

Article Anisotropic Moser–Trudinger-Type Inequality with Logarithmic Weight

Tao Zhang * and Jie Liu

School of Mathematics and Information Science, Yantai University, Yantai 264005, China; jieliu0202@163.com * Correspondence: tzh@ytu.edu.cn

Abstract: Our main purpose in this paper is to study the anisotropic Moser–Trudinger-type inequalities with logarithmic weight $\omega_{\beta}(x) = [-\ln F^o(x)]^{(n-1)\beta}$. This can be seen as a generation result of the isotropic Moser–Trudinger inequality with logarithmic weight. Furthermore, we obtain the existence of extremal function when β is small. Finally, we give Lions' concentration-compactness principle, which is the improvement of the anisotropic Moser–Trudinger-type inequality.

Keywords: anisotropic Moser–Trudinger-type inequality; logarithmic weight; existence of extremal function

MSC: 35A23; 35A01; 35B38

1. Introduction

It is well-known that important geometric inequalities, for example, the Sobolev inequality, Moser–Trudinger inequality, etc., and the existence of extreme functions play a key role to study partial differential equations. For a bounded domain $\Omega \subset \mathbb{R}^n$ with $n \ge 2$, we have $W_0^{1,p}(\Omega) \subset L^q(\Omega)$, $1 \le q \le \frac{np}{n-p}$ for $1 \le p < n$ by the calssical Sobolev embedding theorem. Particularly, for p = n, $W_0^{1,n}(\Omega) \subset L^q(\Omega)$, $\forall q \ge 1$. But $W_0^{1,n}(\Omega) \nsubseteq L^{\infty}(\Omega)$. For the borderline case p = n, the Moser–Trudinger inequality is the perfect replacement. In 1971, Moser [1] proved the sharpening of Trudinger's inequality as follows:

$$\sup_{u\in W_0^{1,n}(\Omega), \|\nabla u\|_n \le 1} \int_{\Omega} e^{\alpha |u|^{\frac{n}{n-1}}} dx \le C,$$
(1)

for $\forall \alpha \leq \alpha_n = n\omega_{n-1}^{\frac{1}{n-1}}$ and ω_{n-1} stands for area of the (n-1)-sphere. Moreover, α_n is sharp, which means that if $\alpha > \alpha_n$, then the inequality (1) can no longer hold. Inequality (1) is the so-called Moser–Trudinger inequality, the extremal of which is related to the existence of solutions of some semi-linear Liouville-type equations.

As far as we know, there have been many important studies related to the Moser– Trudinger inequality, for example, [2–8], etc. In the references listed above, readers can see the Moser–Trudinger inequality in \mathbb{R}^n and in hyperbolic spaces, the existence of an extremal function for the Moser–Trudinger inequality, etc. These important geometric inequalities play a key role in geometry analysis, calculus of variations, and PDEs; we refer to [9–14] and references therein. And recently, the authors of [15] studied a system of Kirchhoff type driven by the *Q*-Laplacian in the Heisenberg group \mathbb{H}^n . They obtained the existence of solutions via variational methods based on a new Moser–Trudinger-type inequality for the Heisenberg group \mathbb{H}^n . Moreover, in [16], the authors also focus on a Kirchhoff-type problem and establish the existence of a radial solution in the subcritical growth case by the Moser–Trudinger inequality and minimax method.

Citation: Zhang, T.; Liu, J. Anisotropic Moser–Trudinger-Type Inequality with Logarithmic Weight. *Mathematics* 2024, 12, 785. https://doi.org/ 10.3390/math12050785

Academic Editor: Ioannis K. Argyros

Received: 8 February 2024 Revised: 2 March 2024 Accepted: 5 March 2024 Published: 6 March 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Let $\rho_{\beta}(x) = (-\ln |x|)^{\beta(n-1)}$, $0 \le \beta < 1$. Clalnchi and Ruf [17,18] proved the weighed Moser–Trudinger-type inequality involving the radical functions in unit ball *B*:

$$\sup_{u\in W^{1,n}_{0,rad}(B,\varrho_{\beta}), \|u\|_{\varrho_{\beta}\leq 1}} \int_{B} e^{\alpha |u|^{\frac{n}{(n-1)(1-\beta)}}} dx < \infty$$

