depth cameras, using target corner information as training
data and establishing an error compensation model based on error symmetry to reduce
depth measurement errors. However, the selection of neural network parameters relied
on empirical knowledge and could only be applied in specific circumstances [10]. In 2019,
Wang, Z. implemented camera calibration using multiple directional images captured by a
thermal infrared camera based on the multi-view theory [11]. However, this method suffers
from slow calibration convergence and susceptibility to local optima, primarily due to the
need to simultaneously solve many parameters and the involvement of high-dimensional,
nonlinear, and sub-pixel-level precision requirements. Nonetheless, addressing these issues
is crucial for the accuracy and efficiency of camera calibration. Improving calibration
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convergence speed and avoiding local optima can reduce calibration time, enhance cali-
bration accuracy, and establish a foundation for subsequent applications. In response to
this challenge, the paper introduced the concept of transforming differential evolution
into optimization algorithms, put forward an enhanced particle swarm hybrid optimiza-
tion algorithm derived from differential evolution, and applied it to improve the Zhang
calibration method.

The organization of this document is structured as follows: Section 2 is dedicated to
establishing the camera imaging and distortion models. Section 3 investigates methods for
camera calibration. Section 4 integrates the concept of Differential Evolution with Particle
Swarm Optimization algorithms, introducing an enhanced hybrid optimization algorithm
derived from Differential Evolution. Section 5 conducts experiments, simulating various
parameter optimization techniques and comparing the outcomes.

The primary novelty of this paper is the enhancement of the differential evolution algo-
rithm, particularly in the parameter selection aspect, facilitating the algorithm’s capability
to explore the optimal population over the entire range. Consequently, when integrated
with the particle swarm algorithm for searching the optimal individual within the optimum
population, it enables the acquisition of superior calibration parameters and improves
calibration accuracy.

2. Camera Imaging Model

The camera’s imaging process operates on the principle of pinhole imaging, which
delineates the projection correlation between the imaging plane and the target. Under
ideal circumstances, the association between objects and images adheres to a linear model
governed by the principles of triangulation. However, in practical measurement pro-
cesses, the influence of various external factors can lead to nonlinear distortions in camera
imaging. Therefore, to more accurately model the camera’s imaging process, it is neces-
sary to consider the distortions introduced by the camera and adopt a nonlinear camera
imaging model.

2.1. Coordinate System and Its Transformation Relation

(1) Coordinate system

The coordinate systems involved in camera imaging are depicted in Figure 1.
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Figure 1. The coordinates of the camera imaging model. 

1. The world coordinate system: W W W WO X Y Z− , it describes the position of the meas-
ured object in the three-dimensional world. The origin coordinates can be deter-
mined according to the specific requirements, and the unit is in meters ( )m . 

Figure 1. The coordinates of the camera imaging model.

1. The world coordinate system: OW − XWYW ZW , it describes the position of the mea-
sured object in the three-dimensional world. The origin coordinates can be determined
according to the specific requirements, and the unit is in meters (m).

2. Camera Coordinate System: OC − XCYCZC, the original coordinate system is posi-
tioned at the optical center, with the XC-axis and YC-axis running parallel to the two
edges of the image plane. The ZC-axis coincides with the optical axis, and the unit of
measurement is meters (m).
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3. Pixel Coordinate System: Ouv − uv, the upper left corner is designated as the origin of
the coordinate system for the image plane. The u-axis of the pixel coordinate system
extends horizontally from left to right, while the v-axis extends vertically from top to
bottom. The unit of measurement is pixels.

4. The coordinate system for the image, referred to as the Image Coordinate System, is
defined by the central point of the image plane. The x-axis and y-axis are aligned in
parallel with the u-axis and v-axis of the pixel coordinate system, respectively. The
unit of measurement employed is millimeters.

(2) Coordinate system transformation relationship

The primary focus of the camera imaging model involves the mapping correlation
between the pixel coordinates of an image point p and its corresponding coordinates within
three-dimensional space. The camera imaging procedure operates on the principle of
pinhole imaging, depicted in Figure 2.
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Figure 2. Relationship between camera coordinates and image coordinates.

The point P in the figure represents a point in the world coordinate system, with
coordinates (XW , YW , ZW). In the camera coordinate system, the coordinates of point p
are (XC, YC, ZC). The corresponding imaging point of point p in the image is located in
the pixel coordinate system with coordinates (u, v), while the coordinates of point p in
the image coordinate system are (x, y). The focal length of the camera, denoted as f ,
f = ∥o − OC∥, is the distance between o and OC [12]. The projection transformation from
camera coordinates to image coordinates follows specific transformations based on the
principles of triangle similarity.

BC
Ao

=
COC
oOC

=
PB
pA

=
XC
x

=
YC
y

=
ZC
f

(1)

According to Formula (1):

x = f
XC
ZC

, y = f
YC
ZC

(2)

According to Formula (2):

ZC

 x
y
1

 =

 f 0 0 0
0 f 0 0
0 0 1 0




XC
YC
ZC
1

 (3)

Figure 3 exhibits the process of converting camera coordinates into world coordinates.
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nate system.

The conversion from world coordinates to camera coordinates involves only rotation
and translation operations and is considered a rigid transformation. The equation for
coordinate transformation is as follows:

XC
YC
ZC
1

 =

[
R T
0 1

]
XW
YW
ZW
1

 (4)

The rotation matrix, denoted as R, is a 3 × 3 matrix, and the translation vector, denoted
as T, is a 3 × 1 vector. The representation of the camera coordinate system’s homogeneous
coordinates is denoted as OC − XCYCZC, whereas the homogeneous coordinates of the
world coordinate system are denoted as OW − XWYW ZW . During the coordinate trans-
formation process, rotation is performed by rotating around the z-axis with an angle of
θ, and rotating around the x and y axes with angles α and β, respectively, resulting in the
composite rotation matrix R = R1R2R3.

R =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 cos β 0 sin β
0 1 0

− sin β 0 cos β

1 0 0
0 cos α − sin α
0 sin α cos α

 (5)

 XC
YC
ZC

 = R

 XW
YW
ZW

+ T (6)

The camera captures two-dimensional images, and the output consists of pictures
where pixels are arranged based on their pixel values. As a result, the pixel coordinate
system is derived by discretizing the coordinate values and shifting the origin to the
center [13].

