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1. Introduction

In 1941, Hyers [1] gave the first positive answer to the question on the stability of group
homomorphisms proposed by Ulam in 1940 [2]. Since then, the theory of Hyers—Ulam
stability (HUS) has been gradually developed (see [3—8]). The theory of HUS opened a new
research line in stability analysis.

In the past four decades, fractional differential equations have become more popular
and important because they are more accurate and convenient than integer-order differen-
tial equations. Stability is a basic problem of fractional differential equations (FDEs). For
recent results on the HUS of FDEs, we refer the reader to some works (see [9-15]).

Fractional stochastic differential equations can be used to model systems with memory
and randomness, such as biological systems with fractional-order kinetics and stochas-
tic effects, anomalous diffusion processes, etc. This provides a powerful framework for
predicting the behavior of complex systems with memory and randomness. Recently,
some authors extended the HUS problem from fractional differential equations (FDEs) to
stochastic fractional differential equations. In [16], Ahmadova and Mahmudov established
stability results in the Hyers—Ulam sense for nonlinear fractional stochastic neutral dif-
ferential equations. Guo et al. [17] investigated the existence and Hyers—Ulam stability
of solutions for impulsive Riemann-Liouville fractional stochastic differential equations
with infinite delay. Mchiri et al. [18] investigated the Hyers-Ulam stability of a class of
pantograph fractional stochastic differential equations. Very recently, Kahouli et al. [19]
studied the Hyers—Ulam stability of a neutral fractional stochastic differential equation:

dW(e)

CD@&@g‘D“M@a@)=f@£@»+gwiwn—afv 0<g<a), (1)

where €D®27 is the Caputo fractional derivative of order @; of function ¢, initial condition
{(0)=w,0< @ < land 3 + @ <@ < 1.
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Recently, Liu et al. [20] gave the exact solutions of a class of fractional delay differ-
ential equations. Li and Wang in [21] studied the existence and uniqueness of a class of
Caputo fractional stochastic delay differential systems (FSDDSs). In [22], we extended
the main results of [21]. Up to now, to the best of our knowledge, the HUS of solutions
for fractional stochastic delay differential systems (FSDDSs) has not been investigated.
Motivated by [19-22], in the present paper, we study the Hyers—Ulam stability for the
following Caputo FSDDSs with Poisson jumps:

(CD&x)(t) = Ax(t) + Bx(t — 1) + f(t,x(£), x(t — 7)) + o(t, x(t), x(t — 7)) L)
+ [y 8t x(t), x(t —7),0)N(dt,dv), te], )
x(t) =¢(t), x(t)=9¢'(t), —-1<t<0,

where D4 is the left Caputo fractional derivative with 1 < a < 2; ] = [0, T]; T > Ois a fixed
delay time; T = Nt fora fixed N € {1,2,...}; A, B € R"*" are two constant matrices; the
state vector x € R" is a stochastic process; f : | x R”" x R" = R" ¢ : | x R" x R" — R"*™,
and g: ] x R" x R" x V — R" are measurable continuous functions; and ¢ is an arbitrary
twice continuously differentiable vector function that determines initial conditions. Let
(Q), F, P) be a complete probability space equipped with some filtration (F;);>( satisfying
the usual condition; W () is an m-dimensional Brownian motion on the probability space
(Q), F, P) adapted to the filtration (F;);>p. Let (V,®,A(dv)) be a o-finite measurable
space. Given the stationary Poisson point process (p¢)¢>o, which is defined on (Q, F, P)
with values in V and with characteristic measure A, we denote by N(f,dv) the counting
measure of p; such that N(t,0) := E(N(t,0)) = tA(O) for ® € ®. Define N(t,dv) :=
N(t,dv) — tA(dv) and the Poisson martingale measure generated by p.

The main contributions and highlights of this paper are as follows:

(i) With the aid of weighted distance, [t6’s isometry formula, stochastic inequality,
Cauchy-Schwartz inequality, and Banach fixed point theorem, the existence, unique-
ness, and Hyers—Ulam stability of solutions for Caputo FSDDSs (2) are obtained.

(ii) The fractional calculus and stochastic calculus are effectively used to establish our results.

(iii) Owur work in this paper is novel and more technical.

This paper is organized as follows. In Section 2, we give some definitions and prelimi-
naries. In Section 3, we prove the existence, uniqueness, and HUS of solutions for Caputo
FSDDSs (2) with Poisson jumps. In Section 4, an example is presented to illustrate our
theoretical results. Finally, the paper is concluded in Section 5.