$$\tag{2}$$

for any $\alpha \leq \alpha_{\beta,n} = n[(1-\beta)\omega_{n-1}^{\frac{1}{n-1}}]^{\frac{1}{1-\beta}}$, $||u||_{\varrho_{\beta}} = (\int_{B} |\nabla u|^{n} \varrho_{\beta}(x))^{\frac{1}{n}}$. Moreover, the constant $\alpha_{\beta,n}$ is sharp, i.e., if $\alpha > \alpha_{\beta,n}$, the supremum in (2) will be infinite. We note that the authors applied Leckband's inequality [19] to prove the weighed Moser–Trudinger-type inequality (2). Note that when $\beta = 0$, by the Pólya-Szegö principle, (2) recovers the classical Moser–Trudinger inequality (1). Furthermore, Roy [20] proved the existence of an extremal function for inequality (2).

Recently, many researchers have intended to establish anisotropic Moser–Trudingertype inequalities. Let $F \in C^2(\mathbb{R}^n \setminus \{0\})$ be a nonnegative and convex function, the polar $F^o(x)$ of which represents a Finsler metric on \mathbb{R}^n . By F(x), a Finsler–Laplacian operator Δ_F is defined by

$$\Delta_F u := \sum_{i=1}^n \frac{\partial}{\partial x_i} (F(\nabla u) F_{\xi_i}(\nabla u)),$$

where $F_{\xi_i} = \frac{\partial F}{\partial \xi_i}$. In Euclidean modulus, Δ_F is nothing but the common Laplacian. The Finsler–Laplacian operator is closely related to the Wulff shape, which was initiated in Wulff' work [21]. More details about the properties of F(x) and $F^o(x)$ can be seen in Section 2.

For a bounded smooth domain $\Omega \subset \mathbb{R}^n$, Wang and Xia [22] proved that, for $\forall \lambda \leq \lambda_n = n^{\frac{n}{n-1}} \kappa_n^{\frac{1}{n-1}}$,

$$\sup_{u\in W_0^{1,n}(\Omega), \int_{\Omega} F^n(\nabla u) dx \le 1} \int_{\Omega} e^{\lambda |u|^{\frac{n}{n-1}}} dx \le C,$$
(3)

where

$$\kappa_n = |x \in \mathbb{R}^n | F^o(x) \le 1| \tag{4}$$

denotes the volume of a unit Wulff ball in \mathbb{R}^n .

In this paper, we intend to establish the anisotropic Moser–Trudinger-type inequality with logarithmic weight. We believe that these sharp inequalities will be the key tools to study the existence of solutions for some quasi-linear elliptic equations, such as the Finsler–Laplacian equation. For $\beta \in [0, 1)$, we let

$$\omega_{\beta}(x) = \left[-\ln F^{o}(x)\right]^{\beta(n-1)},$$

which is the weight of logarithmic type defined on a unit Wulff ball $W_1 = \{x \in \mathbb{R}^n : F^o(x) < 1\}$. And $W_0^{1,n}(W_1, \omega_\beta)$ represents the functions of completion of $C_0^1(W_1)$ with respect to the norm

$$\|u\|_{\omega_{\beta}} = \left(\int_{\mathcal{W}_{1}} F^{n}(\nabla u)\omega_{\beta}(x)dx\right)^{\frac{1}{n}}, \qquad u \in C^{1}_{0}(\mathcal{W}_{1})$$

Let $W_{0,rad}^{1,n}(W_1, \omega_\beta)$ be the subspace of $W_0^{1,n}(W_1, \omega_\beta)$ of all radial functions with respect to *F*. In this paper, radial functions with respect to *F* means that $u(x) = \tilde{u}(r)$, where $r = F^o(x)$.

In the following, for convenience, we denote

$$AMT(n,\lambda,\beta) = \sup_{u \in W_{0,rad}^{1,n}(\mathcal{W}_1,\omega_\beta), \|u\|_{\omega_\beta \le 1}} \int_{\mathcal{W}_1} e^{\lambda \|u\|^{\frac{1}{(n-1)(1-\beta)}}} dx.$$
(5)

We now state our main results.