Figure 4 illustrates the denotation of the pixel coordinate system as Ouv − uv and the
image coordinate system as o − xy. The representation of point p in the pixel coordinate
system is indicated as (u, v), and the transformation relationship is expressed as follows:{

u = x
dx + u0

v = y
dy + v0

(7)

According to the above formula: u
v
1

 =

 1
dx 0 u0
0 1

dy v0

0 0 1


 x

y
1

 (8)
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In the given equation, the physical dimensions along the x, y directions of the pixel
are denoted as 1/dx and 1/dy, respectively, whereas o(u0, v0) signifies the displacement of
the origin on the pixel plane.
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2.2. Camera Imaging Model

(1) Linear camera model

In an ideal scenario where the distortion resulting from the camera imaging process is
neglected, the rectification of a linear camera’s distortion can be achieved by solving the
intrinsic and extrinsic parameter matrices of the camera using only the image [14]. This is
shown in the following equation:

ZC

 u
v
1

 =

 fx 0 u 0
0 fy v 0
0 0 1 0

[R T
→
0 1

]
XW
YW
ZW
1

 (9)

The internal parameter matrix is denoted as Equation (10), while the external parame-
ter matrix is represented as Equation (11): fx 0 u 0

0 fy v 0
0 0 1 0

 (10)

[
R T
→
0 1

]
(11)

(2) Nonlinear distortion model

Through analyzing the linear camera model, an ideal scenario would reveal a linear
correlation, while practical measurement processes often encounter unattainable linearity
and inevitable errors [15]. Due to manufacturing process variations, the camera lens
generates distortions during the imaging process, leading to nonlinear distortions [16].
Nonlinear distortions can be further categorized into radial and tangential distortions,
causing deviations between ideal projected points and actual projected points [17]. Let us
assume a point P in the world coordinate system, represented as P(XW , YW , ZW) in the
OW − XWYW ZW coordinates. The corresponding theoretical image coordinate is denoted
as p(x, y). However, due to nonlinear distortions introduced by real-world imaging, the
actual projected point of this point will deviate.
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Expressed as follows is the deviation between the theoretical and actual points when
p(x, y) is shifted to point p′(x′, y′): {

x′ = x + δx
y′ = y + δy

(12)

For the nonlinear distortion offset in the x direction, δx is used as a representation,
while δy represents the nonlinear distortion offset in the y direction. In the case of nonlinear
distortion offsets, the coefficients k1, k2, k3 are employed to denote radial distortion. The
expressions for the initial terms in the Taylor expansion are provided below:{

x′ = x(1 + k1r2 + k2r4 + k3r6)
y′ = y(1 + k1r2 + k2r4 + k3r6)

(13)

The radial distortion coefficients, denoted by k1, k2, k3, r2 = x2 + y2.
To ensure comprehensive distortion analysis, it is crucial to incorporate the consid-

eration of tangential distortion. This type of distortion arises mainly from the disparity
between the principal point of the optical system and the geometric center. The changes in
tangential distortion are comparatively smaller in magnitude than that of radial distortion.
The expression for tangential distortion is as follows:{

x′ = x + [2p1y + p2(r2 + 2x2)]
y′ = y + [p1(r2 + 2y2) + 2p2x]

(14)

The eccentric distortion coefficients, denoted by p1, p2, r2 = x2 + y2.

2.3. Distortion Correction

Lens distortion is actually a collective term for inherent perspective distortions in
optical lenses [18]. Generally, there are three types of camera distortions:

(1) Pincushion distortion: The magnification rate in the peripheral regions of the field
of view is much larger than that near the optical axis center, commonly found in
telephoto lenses [19].

(2) Barrel distortion: In contrast to pincushion distortion, the magnification rate near the
optical axis center is much larger than that in the peripheral regions [20].

(3) Linear distortion: When the optical axis is not orthogonal to the vertical plane of
objects being photographed, the convergence of the far side that should be parallel
to the near side occurs at different angles, resulting in distortion. This distortion is
essentially a form of perspective transformation, meaning that at certain angles, any
lens will produce similar distortions [21].

The types of distortions in a camera are as follows (Figures 5–7):
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The aforementioned distortions were taken into account during the calibration pro-
cess [22]. Following the transformation Formulas (13) and (14), undistorted calibration
results can be obtained using the following equation.[

xu
yu

]
= [1 + k1(x2

d + x2
d) + k2(x2

d + x2
d) + k3(x2

d + x2
d)][xdyd] +

 2p1xdyd + p2(3x2
d + y2

d)

p2(3x2
d + y2

d) + 2p2xdyd


Here, a nonlinear model is introduced to account for distortion in camera calibration.

In real-world scenarios, the calibration of distortion serves as an effective means to minimize
the influence of distortion, thus safeguarding the precision of the calibration outcomes.

3. Camera Calibration
3.1. Camera Calibration Algorithm

After analyzing the coordinate transformation relationship in photogrammetric mea-
surement and the previously delineated camera distortion model, the calibration of the
camera is conducted [23].

First, construct the homograph matrix to establish the relationship between world
coordinates and pixel coordinates. This matrix describes the homographs between the
target point in the world coordinate system and the image point. Subsequently, solve the
initial values for the camera’s intrinsic and extrinsic parameters using orthogonal constraint
conditions. Finally, an optimization algorithm is applied to obtain reliable matrices for
the intrinsic and extrinsic parameters [24]. According to the camera imaging model and
the transformation relationship between pixel coordinates and world coordinates, the
expression for the camera imaging model is as follows:

sm = A[R, T]M (15)
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In Equation (15), the pixel coordinates of the image are denoted as m, the world
coordinates as M, the intrinsic matrix as A, the extrinsic matrix as [R, T], and the scale
factor as s. The expression based on Equation (15) is presented in homogeneous coordinates
as follows:

s

 u
v
1

 = A[r1 r2 r3 t]


X
Y
Z
1

 (16)

Then, the internal parameters of the camera can be expressed as:

A =

 fu γ u0
0 fv v0
0 0 1

 (17)

Since the scale factor s does not alter the homogeneous coordinate values, in Zhang’s
calibration method, where pixel coordinates are in two dimensions, we can set Z = 0.
Consequently, Equation (15) can be expressed as follows:

s

 u
v
1

 = λA[r1 r2 r3 t]


X
Y
0
1

 = λA[r1 r2 t]

 X
Y
1

 (18)

Given that λ = 1/s, and the homographs matrix is denoted as H, we can set
H = λA[r1 r2 t]. Consequently, the camera model can be represented by Equation (19):

sm = HM (19)

Let H = [h1 h2 h3] = λA[r1 r2 t], the r vector is represented by the homologous
matrix H as follows: {

r1 = 1
λ A−1h1

r2 = 1
λ A−1h2

(20)

According to orthogonality, the vector’s own constraints are expressed as:{
r2

1 = r2
2 = r2

3 = 1
r1r2 = r1r3 = r2r3 = 0

(21)

{
rT

1 r2 = 0
∥r1∥ = ∥r2∥ = 1

(22)

By bringing Formula (21) into Formula (22), we can obtain:{
hT

1 A−T A−1h2 = 0
hT

1 A−T A−1h1 = hT
2 A−T A−1h2

(23)

For each feature point in the target image, we can derive two equations. By selecting
four points from the target image, as long as three of them are not collinear, the matrix H
can be computed. Consequently, a matrix H can be derived, with the following expression:

s

 u
v
1

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 X
Y
1

 (24)

The expression for Equation (24) can be transformed into a set of equations as follows:{
uXh31 + uYh32 + uh33 = h11X + h12Y + h13
vXh31 + vYh32 + vh33 = h21X + h22Y + h23

(25)
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Expressing Equation (25) in matrix form, while setting h′ = [h11 h12 h13 h21 h22
h23 h31 h32 h33]

T , yields the following matrix expression:[
X Y 1 0 0 0 −uX −uY −u
0 0 0 X Y 1 −vX −vY −v

]
h′ = 0 (26)

By applying the orthogonality condition stated in Equation (23), we can construct
a matrix of homographs to determine the camera’s intrinsic and extrinsic parameters.
Since A−T A−1 is present within Equation (23), the following matrix is formed by setting
B = A−T A−1. Its expression is as follows:

B = A−T A−1 =

B11 B12 B13
B21 B22 B23
B31 B32 B33

 (27)

Bringing Equation (17) into Equation (27) yields the following expression:

B = A−T A−1 =



1
f 2
u

γ

f 2
u fv

v0γ−u0 fv
f 2
u fv

− γ

f 2
u fv

γ2

f 2
u f 2

v
+ 1

f 2
v

− γ(v0γ−u0 fv)

f 2
u f 2

v
− v0

f 2
v

v0γ−u0 fv
f 2
u fv

− γ(v0γ−u0 fv)

f 2
u f 2

v
− v0

f 2
v

(v0γ−u0 fv)
2

f 2
u f 2

v
+ v0

f 2
v
+ 1


The matrix B possesses a symmetric structure and can be represented by Equation (28):

b =
[
B11 B12 B22 B13 B23 B33

]T (28)

According to the orthogonal constraint: hT
i Bhj = vT

ijb, we can obtain:

vij =
[
hi1hj1 hi1hj2 + hi2hj1 hi2hj2 hi3hj1 + hi1hj3 hi3hj2 + hi2hj3 hi3hj3

]T

The equation’s expression of orthogonality constraint results in vT
12b = 0.

Similarly, based on another constraint, it can be represented as (v11 − v22)
Tb = 0.

These two constraints can be expressed in matrix form, and their expression is as follows:[
vT

12
(v11 − v22)

T

]
b = 0 (29)

During the camera calibration process, for each image, we can obtain a homographs
matrix H. Based on Equation (29), each of these matrices can be used to form the system
of equations described in the equation. According to Equation (28), vij has six unknowns;
thus, at least six sets of equations need to be established in order to solve them. In practical
experiments, there are often redundant data available, allowing for the calculation of the
B matrix. By solving the B matrix using the Cholesky (square root) method and taking
its inverse, we can obtain the camera’s intrinsic parameters. Its expression is given by
Equation (30).
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(B11B22−B2
12)

λ =
B33−[B2
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B11

fu =
√

λ
B11

fv =

√
λB11

B11B22−B2
12

γ = − B12 f 2
u fv

λ

u0 = v0γ
fv

− B13 f 2
u

λ

(30)

Then, according to H = [h1 h2 h3] = λA[r1 r2 t], the external parameters are
simplified, and the result is expressed as Equation (31):

r1 = λA−1h1
r2 = λA−1h2

r3 = r1r2
t = λA−1h3

λ = 1
∥A−1h1∥ = 1

∥A−1h2∥

(31)

Solving Equations (30) and (31) allows for the determination of both the camera’s
internal and external parameters.

3.2. Binocular Stereo Calibration Method

Based on the camera imaging model, Equation (32) can be derived when considering
the internal and external parameter matrices of the left and right cameras in a binocular
vision system portrayed as R1, T1, R2, and T2, respectively. Furthermore, point P in world
coordinates are PW , while its coordinates on the imaging plane of the left camera and the
right camera are p1 and p2, respectively.{

p1 = R1PW + T1
p2 = R2PW + T2

(32)

Equation (33) is obtained by eliminating PW from the upper equations:

p2 = R2R−1
1 p1 + T2 − R2R−1

1 T1 = Rp1 + T (33)

Equation (33) defines R as the rotation matrix relating the two cameras and T as
the translation vector representing the spatial relationship between the cameras. Conse-
quently, the positional correlation between the left and right cameras is articulated through
Equation (34). {

R = R2R−1
1

T = T2 − R2R−1
1 T1

(34)

Based on Equation (34), the individual calibration of the internal and external parame-
ters for the left and right cameras enables the definition of their positional relationship. This
process completes the stereo calibration for the binocular vision system. Subsequently, in-
telligent optimization algorithms are utilized to enhance the obtained internal and external
parameters, as they may not be optimal.