2. Preliminaries

Let Y = L?(Q, F,P) denote the space of all F(t) measurable, mean square integrable

=

n
functions x : Q — R with [[x(t)|lms := ([ ¥ E(|x;(t)[?), and [|x[| = |/ ¥ |x;]* and
i=1 i=1
n
1Al = max Y |a;j| be the vector norm and matrix norm, respectively. A process x :
S)sni=1
[—7, T] — L?(Q, F,P) is said to be F(t)-adapted if x(t) € Y.
Definition 1 ([23]). Let « > 0 and f be an integrable function defined on [a,b]. The left
Riemann—Liouville fractional integral operator of order a of a function f is defined by

() = r(l) [=srfsas, t>a )

Definition 2 ([23]). Letn —1 < a < nand f € C"([a, b]). The left Caputo fractional derivative
of order a of a function f is defined by

1

EDEF() = )0 = gy [ (=9 @ 1 @
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where n = [a] + 1.

Definition 3 ([24]). The coefficient matrices Qi (s), k = 0,1,2,... satisfy the following multivari-
ate determining matrix equations:

QO(S):Qk(_T):®/ Ql(0>:EI k:0/1/2/"'/ SZO,T,ZT,"',

Qk+1(s):AQk(S)+BQk(S_T)/ k:0/1/2/"'/ s=0,7,27,---,

where E is an identity matrix and © is a zero matrix.

Definition 4 ([20]). The matrix function Cﬁng (t) : R — R", defined by

0, te[-1,0),
E, t=0,
E+ 2 Q;;grl; fie, 0<t<T,
CéfxB(t) = Q1+1 Q1+1(T t in (5)
Z I'( w¢+l “+ Z ux+l)( N T)
; %;ff (t—pr)i®,  pr<t<(p+1)T.
is called the generalized cosine-type delay Mittag—Leffler matrix function, where p = 0,1, .. ..
Definition 5 ([20]). The matrix function S‘?/;‘B(t) :R — R", defined by
0, te[-1,0),
tE, t=0,
tE + 2 Ol pint1, 0<t<T,
Sf?';xB(t) = Qz+1 (0) patl Qi t in+1 (6)
2 T(ia+2) + Z T za+2)( — 1)
+o Z Qlj;fzr))( — pr)iet, pr<t<(p+1)7,

is called the generalized sine-type delay Mittag—Leffler matrix function, where p = 0,1, .. ..
From Theorem 1 in [20], we can easily obtain the following definition:

Definition 6. An R"-value stochastic process {x(t) : —t < t < T} is called a solution of (2) if
x(t) satisfies the integral equation of the following form:

CoE(t+T)p(—T) + SEE(t+ )¢/ (—7)
+f° SEL(E—5)[¢" — A(DZ 2 9)(s)]ds
()= o DySEE (= 5)f(5,x(5),x(s — 7))ds )
+f0D2 “sﬁfa—s) (s,x(s), x(s — 7))dW(s)
+f0D2 “gdB(t ) v 8(s,x(s),x(s — 7),v)N(ds,dv), te€],
¢(t), te[-7,0]

where x(t) is F (t)-adapted and E(fi l|lx(t)]|2dt) < oo
Lemma 1. Foranyt > 0,1 < a < 2, we have
ICEP (B < Eaa (1]l + 11B])EY), ®)

where Eq1(z) = Ypep r(#kﬂ), z € R is the Mittag—Leffler function.
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Proof. For pt <t < (p+1)7,p=0,1,..., by (5) and Definition 3, one has
AB = AT . |A["~1][B]] ia
Bt 7,5

HCT/“<)||_ZI"(1“+1 +Z IDC+1) ( T) +
= (i) [lA]f ”HBH” N
Lkl I | bt L7
*E(p)rw+n< v
[A|"PIBP i

Erttly B4 e ()

i=0
4+ (3 ) 1Atz + isi?

A+ 1B, 1

T(w+1) T(2a+1)

jalP+ (} ) 1Al 08l -+ -+ B0

I'(pa+1)

:1+ tZ’X_i_...

+ tPe

(LAl + 11BID!
I'(ia+1)
O

< 1 = Exa (1Al + [[B])t).