Theorem 1. For any

$$\lambda \le \lambda_{\beta,n} = n^{1 + \frac{1}{(n-1)(1-\beta)}} \left[\kappa_n^{\frac{1}{n-1}} (1-\beta) \right]^{\frac{1}{1-\beta}},\tag{6}$$

we have $AMT(n, \lambda, \beta) < \infty$. Moreover, this constant $\lambda_{\beta,n}$ is sharp, i.e., if $\lambda > \lambda_{\beta,n}$, $AMT(n, \lambda, \beta)$ is infinite.

Next, we prove the existence of an extremal function for the anisotropic Moser– Trudinger-type inequality with logarithmic weight.

Theorem 2. There exists $\beta_0 \in [0, 1)$ such that, for $\forall \beta \in [0, \beta_0)$, $AMT(n, \lambda_{\beta,n}, \beta)$ is attained.

Finally, we establish the Lions-type concentration-compactness property, which can be seen as an improvement of the anisotropic Moser–Trudinger-type inequality in Theorem 1 for some situations.

Theorem 3. Let $\{u_k\}$ be a sequence in $W_{0,rad}^{1,n}(\mathcal{W}_1, \omega_\beta)$ such that $||u_k||_{\omega_\beta} = 1$ and $u_k \rightharpoonup u_0$ in $\mathcal{W}_{0,rad}^{1,n}(\mathcal{W}_1, \omega_\beta)$. Then we have

$$\limsup_{k\to\infty}\int_{\mathcal{W}_1} e^{p\lambda_{\beta,n}|u_k|^{\frac{n}{(n-1)(1-\beta)}}} dx < \infty,$$
(7)

for any $p < p(u_0) := (1 - ||u_0||_{\omega_\beta}^n)^{-\frac{1}{(n-1)(1-\beta)}}$.

2. Preliminaries

In this section, we give preliminaries involving the Finsler–Laplacian, co-area formula with respect to *F* and convex symmetrization u^{\sharp} of *u* with respect to *F*.

Let $F : \mathbb{R}^n \to \mathbb{R}$ be a function that is $C^2(\mathbb{R}^n \setminus \{0\})$, convex, and even. And F(x) is a homogenous function, that is, for any $t \in \mathbb{R}$, $\xi \in \mathbb{R}^n$,

$$F(t\xi) = |t|F(\xi).$$

Furthermore, we assume for any $\xi \neq 0$, $F(\xi) > 0$.

By the homogeneity property of *F*, we can find two positive constants $0 < c_1 \le c_2 < \infty$ such that

$$c_1|\xi| \leq F(\xi) \leq c_2|\xi|, \quad \forall \xi \in \mathbb{R}^n.$$

The operator

$$\Delta_F u := \sum_{i=1}^n \frac{\partial}{\partial x_i} (F(\nabla u) F_{\xi_i}(\nabla u))$$

is called Finsler–Laplacian, which was studied by many mathematicians. For some important works involving the Finsler-Laplacian, we refer to [22–26] and the references therein. $F^o(x)$ is the support function of F(x), which is defined as $F^o(x) := \sup\langle x, \xi \rangle$, where

 $\xi \in \mathcal{K}$ $K = \{x \in \mathbb{R}^n : F(x) \leq 1\}$. Then we can check that $F^o(x)$ is also a function that is $C^2(\mathbb{R}^n \setminus \{0\})$. And $F^o(x)$ is also a convex and homogeneous function. What is more, $F^o(x)$ is dual to F(x) in the sense that

$$F^o(x) = \sup_{\xi
eq 0} rac{\langle x, \xi
angle}{F(\xi)}, \qquad F(x) = \sup_{\xi
eq 0} rac{\langle x, \xi
angle}{F^o(\xi)}.$$

Denote the unit Wulff ball of center at origin as

$$\mathcal{W}_1 := \{ x \in \mathbb{R}^n | F^o(x) \le 1 \}$$

and

$$\kappa_n := |\mathcal{W}_1|,$$

which is the volume of a unit Wulff ball W_1 . Also, we denote W_r as the Wulff ball of center at origin with radius *r*, i.e.,

$$\mathcal{W}_r := \{ x \in \mathbb{R}^n | F^o(x) \le r \}.$$

For later use, by the assumptions of F(x), we can obtain some properties of the function F(x); see also [25,27,28].