4. Camera Parameter Optimization Algorithm

The Zhang’s calibration method yields unsatisfactory results when multiple images
are used as input, with poor performance due to suboptimal initial values and noise-
contaminated data. In order to tackle this issue, the linear model solution is utilized as the
starting point for optimization, aiming to enhance the resilience of conventional optimiza-
tion approaches [25]. However, these drawbacks require additional input constraints to
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obtain more accurate parameter results, making the traditional calibration process more
complex and impractical. Hence, this section primarily utilizes intelligent optimization
algorithms to optimize the method and address the aforementioned limitations.

Assuming there exist n template images depicting planar surfaces, with each image
containing m calibration points within the identical environment, the formulation of the
objective function is presented as follows:

fobj = min
n

∑
i=1

m

∑
j=1

∥∥ p̂ij − p(MA, k1, k2, k3, p1, p2, Ri, Ti, Pj)
∥∥ (35)

The pixel coordinates of the j calibration point in the i image are represented by pij
in the objective function, whereas k1, k2, k3, p1, p2 represents the distortion parameters,
and Ri, Ti denotes the rotation and translation matrix corresponding to the i image. By
utilizing optimization algorithms to optimize the calibration objective function based on
Equation (35), the optimal solution for the camera calibration parameters can be obtained.

4.1. Honey Badger Algorithm

The Honey Badger Algorithm (HBA) presents a pioneering heuristic optimization
approach inspired by the foraging behavior of honey badgers, which has devised an
efficient search strategy for addressing mathematical optimization problems. The key
principle revolves around the honey badger’s capacity to locate beehives through actions
such as sniffing, digging, and following honeyguide birds, categorized as the excavation
mode and the honey mode, respectively. During the excavation mode, the honey badger
uses its keen sense of smell to estimate the beehive’s location and chooses a suitable spot
for excavation upon nearing the hive. Conversely, in the honey mode, the honey badger
directly relies on the guidance of the honeyguide bird to find the beehive, ultimately
yielding the optimal outcome.

The optimization of camera parameters based on the honey badger algorithm involves
establishing an objective function using the residuals between the actual image coordi-
nates (x, y) of calibration points and the projected coordinates (x′, y′) calculated from the
camera model.

f (X) =
N

∑
i
[(x − x′)2

+ (y − y′)2
] (36)

By utilizing the excavation mode and honey mode to minimize the value of f (X), an
optimal set of parameters is obtained, achieving the optimization of camera parameters.

Here, X represents the parameter to be optimized, specifically X = [ fx, fy, Cx,
Cy, k1, k2, k3, p1, p2], with the parameter’s search range set as [Xup, Xdown], as shown below:

Xup = [ fx + 3, fy + 3, Cx + 2, Cy + 2, k1 + 0.1, k2 + 0.02, k3 + 0.002, p1 + 2 × 10−5, p2 + 0.02]

Xdown = [ fx − 3, fy − 3, Cx − 2, Cy − 2, k1 − 0.1, k2 − 0.02, k3 − 0.002, p1 − 2 × 10−5, p2 − 0.02]

The population of honey badgers, with a size of N, representing the optimization of D
parameters, can be expressed as follows:

x11 x12 x13 · · · x1D
x21 x22 x23 · · · x2D

...
...

...
...

xN1 xN2 xN3 · · · xND

 (37)

The position of the i honey badger is:

xi = [xi1, xi2, xi3, · · · , xiD] (38)

The flowchart of the honey badger algorithm is as follows (Figure 8):
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The algorithm steps are as follows:
Step 1: The initialization phase entails setting the population size N and determining

the corresponding positions of the honey badgers.

xi = lbi + r1 × (ubi − lbi) (39)

where r1 denotes a random number within the range of 0 to 1, lbi signifies the lower
boundary of the search domain, and ubi denotes the upper boundary of the search domain.

Determine the maximum number of iterations, denoted as T, as well as parameters C
and β.

Step 2: Specifying the intensity I. The intensity is linked to the prey’s concentration
and the spatial separation between the prey and honey badgers. Ii denotes the olfactory
potency of the prey, where a high olfactory strength results in fast movement, whereas a
low olfactory strength leads to slow movement.

Ii = r2 ×
S

4πd2
i

(40)

S = (xi − xi+1)
2 (41)

di = xprey − xi (42)

In this section, the symbol r2 represents a random number between 0 and 1, S denotes
the source strength or concentration strength, and di represents the distance between the
i-th honey badger and its prey.

Step 3: Enhancing the density factor. The density factor α controls the dynamic
randomization process, facilitating a seamless transition from exploration to exploitation.

α = C × exp(
−t

tmax
) (43)
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Step 4: Escape from local optima. This step is aimed at escaping from local optima
regions. The search algorithm employs a flag F to alter the search direction, facilitating an
extensive exploration of the search space.

Step 5: Adjusting individual positions. The process of updating positions comprises
two components: the “excavation phase” and the “honey collection phase”.

Excavation phase:

xnew = xprey + F × β × I × xprey + F × r3 × α × di × |cos(2πr4)× [1 − cos(2πr5)]|

In this context, xnew signifies the revised location of the honey badger individual,
while xprey denotes the prey’s position.

Meanwhile, β signifies the honey badger’s capability to obtain physical items, where
β ≥ 1 with a default of 6, and di denotes the distance between the i-th honey badger and
the prey. Additionally, r3, r4, r5, r6, r7 are random numbers between 0 and 1.

F =

{
1 i f r6 ≤ 0.5
−1 else

(44)

Honey gathering stage:

xnew = xprey + F × r7 × α × di (45)

xnew represents the revised location of the honey badger individual, while xprey indi-
cates the position of the prey, which represents the globally optimal position. The variable
d represents the distance between the i-th honey badger and the prey. The value of F can be
calculated using Equation (44), and the value of α can be derived from Equation (43).