I

Lemma 2. Foranyt > 0,1 < a < 2, we have

15227 (D1l < tEa2((I Al + [[BIDEY), ©

where Eyp(z) = Y 5o 1_(#:2), z € R is the Mittag—Leffler function.

Proof. For pt <t < (p+1)t,p=0,1,..., by (6) and Definition 3, we have

HSAB( )H < i H || la+1+z ||A||l 1HB|| (t_T)iuc+1+...
s T(in+2) I'(ia+2)

[AIPIBIP i1
+Z( )1"(ux+2)( o)
- |A|| zzx+1 |A||l 1HB|| in+1
< 71% .
- ; T'(ia 4 2) +Z I'(ia+2) e

= z|mwwwpwl
+Z( > : t
S\r I'(ia 4 2)
AL+ 1Bl a1
I'(a+2)

2
4+ (3 ) 1Aty + jsie

T(2x +2)
jalP+ (§ ) 1Al gl -+ -+ 50

I'(pa+2)

(AL + [1BID' ia-+1
I'(in+2)

Exa (([|All + IBI)£%).

+ t2a+1+___

+ tpa+1

<

e

i=0
t



Mathematics 2024, 12, 804 5o0f 14
Lemma 3. Foranyt > 0,1 < a < 2, we have
| 5820 < 1A+ 1BDE Bl + 181D, (10
and
I'(a -
HDZ“sABu@H<:r22¢|An+anﬂaﬂ«uAn+anxtsvxtsﬁal, (11
where Eq o (2) = Y5y r(#kﬂ), z € R is the Mittag—Leffler function.
Proof. For pt <t < (p+1)t,p=0,1,..., by (6), one has
@, te[—1,0],
Qis1(0) yia—1.
2 E +111x) m 0<t<rT,
—SAB() = R 011(0) ia1 Qi -1 12
apSei 7= L Gt 4 1 Sl ¢ — oy (12)
+-~.+1£%Q;¢%>< —pril, pr<t<(p+1)m

Thus, from (12) and Definition 3, we obtain

Lﬂﬁf H ZHMHm1+Z( )Wﬂuymu ey

LAIPUBIY e
+Z< )y =

<5 Aum1+z< )Mnémukuﬂu

o i\ AL IBIP o
+Z< )y e
AL+ 8]

I'(a)

2
||A||2+( 1 ) I1AlIBI+1B]1?
+

tl’(*l

t2tX—1+...

I'(2a)
AP+ (4 YIA- B+ + 1)
+ tplel
I'(pa)
© (LAL+ B o s
< -_— f
- g T'(in)
— (IAI+ 1B Ena (AN + IBIDE).

Moreover, by (10), we obtain
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1 t—s d
2-agAB(p _ e =19 cAB
|Eesab—s)| Hf(w) /0 (=5 = u)* 1 SO u)du
1 t—s d2
< e a1l %7 cAB
< F(oc)/o (t—s—u) du2ST'“ (u)||du
1 t—s
< r(a)/o (t=s—u)*" - (JA] + |IBIu* " Eaa((| All + [|B]| )" )du
1 - _ _
< Fag 1A+ IBIDEwa((IA1 + B =5)7) [ (=5 =) -uTd
_ r(‘x) AY: _<)2a—1
= Iﬁ(zl)‘)(HAll+HBll)Ea,oa((llAH+HBII)(t $)*)(E—s)*
O
Lemma 4 ([25,26]). Let ¢ : Ry x V — R" and assume that
t
//|¢(S,v)|p)\(dv)ds<oo, p>2
0Jv
Then, there exists Dy, >0 such that
t _ p
E( sup / /([)(S,U)N(ds,dv)
o<t<ul/0 JV
. v . (13)
2
gDp{E( [ [ e orawos) +e( [ [ |q><s,v>|m<dv>ds)}.
0o Jv 0o Jv
Lemma 5. Forany « € (1,2) and p > 0, one has
£ _ _ 4a —1 _
/()(f—5)4“ ?Ega—1,1(us™1)ds < ¥E4a71,l(ﬂt4a b, (14)

where I' () := f0+°° s*~le~%ds is the Gamma function.