Lemma 1. We have

(i) $|F(m) - F(n)| \le F(m+n) \le F(m) + F(n);$ (ii) $\frac{1}{C} \le |\nabla F(m)| \le C$, and $\frac{1}{C} \le |\nabla F^o(m)| \le C$ for some C > 0 and $m \ne 0$; (iii) $\langle m, \nabla F(m) \rangle = F(m), \langle m, \nabla F^o(m) \rangle = F^o(m)$ for $m \ne 0$; (iv) $F(\nabla F^o(m)) = 1, F^o(\nabla F(m)) = 1$ for $m \ne 0$; (v) $F^o(m)F_{\xi}(\nabla F^o(m)) = m$ for $m \ne 0$.

Now, we give the co-area formula and isoperimetric inequality with respect to *F*, respectively. For a domain $\Omega \subset \mathbb{R}^n$, $G \subset \Omega$, let $u \in BV(\Omega)$, which we denote as a function of bounded variation. The anisotropic bounded variation of *u* with respect to *F* is defined by

$$\int_{\Omega} |\nabla u|_F = \sup\{\int_{\Omega} u \operatorname{div} \tau dx, \tau \in C_0^1(\Omega; \mathbb{R}^n), F^o(\tau) \leq 1\},\$$

and the anisotropic perimeter of G with respect to F is defined by

$$H_F(G) := \int_{\Omega} |\nabla \mathcal{X}_G|_F dx,$$

where \mathcal{X}_G is the characteristic function defined on the subset *G*. Then we have the co-area formula (see [26])

$$\int_{\Omega} |\nabla u|_F = \int_0^\infty H_F(|u| > t) dt \tag{8}$$

and the isoperimetric inequality

$$H_F(G) \ge n\kappa_n^{\frac{1}{n}} |G|^{1-\frac{1}{n}}.$$
(9)

Furthermore, (9) becomes an equality if and only if *G* is a Wulff ball.

3. Anisotropic Moser-Trudinger-Type Inequality with Logarithmic Weight

In this section, we prove Theorem 1. Firstly, we give a useful formula involving the change in functions in a unit Wulff ball W_1 . For $u \in W^{1,n}_{0,rad}(W_1, \omega_\beta)$ and any $0 \leq \tilde{\beta} < \beta$, we let

$$v(x) = \left(\frac{\lambda_{\beta,n}}{\lambda_{\bar{\beta},n}}\right)^{\frac{(n-1)(1-\bar{\beta})}{n}} u(x) |u(x)|^{\frac{\beta-\bar{\beta}}{1-\beta}}.$$
(10)

Then we have the following lemma.

Lemma 2. Let $u \in W^{1,n}_{0,rad}(\mathcal{W}_1, \omega_\beta)$ with $||u||_{\omega_\beta} \leq 1$. Define v by (10); then we have $||v||_{\omega_{\tilde{\beta}}} \leq 1$.

Proof. By the property of F(x) in Lemma 1, we have

$$F^{n}(\nabla v) = \left(\frac{\lambda_{\beta,n}}{\lambda_{\tilde{\beta},n}}\right)^{(n-1)(1-\tilde{\beta})} \frac{(1-\tilde{\beta})^{n}}{(1-\beta)^{n}} F^{n}(\nabla u) |u(x)|^{\frac{n(\beta-\tilde{\beta})}{1-\beta}}$$

$$\leq \frac{(1-\tilde{\beta})}{(1-\beta)} F^{n}(\nabla u) \frac{\omega_{\beta}(x)}{\omega_{\tilde{\beta}}(x)} \left(\int_{\mathcal{W}_{1}\setminus\mathcal{W}_{F^{0}}(x)} F^{n}(\nabla u) \omega_{\beta} dy\right)^{\frac{\beta-\tilde{\beta}}{1-\beta}}.$$