4.2. Improved Differential Evolution Particle Swarm Algorithm

Considering the limitations of the honey badger algorithm, including rapid conver-
gence, low accuracy of convergence, tendency to diverge, and decreasing population
diversity as iterations increase, the particle swarm optimization algorithm incorporates the
differential evolution algorithm to overcome these limitations. In this enhanced algorithm,
differential evolution mutation and crossover operations are integrated into the particle
swarm algorithm at each iteration. This modification aims to preserve the diversity of
the particle population and improve the selection of the optimal particle in each iteration,
ultimately leading to enhanced performance.

4.2.1. Principle of Differential Evolution Algorithm

The main components of the differential evolution (DE) algorithm include mutation,
crossover, and selection operations. Within this algorithm, a diverse subset of individuals
is randomly chosen to form the variance vector. Subsequently, an additional individual
is selected and incorporated into the variance vector to produce an experimental individ-
ual. The crossover operation is then executed between the original individual and the
respective experimental individual, perturbing the existing population and extending the
exploration range. Ultimately, a selection process takes place between the original and
offspring individuals, retaining the individuals that satisfy the criteria for the subsequent
generation population.

(1) The initialization of the population

The population of size (NP, D) is randomly generated in the solution space. Each in-
dividual, denoted by the i-th element, is given a random value within the predefined range.

Xi(G) = {xi1(G), xi2(G), · · · , xiD(G)}, i = 1, 2, · · · , NP (46)
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Within the context of this study, the value of NP corresponds to the population size,
while D represents the number of decision variables. Each individual within the initial
population is generated in the range [xmin, xmax] according to Equation (46).

xiD(0) = xmin + rand(0, 1) ∗ (xmax − xmin) (47)

In the above equation, the variable G indicates the G generation, and [xmin, xmax]
represents the search space domain of the decision variables.

(2) Variation operation

The mutation operation is employed in the process of G evolution to generate the
mutation vector Vi(G) for each individual Xi(G) in the population of the current generation.
The calculation of the mutation vector varies depending on the chosen mutation strategy,
and the subsequent section outlines five frequently employed mutation strategies.

DE/rand/1 :
Vi(G) = Xr1(G) + F · (Xr2(G)− Xr3(G))

DE/best/1 :
Vi(G) = Xbest(G) + F · (Xr1(G)− Xr2(G))
DE/rand − to − best/1 :
Vi(G) = Xi(G) + F · (Xbest(G)− Xi(G)) + F · (Xr1(G)− Xr2(G))

DE/best/2 :
Vi(G) = Xbest(G) + F · (Xr1(G)− Xr2(G)) + F · (Xr3(G)− Xr4(G))

DE/rand/2 :
Vi(G) = Xr1(G) + F · (Xr2(G)− Xr3(G)) + F · (Xr4(G)− Xr5(G))

(48)

In the above equation, r1, r2, r3, r4, r5 is a mutually exclusive random integer within the
range [1, NP] and different from the index i. The scaling factor F is a positive controlling
parameter of the differential vector. Xbest(G) represents the best individual vector in the G
generation population with the optimal fitness value.

(3) Crossover Operation

For each pair of target vector Xi(G) and mutation vector Vi(G), a trial vector is
generated through crossover. The differential evolution method employs a binomial
crossover defined as follows in Equation (49): Ui(G) = (ui(G), ui(G), · · · , uI(G)).

ui(G) =

{
vi(G), (randj(0, 1) ≤ CR)or(j = jrand)
xi(G), otherwise

j = 1, 2, · · · , D (49)

Among them, CR is a specified constant crossover probability between (0, 1), and jrand
is a randomly selected integer within the range [1, D].

(4) Selection Operation

In the differential evolution method, a greedy selection rule is utilized to determine
the offspring. This rule involves comparing the fitness values of the trial individuals
with the target individuals and selecting the superior individuals to be inherited in the
subsequent generation.

Xi(G + 1) =
{

Ui(G), i f ( f (Ui(G)) ≤ f (Xi(G)))
Xi(G), otherwise

(50)

Among these, f (·) denotes the fitness value of the objective function for both the target
individual and the trial individual in the G generation. The above operations are repeated
in each generation until certain specific termination conditions are met.
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4.2.2. Improved Differential Evolution Particle Swarm Hybrid Optimization
Algorithm Design

The population size in the context of the differential evolution algorithm is denoted
by N, with each individual possessing a multidimensional vector, which is expressed as
the target vector and the trial vector: Xt

i = (xt
i1, xt

i2, . . . , xt
iD), Vt

i = (vt
i1, vt

i2, . . . , vt
iD). The

population is initialized as S = {X1, X2, . . . , XD}, where T represents each target vector.
Therefore, the mutation operation can be improved as follows.

VT
i = xt

best + f (xt
r2 − xt

r3) (51)

VT
i = xt

r1 + f (xt
r2 − xt

r3) (52)

VT
i = xt

i + f1(xt
best − xt

i ) + f2(xt
r1 − xt

r2) (53)

VT
i = xt

best + f (xt
r1 + xt

r2 − xt
r3 − xt

r4) (54)

VT
i = xt

r1 + f (xt
r2 + xt

r3 − xt
r4 − xt

r5) (55)

The equation above introduces f as the mutation parameter, which serves to control
the differential speed, while r1, r2, r3, r4, r5 represents distinct random integers falling within
the range of [1, N]. The population iteration algorithm incorporates a mutation method
to enhance population diversity, ensuring that mutation takes place after each iteration.
Moreover, it integrates crossover and selection operations to facilitate the selection of the
optimal individual in each iteration.

The Figure 9 depicts the flowchart of the enhanced algorithm for differential evolution
particle swarm optimization:
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The algorithm implementation steps are as follows:
Step 1: Using calibration algorithm, obtain the coordinates (x′, y′) of calibration points

and camera parameters fx, fy, Cx, Cy, k1, k2, k3, p1, p2.
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Step 2: A group of particles is initialized and distributed throughout the search space,
with each particle possessing flight velocity denoted as Vi and position represented as Xi.
Set the population size N, parameter search range, maximum flight velocity Vup, inertia
weight coefficient ω, individual learning factor c1, social learning factor c2, and other
parameters. Define the search range of the parameters as [Xup, Xdown].