Proof. Let u > 0 be arbitrary. Consider the corresponding linear Caputo fractional differ-
ential equation of the following form:

CDéflx(t) = ux(t). (15)

From [27], it is easy to know that the Mittag—Leffler function Eg,_1 1 ( ]/tt4"‘_1) is a solution
of (15). So, the following equality holds:

t
Eiaoaa () = 14 gl gy [ (= 9/ a1

which completes the proof. [
Lemma 6 ([28]). Assume that (X,d) is a complete metric space and Q : X — X is a contraction

(withv € (0,1)). Furthermore, let x € X, € > 0and d(x, Q(x)) < €. Then, there exists a unique
y € X that satisfies y = Q(y). Moreover, we have

d(x,y) <

—1—-v

To study the qualitative properties of the solution for (2), we impose the following
conditions on the data of the problem:
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Hypothesis 1 (H1). Forany x1,x2,y1,y2 € R" and t € |, there exists a constant C > 0 such that
f(tx1, 1) = f(t 22, 92) 1PV [lo(t, 2, 91) — ot x2,2) |12
v /V I8 (t, x1,y1,0) = §(t, %2, 92, 0) [PA(dv) < C2(Jlx1 — 22 * + [ly1 — w2,
where || - || is the norm of R™ and x V y = max{x,y}.

Hypothesis 2 (H2). Let o(-,0,0) and g(-,0,0,0) be essentially bounded, i.e.,

lo(-,0,0) |l := ess sup ||o(£,0,0)]| < +oo, [g(:,0,0,0)||c :=ess sup [g(t,0,0,0)| < o0,
te[0,1] te[0,T]

and f(-,0,0) be L?-integrable, i.e.,

T
If e = /0 £ (£,0,0)|2d¢ < +oo.

3. Existence and Uniqueness Result
Let H? ([0, T]) be the space of all the processes x which are measurable, F(t)-adapted,

and satisfy that ||x||g2 := sup Z E(|x;(t)[2) < co. Obviously, (H?([0,T]), || - l|lz2) is a
0<t<T \ i=
Banach space [27].

Now, we state the Hyers—Ulam stability concepts for (2). Let ¢ > 0. We consider (2)
with inequality

E[|(CD8y) (1) — Ay() = By(t =) = F(t, (1), y(t = 7))

AW(1)

. 2 (16)
—o(t,y(0),y(t =) " — [ s(ty(t),y(t =), 0)N(dt, do)

<e¢ te],

withy(t) = (), y'(t) = ¢/(t), —T<t=0.
Definition 7. The FSDDSs (2) is Hyers—Ulam-stable if there is a constant ¢ > 0 such that, for
each ¢ > 0 and for each solution y € H2([0, T],R") of inequality (16), there exists a solution
x € H2([0, T], R") of (2), with x(t) = ¢(t) and x'(t) = ¢'(t) for —t < t < 0, which satisfies
Elly(t) - x(t)|2 <ce, te].
We define an operator T : H2(]0, T], R") — H2([0, T],R") as follows :
(Tx)(t) = CAB(t + T)p(—7) + SAE(t +T)¢/ (~7)
b [ SRl AD* L) (o))ds
+/ D2 ”‘S Bt —s)f(s,x(s),x(s — T))ds 17)
n / D2SAB(t — 5)o (s, x(s), x(s — 7)) AW (s)
/ Dy s (¢ s)/vg(s,x(s),x(s —1),v)N(ds,dv), te].
From Theorem 1 in [20], it is easy to know that the fixed point of operator T is a solution of (2).

Lemma 7. Suppose (H1) and (H2) hold. Then, the operator T is well defined.
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Proof. Lety = ||A|| + ||B||. For any x € H?([0, T]), by (17) and the elementary inequality

m
<mY |la;]?, a; €R", i=1,2,...,m, (18)

we have

I(Tx) ()7 < 6E(ICEL (t+T)gp(=1)|1%) + 6E([|S22 (£ + T)¢' (= 7))

+6E< ST (t=5)[¢" — A(D* 1) (s)]ds 2)
)

+6E< / D3~ ”‘SAB(t—s)f(s x(s), x(s — T))ds

. (19)
+ 6E< / D3~ ”‘S Bt —s)o(s,x(s),x(s — 7))dW(s) >
2
+ 6E< / DZsAB(t — s)/ g(s,x(s), x(s — 1), v)N(ds,dv) >
=L+ hLh+1I3+ 14+ I5+ Ig.
For I, from Lemma 1, one has
I = 6E([CL (t+ T)¢(=1)|1?) < 6E(ICL (¢ + D) p(=7)I1) 20)
< 6l (=) [P (Eaa (v(T + 7))
For I, by Lemma 2, one has
Iy = 6E(|| 27 (t + T)¢' (—)1%) < 6E(|S7 (£ + 1) |Pll¢ (=) ) o)
<6l (=) IP(T + 7)* (Eaa(v(T + 1))
For I3, by using Lemma 2 and the Cauchy-Schwartz inequality, we obtain
2
b= 6E<H [ SR 9)lg — AD* L) (5))ds )
(22)