Hence, by the co-area Formula (8), we have

$$\begin{split} \|v\|_{\omega_{\tilde{\beta}}}^{n} &= \int_{\mathcal{W}_{1}} F^{n}(\nabla v) \omega_{\tilde{\beta}}(x) dx \\ &\leq \quad \frac{(1-\tilde{\beta})}{(1-\beta)} \int_{\mathcal{W}_{1}} F^{n}(\nabla u) \omega_{\beta}(x) (\int_{r}^{1} n\kappa_{n} |u'(s)|^{n} s^{n-1} \omega_{\beta}(s) ds)^{\frac{\beta-\tilde{\beta}}{1-\beta}} dx \\ &= \quad \frac{(1-\tilde{\beta})}{(1-\beta)} (n\kappa_{n})^{\frac{(1-\tilde{\beta})}{(1-\beta)}} \int_{0}^{1} |u'(r)|^{n} \omega_{\beta}(r) r^{n-1} (\int_{r}^{1} |u'(s)|^{n} \omega_{\beta}(s) s^{n-1} ds)^{\frac{\beta-\tilde{\beta}}{1-\beta}} dr \\ &= \quad -(n\kappa_{n})^{\frac{(1-\tilde{\beta})}{(1-\beta)}} \int_{0}^{1} \frac{d}{dr} [(\int_{r}^{1} |u'(s)|^{n} \omega_{\beta}(s) s^{n-1} ds)^{\frac{(1-\tilde{\beta})}{(1-\beta)}}] dr \\ &= \quad (n\kappa_{n})^{\frac{(1-\tilde{\beta})}{(1-\beta)}} (\int_{0}^{1} |u'(r)|^{n} \omega_{\beta}(r) r^{n-1} dr)^{\frac{(1-\tilde{\beta})}{(1-\beta)}} \\ &= \quad (\int_{\mathcal{W}_{1}} F^{n}(\nabla u) \omega_{\beta} dx)^{\frac{1-\tilde{\beta}}{1-\beta}} \\ &\leq \quad 1. \end{split}$$

Next, in this paper, we frequently need to change the variable in the following way. For $u \in W_{0,rad}^{1,n}(W_1, \omega_\beta)$, we change the variable as follows:

$$F^o(x) = e^{-\frac{t}{n}}$$

and set

$$\psi(t) = \kappa_n^{\frac{1}{n}} n^{\frac{1+(n-1)(1-\beta)}{n}} (1-\beta)^{\frac{n-1}{n}} u(x).$$
(11)

Then we have $\psi'(t) = -n^{-\beta \frac{n-1}{n}} \kappa_n^{\frac{1}{n}} (1-\beta)^{\frac{n-1}{n}} \tilde{u}'(e^{-\frac{t}{n}})e^{-\frac{t}{n}}$. By Lemma 1 and co-area Formula (8), we can transform the norm as follows:

$$\begin{aligned} \int_{\mathcal{W}_{1}} F^{n}(\nabla u) |\log F^{o}(x)|^{\beta(n-1)} dx \\ &= \int_{\mathcal{W}_{1}} F^{n}(\tilde{u}'(F^{o}(x))\nabla F^{o}(x)) |\log F^{o}(x)|^{\beta(n-1)} dx \\ &= \int_{\mathcal{W}_{1}} [\tilde{u}'(F^{o}(x))]^{n} |\log F^{o}(x)|^{\beta(n-1)} dx \\ &= \int_{0}^{1} n\kappa_{n} [\tilde{u}'(F^{o}(x))]^{n} |\log F^{o}(x)|^{\beta(n-1)} (F^{o}(x))^{n-1} dF^{o}(x) \\ &= \int_{0}^{+\infty} \kappa_{n} [\tilde{u}'(e^{-\frac{t}{n}})]^{n} |\frac{t}{n}|^{\beta(n-1)} e^{-t} dt \\ &= \int_{0}^{+\infty} \frac{|\psi'|^{n} t^{\beta(n-1)}}{(1-\beta)^{n-1}} dt. \end{aligned}$$
(12)

The functional changes as follows:

$$\frac{1}{\kappa_n} \int_{\mathcal{W}_1} e^{\lambda_{n,\beta} |u| \, \overline{(n-1)(1-\beta)}} \, dx = \int_0^{+\infty} e^{|\psi| \, \overline{(n-1)(1-\beta)} \, -t} dt \tag{13}$$

and

$$\frac{1}{\kappa_n} \int_{\mathcal{W}_1} e^{\lambda |u|^{\frac{n}{(n-1)(1-\beta)}}} dx = \int_0^{+\infty} e^{\bar{\lambda} |\psi|^{\frac{n}{(n-1)(1-\beta)}} - t} dt,$$
(14)

where $\bar{\lambda} = \frac{\lambda}{\lambda_{n,\beta}}$.