Step 3: An enhanced dynamic adjustment strategy is introduced for the modification
of the algorithm’s weights w, mutation control parameter f , and crossover control param-
eter CR. The maximum number of iterations λmax and the current iteration count λ are
determined based on the upper and lower limits of the parameters specified in Step 2:

δ(w, f , CR) = δmax −
δmax − δmin

λmax
λ (56)

Step 4: The fitness value of each particle is computed, and the fitness evaluation can
be represented by Equation (57).

f itness = min
m

∑
i=1

√
(ui − xi)

2 + (vi − yi)
2 (57)

Step 5: The current individual extreme value Pt
i for each particle is updated, and the

best individual extreme value is recorded as the current global optimal solution Pt
g.

Step 6: Each particle updates its flight velocity and position information. The update
equations for flight velocity and position information in the d-th dimension are as follows:

vt+1
id = ωvt

id + c1r1(pt
id − xt

id) + c2r2(pt
gd − xt

id)

xt+1
id = xt

id + vt+1
id

where i = 1, 2, . . . , N and d = 1, 2, . . . , D, vt+1
id and xt+1

id , respectively represent the flight
velocity and position information of the i particle in the t + 1 generation.

Step 7: Executing the crossover operation enhances population diversity and promotes
the adaptation of exceptional individuals.

Step 8: The mutation operation is performed to generate excellent individuals, with a
higher probability of mutation for individuals with lower fitness.

Step 9: Updating the entire population is based on the new fitness values, which
involves the update of individual best and global best.

Step 10: Checking if the termination condition is met to determine whether to output
the results; if the condition is met, the results will be outputted. If not, the process will
return to Step 2 for additional iterations.

5. Experimental Comparison and Result Analysis

Using Zhang’s calibration method, the camera was calibrated to obtain the parameters
necessary for rectifying the captured images. This process ensured the precise acquisition
of pixel coordinates for the chessboard pattern captured by both the left and right cameras.
A binocular stereo vision model was then employed to determine the world coordinates
of the chessboard pattern. The obtained world coordinates were used as input, while the
theoretical world coordinates were used as output. For data computation, a compara-
tive analysis was conducted using different optimization algorithms, including genetic
algorithm, particle swarm optimization algorithm, honey badger optimization algorithm,
and an enhanced hybrid optimization algorithm that combines differential evolution and
particle swarm optimization algorithm.

5.1. Procedure of Test

Step 1: Multiple calibration board images were captured using the experimental
equipment. Subsequently, functions such as “findChessboardCorners”, “calibrateCamera”,
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and “stereoRectify” from the OpenCV library were invoked in C++ to solve for the camera’s
intrinsic and extrinsic parameters.

Step 2: Multiple sets of captured images were selected. Using OpenCV, pixel coordi-
nates were first determined, followed by the calculation of world coordinates. Figure 10
depicts the calibration board employed in the experiment, which consists of a total of
40 corners. It was manufactured using photolithography techniques, with a fabrication
error within 1 millimeter. Each chessboard square measures 80 mm × 80 mm, resulting in
a total chessboard size of 800 × 600.

Step 3: The collected calibration images were input into the camera calibration data
processing module, resulting in initial data after calibration, including initial values for
various types of distortion coefficients.

Step 4: Different optimization techniques were applied to optimize the initial calibra-
tion parameters and obtain the global optimum solution.

5.2. Results and Analysis

A binocular camera is used to take multiple photos, which are shown in Figure 10:
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Figure 10. Checkerboard for calibration.

In the camera calibration experiments, the calibration board underwent movement
within the field of view of the camera, assuming different positions and angles. This
allowed for the capture of multiple sets of detection images for the purpose of calibration.
Due to the continuous movement of the calibration board, image blurring may occur during
image acquisition, which in turn can affect the accuracy of subsequent corner detection.
Therefore, high-quality, non-blurred images were selected from the collected calibration
data for the calibration experiments. The process of binocular calibration and corner
detection is illustrated in Figure 11.
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The method for camera calibration detailed earlier was applied to derive parameter
matrices M1 and M2 for the left and right cameras. Correspondingly, matrices D1 and D2
representing the distortion parameters for the cameras were acquired. A summary of the
findings can be found in Table 1, with all data rounded to five decimal places.

Table 1. The calibration parameter matrix for the left and right cameras.

Camera Parameter Matrix Distortion Parameter Matrix

M1 =

5035.73040 0 533.22766
0 5036.77009 978.66847
0 0 1

 D1 = [−0.08209, 1.58242, − 0.00166, − 0.00032, 10 .23747]

M2 =

5018.27022 0 516.49581
0 5017.48057 905.64914
0 0 1

 D2 = [−0.05939, 0.48486, − 0.00168, − 0.00026, 38 .70554]

During this experiment, 15 sets of calibration board images were utilized. The intrinsic
and extrinsic parameters of the camera, along with the distortion parameters obtained from
the calibration process, were employed to project the corners of the calibration board onto
the imaging plane. The calibration error was subsequently evaluated by comparing the
pixel coordinates of these points with their actual coordinates on the calibration board. The
tabulated results of the calibration errors are documented in Table 2.

Table 2. Calibration average error table.

Label Average
Error (Pixel) Label Average

Error (Pixel) Label Average
Error (Pixel)

1 0.172649 6 0.138521 11 0.189421
2 0.157981 7 0.137715 12 0.212029
3 0.081947 8 0.141941 13 0.118467
4 0.105237 9 0.166069 14 0.193648
5 0.160528 10 0.233748 15 0.189421

As shown in Table 2, the overall average calibration error falls within a range of
0.25 pixels.

Figure 12 illustrates the projection of the calibration board’s corner coordinates onto
the camera coordinate plane using the camera’s intrinsic and extrinsic parameters derived
from reverse projection. Discrepancies between these projected coordinates and the actual
corner coordinates in the original image were computed in both the x and y directions. The
deviations, quantified in pixels, are denoted by red “o” for the calibration disparities of the
left camera and blue “+” for those of the right camera.

After the calibration of both the left and right cameras, the stereo vision calibration
can be conducted. The calibration outcomes for the binocular vision system are displayed
in Table 3.

Table 3. Binocular camera calibration results.