<6 [ ISt —9)lfds: E( [ 19— a0 to)o )
< 2T+ 1) E(Eaa(1(T+ 1)),
where & = [?_||¢" — A(D*-%¢)(s)]|%ds < co.

For 14, applying (H1), (H2), the Cauchy-Schwartz inequality, the Jensen inequality,
and Lemma 3, one has
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2)
<o [/ 1D 542 = o)Pas ) B ( [ 1765, (6),x(s = 7)) = £5,0,0) + Fls,0,0)4s )

t ~A2T2
el (“) E“a(’)’(t _ S)“)z(t _ S)Z(Zafl)ds

Iy —6E<H/ D2 "‘SAB (t—s)f(s,x(s),x(s —T))ds

—Jo T?(2a) (23)
t
2 [ 16 x(0), (s = 1) = £5,0,0) s+ [ 17(5,0,0 s
129°T2(a) 4q1 )2 F 2 2 ! 2
< 2y T B T PE( [ CHx() P+ (s — ) P)ds + [ 1£(s,0,0) P
129°T2(a) 401 W2 (2 2 2
< S T B (T (TC el + [917) + f112),
since
sup Ellx(t —1)|? Smax{ sup E[gp(1)[?, sup ]E||x(f)||2}
0<t<T —r<i<0 0<t<T
= max{ gl l1x[13 } < 2 + 1]
For Is, by using (H1), (H2), Ito’s isometry, Lemma 3, and the Jensen inequality, we
have

6E<H/ D2*SAB(t — 5)o(s, x(s), x(s — T))dW(s)

)

= 6E( [ I3 (¢ 8) P, (), (s~ r>>||2ds)

212
< 6E< Ot wEaﬁ(y(t —5)M)2(t — )22 V|o(s, x(s), x(s — T)) |2ds> (24)
212 t
< e e B ( [ (=4 2P + (s~ DIP) + (s, 00 s )
129°T?(a)

do—1 x\2 (2 2 2 2
< e T B (TR + I9IP) + 100,02

For I, by using (H1), (H2), Lemmas 3 and 4, and the Jensen inequality, we obtain
2)

< 12D,E </0 /V HD%*“S‘T“’&B(t —8)|1%|1g(s, x(s), x(s — T),U)HZ)\(dv)ds)

Is —6IE<H/ / D3 2B (t —s)g(s, x(s), x(s — T),v)N(ds, dv)

ot A2T2
< 12D2E< ; mlg%ﬂ(ﬂt_s)a) (t — )= 1)/ llg(s,x(s),x(s — 1), )|2A(dv)ds) (25)
212 t
< A B ( [ (¢ ACHIS) P + (s = DIP) + | (5,0,0,0)PAGdo)as
12D,9T? ()

< mT‘l“*lEa,a(vT“)z(Cz(ZHx\lﬁz +1?) +A(V)lg(-,0,0,0)|%).

Submitting (20)—(25) into (19) implies that ||7 x|z < oco. Thus, the operator 7 is well
defined. O

Theorem 1. Assume that (H1) and (H2) hold. Then, FSDDSs (2) is Hyers—Ulam stable.



Mathematics 2024, 12, 804 10 of 14

Proof. On the space H?([0, T]), for a constant u > 0, we define a metric d,, : H>([0, T]) x
H2([0, T]) — R as below:

El[x(t) —y(t)]? 2
dl 7 == A a1~ 7 H 7 .
H(oy) \lt?{épﬂ Ego11(pt4*=1)’ vay € 0. T) (26)

By Lemma 7, T is well defined. Next, we will check that 7 is a contraction operator for
some y > 0.
For each x,y € H?([0, T]). From (17) and (18), we have

E(ITx(t) = Ty(®)|)
)

<3E <H/0t DZ*SAB(t —s)(f(s,x(s),x(s — 7)) — f(s,y(s), y(s — T)))ds
+3E <H/t D3 *SAB(t —s) (0 (s, x(s), x(s — 7)) — o (s,y(s),y(s — T)))dAW(s)