Now it is easy to prove Theorem 1 by Lemma 2.

Proof of Theorem 1. Let $u \in W_{0,rad}^{1,n}(W_1, \omega_{\beta})$ with $||u||_{\omega_{\beta}} \leq 1$. Define v by (10). By Lemma 2, we have $||v||_{\omega_{\beta}} \leq 1$ for $\forall \tilde{\beta} \leq \beta$. By the definition of $AMT(n, \lambda_{\beta,n}, \beta)$, we obtain

$$\int_{\mathcal{W}_{1}} e^{\lambda_{\tilde{\beta},n}|u|^{\frac{n}{(n-1)(1-\tilde{\beta})}}} dx = \int_{\mathcal{W}_{1}} e^{\lambda_{\tilde{\beta},n}|v|^{\frac{n}{(n-1)(1-\tilde{\beta})}}} dx \le AMT(n,\lambda_{\tilde{\beta},n},\tilde{\beta}).$$
(15)

Since (15) holds for $\forall u \in W^{1,n}_{0,rad}(\mathcal{W}_1, \omega_\beta)$ with $||u||_{\omega_\beta} \leq 1$, then we have

$$AMT(n, \lambda_{\beta, n}, \beta) \leq AMT(n, \lambda_{\tilde{\beta}, n}, \tilde{\beta}),$$

for any $0 \leq \tilde{\beta} \leq \beta < 1$. Hence, we obtain that the function $\beta \mapsto AMT(n, \lambda_{\beta,n}, \beta)$ is decreasing on [0,1). Thus, by the anisotropic Moser–Trudinger-type inequality (3), we obtain $AMT(n, \lambda_{\beta,n}, \beta) < \infty$.

Now we prove the constant $\lambda_{\beta,n}$ is sharp. We need to show that, if $\lambda > \lambda_{n,\beta}$, $AMT(n, \lambda, \beta)$ is infinite. By (14), we only need to test

$$\int_0^{+\infty} e^{\bar{\lambda}|\psi|^{\frac{n}{(n-1)(1-\beta)}}-t} dt,$$

where $\bar{\lambda} > 1$.

Consider the family of functions of Moser's type

$$\eta_m(t) = \begin{cases} \frac{t^{1-\beta}}{\frac{1-\beta}{n}}, & t \le m, \\ m^{\frac{1-\beta}{n}}, & m^{\frac{1-\beta}{n}}, \\ m^{\frac{(1-\beta)(n-1)}{n}}, & t \ge m. \end{cases}$$

By direct computation, we have $\int_0^{+\infty} \frac{|\eta'_m|^{n} t^{\beta(n-1)}}{(1-\beta)^{n-1}} dt = 1$. However, as $m \to +\infty$,

$$\int_{0}^{+\infty} e^{\bar{\lambda}|\eta_{m}|^{\frac{n}{(n-1)(1-\beta)}}-t}dt \geq \int_{m}^{+\infty} e^{\bar{\lambda}m-t}dt \to +\infty, \text{ if } \bar{\lambda} > 1.$$

The proof of Theorem 1 is completed. \Box

4. Existence of the Extremal Function

In this section, we complete the proof of Theorem 2. Firstly, we give a uniform bound for $u \in W_{0,rad}^{1,n}(\mathcal{W}_1, \omega_{\beta})$. For $u \in W_{0,rad}^{1,n}(\mathcal{W}_1, \omega_{\beta})$, we denote by u(r) the value of u(x) with $r = F^o(x)$. By the Hölder inequality and co-area Formula (8), for any $0 < r < s \le 1$ and $u \in W_{0,rad}^{1,n}(\mathcal{W}_1, \omega_{\beta})$, we have