Rotation Matrix Translation Vector

R =

 −0.99993098 0.0004564127 −0.011711541
−0.00057125383 −0.99995023 0.0098654972
−0.011706779 0.0098716523 0.99988127

 T =
[
−15.728618 0.081634976 −0.082594357

]
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Figure 12. Calibration error analysis diagram.

The rotation matrix and translation matrix for stereo calibration, presented in Table 3,
indicate that the rotation matrix bears a striking resemblance to the identity matrix. This
similarity can be attributed to the meticulous efforts employed during the setup of the left
and right cameras to achieve and maintain their equilibrium.

Following the procedure outlined in the preceding section, the MATLAB implemen-
tation of the optimization algorithm program utilized 10 sets of calibration images and
experimented with maximum iteration numbers of 200, 400, 600, 800, and 1000. In order
to evaluate the calibration performance of the algorithm proposed in this chapter, assess-
ments were carried out employing the genetic algorithm, particle swarm algorithm, honey
badger algorithm, and improved differential particle swarm algorithm. The evaluation
criteria involved nine parameters, fx, fy, cx, cy, k1, k2, k3, p1, p2, and their performance was
compared, as presented in Table 4.

Table 4. Table of the optimization results of the four optimization algorithms for the nine calibration
parameters.

Argument GA PSO HBA IDEPSO DE

fx 1156.7861 1154.4027 1156.4027 1157.8783 1157.4027
fy 1154.2004 1155.0684 1155.0685 1153.6961 1152.0685
cx 662.7546 660.9385 660.9385 663.02028 662.9385
cy 387.9115 389.3181 389.1970 387.9177 387.8497
k1 −0.2451 −0.26817 −0.26614 −0.245762 −0.245485
k2 −0.044766 −0.06452 −0.06452 −0.044699 −0.044525
k3 −0.00049006 −0.000713 −0.000313 −0.0004727 −0.0005139
p1 5.6293 × 10−5 4.1408 × 10−5 8.1408 × 10−5 4.5905 × 10−5 6.1408 × 10−5

p2 0.045762 0.041302 0.045302 0.045686 0.0456797

Based on the findings displayed in Table 4, the camera parameter calibration performed
in this investigation meticulously accounted for both radial and tangential distortions. As
a result, the influence of distortion and lens aberrations on the measurement outcomes
during the camera calibration process was significantly mitigated. To conduct a more
comprehensive analysis of the optimization test results, the positional deviations were
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assessed using the error range and root-mean-square error (RMSE) as indicators of accuracy.
The calculation formulas for these two evaluation criteria are provided below:

Er(k) =
√(

X̂(k)− X(k)
)2 k = 1, 2, · · · , N (58)

RMSE =

√√√√ 1
N

N

∑
i=1

(X̂(k)− X(k))2 (59)

The root-mean-square errors for position in each direction calibrated by the four
optimization algorithms are presented in Table 5.

Table 5. Comparison of the four optimization algorithms.

RMSE X Y Z

GA 0.6189 0.5162 0.1124
PSO 0.4895 0.5137 0.0947
HBA 0.3201 0.5150 0.0657

IDEPSO 0.1690 0.3780 0.0638
DE 0.8758 0.5138 0.1151

Result 1: The fitness curve for the optimization using genetic algorithm is shown in
Figure 13, with a maximum iteration number of 455. The fitness value decreases in a step-
wise manner as the iteration number increases and finally reaches zero after 455 iterations.
The solution stabilizes thereafter and remains consistent.
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Figure 13. Fitness curve after genetic algorithm optimization.

Based on Figures 13 and 14, it can be observed that the optimization of calibration
parameters using genetic algorithm resulted in significant improvement in the correspond-
ing coordinate errors. The error in the x-coordinate was reduced from approximately
0.3 to within 0.05 after optimization, while the error in the y-coordinate improved from
around −0.5 to within ±0.07. The error in the z-coordinate was within 0.1 before parameter
optimization.
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Figure 14. Genetic algorithm optimizes the coordinate error contrast curve.

Result 2: The fitness curve for the optimization using particle swarm algorithm is
depicted in Figure 15. The algorithm terminated after 225 iterations, and the fitness value
exhibited a stepwise decrease with the increase in iteration count. After 225 iterations, the
solution approached zero and stabilized.
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Figure 15. Fitness curve optimized by particle swarm optimization algorithm.

The error in the coordinates of the corresponding points before and after optimization
can be obtained from Figure 16. Prior to optimizing the calibration parameters, the error in
the x-direction of the corresponding points was approximately within 0.27, the y-direction
error was within −0.65, and the z-direction error was within −0.12. After optimization
using the particle swarm algorithm, the x-direction error was within 0.05, the y-direction
error fluctuated within ±0.07, and the z-direction error was within 0.07. It can be noted that
the particle swarm optimization method demonstrated a relatively better improvement in
the y-direction error.
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Figure 16. Particle swarm optimization before and after the coordinate error comparison curve.

Result 3: The fitness curve after optimizing using the honey badger algorithm is
depicted in Figure 17. The algorithm terminated after 122 iterations, and the fitness
value progressively decreased in a stepped manner with increasing iteration count. After
122 iterations, the solution approached zero and reached stability. Based on the convergence
of the curve, it is evident that this algorithm exhibits noticeably faster convergence speed
and requires fewer iterations compared to the previous two optimization algorithms.
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Figure 17. The fitness curve of honey badger optimization algorithm.

Figure 18 shows the coordinate error curve before and after optimizing the camera
calibration parameters using the honey badger algorithm. Based on the error curve, it
can be concluded that the honey badger optimization algorithm reduced the error in the
x-direction from 0.56 before optimization to within 0.05 after optimization. Furthermore,
the algorithm decreased the error in the y-direction from −0.66 to within 0.07 and in the
z-direction from −0.14 to within ±0.06. These results indicate that the algorithm greatly
improves the error.
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Figure 18. The honey badger optimization algorithm optimizes the coordinate error contrast curve.

Result 4: The fitness curve after optimizing using the improved differential evolution
particle swarm algorithm is shown in the Figures 19 and 20. It can be observed that the
curve depicted fluctuations throughout the first 150 iterations before stabilizing around
iteration 400, at which point the calibration optimization results attain stability.
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curve.