2
) (27)
+ 3E<H/ DZ asA Bt —s / (g(s,x(s),x(s —7),v) — g(s,y(s),y(s — T),v))N(ds, dv)

2)
=31+ 2+ J5).
For ], by using the Cauchy-Schwartz inequality, (H1), and Lemma 3, we obtain
E (

)

< E((/Ot 12ds> ) /Ot HD(ZJ_aS?,@B(t - s)HZHf(s,x(s),x(s — 1)) = f(s,y(s),y(s — T))||2> ds

[ D3 SEB(— 9)(F(5,3(5), (5 — ) — F(5,y(6),yls — 1))

28)
212
< e TEan (1T [ (6522 V(5,205,305 = 7)) = 5005, y(s = 7)) )
212 t
< B TEL (TP [ (=% ZB(1x(5) ~y(o) + (s — 7) —yls = ) P,
For J,, similar to the proof of (24), one has
2
<H/ D2 “SAB t—s)(o(s,x(s),x(s—71)) —o(s,y(s),y(s —1)))dW(s) )
= 2=agAB (1 )12lo(s, x(s), x(s — —o(s,y(s),y(s — 2ds
—E({Oﬁwo SAB(t >|t| o (s, x(s), x(s — 7)) — (5, y(5), y(s — )] d) ”
< e EaarT [ (6= 922 VB (s (), x(s = 7)) = o5, 9, (s = 7)) s
< T g (o2 [ = 528 x(s) — y (&) + (s - ) - y(s 7))
= T2024) Y 0 y Y .
For J3, similar to the proof of (25), we obtain
2
(H [ D3 estie o) / (8(5,%(5), x(s — ),0) — 85, (5), y(s — ©), 0))N(ds, do) )
<208 ( [ 10F 582~ 5)IP [l x(5), (s = ,0) — g(5,0(5)y(s ~ ,0) A (do)s (30)

212
ZDEZ(;,C)”EWW) €2 [t = 9" 2B(x(s) — y(5) P + x(s — 1) — (s — 7))
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For each x,y € HF ([0, T]), from (27)-(30), we have
E(|Tx(t) = Ty()?)
5)da-2 2 2 (31)
< [ (8= s/ (x(s) ~ y(6) [+ (s = ) — yls — Tl
where 212
3T (e €\2 2

For t > 7, one has
[ 6= R (s = 1) (s — 1) Py
= / + / SYU2E(||x(s — 7) — y(s — 7)[2)ds
- / S92 (|x(s — 7) — y(s — 7)[2)ds (32)
_ /Of (= 7 — ) 2| x(u) — y(u)[2)du
< [ 6= PR () () )

From Lemma 5, combining (31) and (32), for each t € [0, T|, we obtain

E(ITx(6) = Ty()IP) < 20 [ (6= 5/ ZE(x(s) — y(s)])ds

E(
_zw/ s)te—2 EHx( )( 54(“)l|)) Egq1,1(ps*™")ds
, 4x—1,1 F’l (33)
< de2 (x,y /0 (t — )4 2E,, 1(;454”‘71)ds
2 r4 1 -
2D o ) B ),
which implies that
dy(Tx, Ty) < pdyu(x,y), (34)
where p = %. Hence, 7 is a contraction mapping on H?([0, T]) for some
u > 2wl (4a —1).
Let
(“Dgy) () = Ay(t) + By(t — 1) + f(t,y(t), y(t = 7))
dW(t) _ (35)
+o(ty(),y(t—7))— +/Vg(f,y(t),y(f — 1),0)N(dt, dv) + h(t).
From (16), one has
E(ln())]?) <e teT. (36)

By (17), (35), and Theorem 1 in [20], we obtain

=Ty(t —l—/ D3~ "‘SAB (t —s)h(s)ds. (37)
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(“D§Bx)(t) = A

x(t)

Thus,
Elly(t) = Ty®)|> _ Jo 12ds - [y |DZ S22 (t — 5) | PE(h2(s) )ds
Egq 11 (ptte=1) — E4a—1,1(14f4"‘ 1)

< thy Wrzr(z(aa) Eaa(y(t—5)%)2(t — )4 2E(h%(s))ds
a Egp_1, (pt4e=1)

I (a) a\2 14n
- T (e Bua (71%)t
N Egq_1(pt41)

212 w N N
T Ean (71)?4
]/It4“_1
T'(4a)

212
W (40) Eg o (vT*)T
I

(38)

IN

€

IN

g, te].

212
For some y > WFZF(Z(“'X)) T'(4a — 1)Ey 0 (yT*)?T, we obtain

Elly(t) = Ty(t)|? (39)

<eg,
Egoq(ptte—1) =

for all t € J, which implies that
From Lemma 6, there exists a unique solution z € H?([0, T]) such that

Ve (41)

d(%)gip

Consequently, Vt € J. We have

Egq11(uT*1)
(1-p)?

Thus, (2) is HUS. The proof of this theorem is complete. [

Elly(t) —z(t)[|* < 3 (42)

4. An Example

Example 1. Consider the following Caputo fractional stochastic delay differential system (FSDDSs)
with Poisson jumps:

Bx(t — 0.3) + £(t, x(8), x(t — 0.3)) + o(t, x(£), x(¢ — 0.3)) 0

x(t) +
+ [y 8(t,x(t),x(t —0.3),v)N(dt,dv), te], (43)
(t) 0,

8(t,
p(t), x()=¢'(t), —03<t<

wherew = 1.8; T = 0.3; ] = [0,6]; x(t) = (x1(t), x2(t))7;

05 0 07 0 sint
A:( 0 0.6>; BZ( 0 o.3>; (’b(t):(cost);

)) + arctan(x(t — 0.3)) + 1 > _

sin? (xq (¢
t)) 4 arctan(xy(t — 0.3)) + /t

cos?(xy

F(tx(t),x(t—03)) = (

_ Larctan(xq(t)) + & sin(xy(t —0.3)) + & )
olt,x(t), x(t - 04)) = < 20 sin(xp(t)) 4 20 arctan(xa(t - 03)) F 1 )
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and

1
g(t,x(t),x(t —04),0) = ( e (1 42—(5111:;;;1((:)—) 0.3))) )

Let (t,x,y) € [0,6] x R? x R2. Then,
£t x(t), x(t =0.3)) — f(t,y(t), y(t = 0.3))||
< 21 (1) — ()] + 1t — 03) — ya (£ — 03)| + 2xa(t) — ya(B)] + xa(t — 03) — ya(t — 03)
< 2([lx(8) =y + [[x(t = 0.3) —y(t = 0.3)]]),

llo(t, x(8), x(£ = 0.3)) — o (t,y (), y(t = 0.3))]]
<3lx1(H) =y (O] +3[x1(£ = 03) —y1(t = 0.3)] +2|x2(t) — ya(t)| +2|x2(t = 0.3) — y2(t — 0.3)]
< 3([Jx(t) =y ()| + [[x(t = 0.3) —y(£ = 0.3)]),

and

18 (¢, x(t), x(t = 0.3),0) = &(t,y(t), y(t —0.3),0)]|
< %\xl(t) —y1 ()| 4 |x2(t = 0.3) — yo(t — 0.3)]

%(IIX(f) —y(@O)l + [[x(t = 03) —y(t = 0.3)]).

Thus, assumption (H1) is fulfilled. Moreover, one has

IN

I£C0.0): = [ 17(s0,0) Pds = [+ v5)ds =24 48V,

[o(+,0,0)[lec = ess sup [lo(s,0,0)[ =3, [|g(:,0,0)[lc =ess sup [lg(s,0,0)] =
s€(0,6] s€(0,6)

So, assumption (H2) holds true. Thus, applying Theorem 1, FSDDSs (43) is HUS on [0, 6].

3
-

5. Conclusions

In this paper, our main target is to provide general results on the stability analysis
of nonlinear Caputo-type fractional stochastic delay differential systems (FSDDSs) with
Poisson jumps. Compared with the existing research, the system we are studying is more
generalized because it has not only the stochastic term, but also Poisson jumps and the
delay term with respect to the Caputo fractional derivative. By using fractional calculus, the
stochastic analysis method, fixed point theorem, and appropriate hypotheses on nonlinear
terms, the Hyers—Ulam stability for FSDDSs has been proved. Finally, an illustrative
example is given to verify the obtained theoretical results. In future work, we intend to
consider the Hyers-Ulam stability problems for an impulsive Caputo-type fractional fuzzy
stochastic differential system with delay.
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