As shown in the above figure, the error curve of the experimental data point coor-
dinates before and after optimizing the camera calibration parameters using the mixed
optimization algorithm based on improved differential evolution and particle swarm can
be observed. It is apparent that prior to using the mixed optimization algorithm, the error
in the x-direction was approximately 0.7, which was reduced to within 0.005 after opti-
mization. Additionally, the error in the y-direction decreased from −0.66 to around −0.07,
and the error in the z-direction decreased from −0.17 to near 0. These experimental results
indicate that although the convergence speed and iteration count of this algorithm are not
the fastest compared to several other optimization algorithms, the optimized parameter
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results are favorable. Therefore, the mixed optimization algorithm based on improved
differential evolution and particle swarm demonstrates the best optimization effect with
the lowest error.
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Figure 20. Improved differential evolution particle swarm hybrid optimization algorithm to optimize
the coordinate error contrast curve.

Result 5: The fitness curve following DE optimization, as shown in Figure 21, con-
cluded at iteration 335, demonstrating a stepwise decrease in fitness as the number of
iterations increased.
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As evidenced by Figures 21 and 22, notable changes in the corresponding coordinate
errors are observed before and after optimization using the differential evolution algorithm.
Specifically, errors in the corresponding x-coordinate parameters were approximately 1.5
before optimization and reduced to within 0.1 post-optimization. Errors in the correspond-
ing y-coordinates were approximately 0.6 before optimization and reduced to within plus
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or minus 0.1 afterward. For z-coordinates, errors were within 0.2 before optimization
and reduced to within 0.05 after optimization. It is evident that prior to optimization,
error fluctuations were significant, whereas a substantial reduction in errors was observed
following optimization.
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Upon comparison with the DE algorithm, it is noted that there is not a significant
disparity in the fitness curves of the two algorithms. In light of this observation, additional
experiments were conducted wherein the fitness curves of both algorithms were juxta-
posed. The experiments were conducted over 200 iterations, yielding the following results
(Figure 23):

Mathematics 2024, 12, x FOR PEER REVIEW 28 of 30 
 

 

 

Figure 23. Comparison of convergence curves of the algorithm. 

Specific indicators are shown in Table 6: 

Table 6. Performance comparison of algorithm convergence curves. 

 DE IDEPSO 

Fitness value 1.04488 1.04068 

Number of iterations when stabilizing 128 84 

The examination of the referenced charts reveals that the IDEPSO achieves a more 

rapid convergence compared to DE. It is observed that the proposed algorithm 

approaches stability after 84 iterations, exhibiting a stable fitness value of 1.04068, whereas 

the stability for the DE algorithm is reached after 128 iterations with a fitness value of 

1.04488. In the context of mean-square errors (MSE) across various axes, it is evident that 

post-optimization, the algorithm we introduced demonstrates significantly reduced MSE 

values on all axes when juxtaposed with the DE algorithm. Furthermore, the enhanced 

Differential Evolution Particle Swarm Optimization (DEPSO) algorithm yields a mere 

0.1690 root-mean-square error in the x-axis, 0.3780 in the y-axis, and 0.0638 in the z-axis. 

These calibration results undercut the calibration errors associated with the other three 

optimization calibration methods, substantiating the exemplary performance and high 

accuracy of our algorithm. 

6. Conclusions 

This paper first introduces the structure and coordinate system conversion of the 

photogrammetry system. It then provides a detailed description of commonly used 

camera calibration methods and investigates distortion models for camera calibration. 

Based on this research, an optimized method for calibrating cameras is proposed, which 

utilizes a new algorithm capable of accurately calibrating cameras. In this algorithm, 

iterations are incorporated into the mutation and crossover stages of the differential 

evolution process, and the dynamic adjustment strategy is refined. Introducing the 

concept of differential evolution ensures the preservation of particle population diversity, 

enabling the selection of the globally optimal particle at each iteration for the attainment 

of more precise results. Experimental comparisons among the calibration algorithm 

proposed in this paper and particle swarm optimization calibration, genetic algorithm 

Figure 23. Comparison of convergence curves of the algorithm.

Specific indicators are shown in Table 6:



Mathematics 2024, 12, 870 27 of 28

Table 6. Performance comparison of algorithm convergence curves.

DE IDEPSO

Fitness value 1.04488 1.04068
Number of iterations when stabilizing 128 84

The examination of the referenced charts reveals that the IDEPSO achieves a more
rapid convergence compared to DE. It is observed that the proposed algorithm approaches
stability after 84 iterations, exhibiting a stable fitness value of 1.04068, whereas the stability
for the DE algorithm is reached after 128 iterations with a fitness value of 1.04488. In the
context of mean-square errors (MSE) across various axes, it is evident that post-optimization,
the algorithm we introduced demonstrates significantly reduced MSE values on all axes
when juxtaposed with the DE algorithm. Furthermore, the enhanced Differential Evolution
Particle Swarm Optimization (DEPSO) algorithm yields a mere 0.1690 root-mean-square
error in the x-axis, 0.3780 in the y-axis, and 0.0638 in the z-axis. These calibration results
undercut the calibration errors associated with the other three optimization calibration
methods, substantiating the exemplary performance and high accuracy of our algorithm.

6. Conclusions

This paper first introduces the structure and coordinate system conversion of the
photogrammetry system. It then provides a detailed description of commonly used camera
calibration methods and investigates distortion models for camera calibration. Based on
this research, an optimized method for calibrating cameras is proposed, which utilizes a
new algorithm capable of accurately calibrating cameras. In this algorithm, iterations are
incorporated into the mutation and crossover stages of the differential evolution process,
and the dynamic adjustment strategy is refined. Introducing the concept of differential
evolution ensures the preservation of particle population diversity, enabling the selection
of the globally optimal particle at each iteration for the attainment of more precise results.
Experimental comparisons among the calibration algorithm proposed in this paper and
particle swarm optimization calibration, genetic algorithm optimization, and honey badger
algorithm demonstrate its superior performance parameters, smaller calibration errors, and
advantageous algorithm performance.
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