$$|u(r) - u(s)| = |\int_{s}^{r} u'(t)dt| \leq \int_{s}^{r} |\tilde{u}'(t)|t^{\frac{n-1}{n}}|\log t|^{\frac{(n-1)\beta}{n}}t^{-\frac{n-1}{n}}|\log t|^{-\frac{(n-1)\beta}{n}}dt$$

$$\leq (n\kappa_{n})^{-\frac{1}{n}}(\frac{1}{1-\beta})^{\frac{n-1}{n}}(\int_{\mathcal{W}_{s}\setminus\mathcal{W}_{r}}F^{n}(\nabla u)\omega_{\beta}dx)^{\frac{1}{n}}(-\ln\frac{r}{s})^{\frac{(n-1)(1-\beta)}{n}}$$

$$= (\frac{n}{\lambda_{\beta,n}})^{\frac{(n-1)(1-\beta)}{n}}(\int_{\mathcal{W}_{s}\setminus\mathcal{W}_{r}}F^{n}(\nabla u)\omega_{\beta}dx)^{\frac{1}{n}}(-\ln\frac{r}{s})^{\frac{(n-1)(1-\beta)}{n}}.$$
(16)

In particular, when s = 1, for any $0 < r \le 1$ and $u \in W_{0,rad}^{1,n}(\mathcal{W}_1, \omega_\beta)$, we have

$$|u(r)| \le \left(\frac{n}{\lambda_{\beta,n}}\right)^{\frac{(n-1)(1-\beta)}{n}} \left(\int_{\mathcal{W}_1 \setminus \mathcal{W}_r} F^n(\nabla u) \omega_\beta dx\right)^{\frac{1}{n}} (-\ln r)^{\frac{(n-1)(1-\beta)}{n}}.$$
(17)

The definition of $\psi(t)$ in (11) and (12) shows that the anisotropic norm changes as

$$\Gamma(\psi) := \int_0^{+\infty} \frac{|\psi'|^n t^{\beta(n-1)}}{(1-\beta)^{n-1}} dt = \int_{\mathcal{W}_1} F^n(\nabla u) |\log F^o(x)|^{\beta(n-1)} dx.$$

and (13) shows that the functional $I_{\beta}(\psi)$ and $J_{\beta}(u)$ changes as

$$I_{\beta}(\psi) := \int_{0}^{+\infty} e^{|\psi|^{\frac{n}{(n-1)(1-\beta)}} - t} dt = \frac{1}{\kappa_n} \int_{\mathcal{W}_1} e^{\lambda_{n,\beta}|u|^{\frac{n}{(n-1)(1-\beta)}}} dx := J_{\beta}(u).$$
(18)

For $\delta \in [0, 1)$, we define

$$\tilde{\Lambda}_{\delta} = \{ \psi \in C^1[0,\infty) | \ \psi(0) = 0, \ \Gamma(\psi) \le \delta \}.$$

Then the existence of an extremal function in Theorem 1 reduces to find $\psi_0 \in \tilde{\Lambda}_1$ such that

$$Q_{\beta} := I_{\beta}(\psi_0) = \sup_{\psi \in \tilde{\Lambda}_1} I_{\beta}(\psi).$$
⁽¹⁹⁾

Let $\tilde{g}_k(x)$ be a maximizing sequence of (19), that is, $J_\beta(\tilde{g}_k) \to Q_\beta$. Since

$$\int_{\mathcal{W}_1} F^n(\nabla \tilde{g}_k) |\log F^o(x)|^{\beta(n-1)} dx \leq 1,$$

then there exist a subsequence (still denoted by \tilde{g}_k) and a function $\tilde{g}_0 \in W^{1,n}_{0,rad}(\mathcal{W}_1, \omega_\beta)$ such that

$$\tilde{g}_k \rightarrow \tilde{g}_0, \quad \tilde{g}_k \rightarrow \tilde{g}_0 \quad \text{pointwise.}$$
 (20)

Next, we give an inequality and we will use it several times. For any $h \in C^1[0, \infty)$ and $t \ge A \ge 0$, by the Hölder inequality, we have

$$h(t) = h(A) + \int_{A}^{t} h'(s) ds$$

= $h(A) + \int_{A}^{t} h'(s) s^{\frac{\beta(n-1)}{n}} s^{-\frac{(n-1)\beta}{n}} ds$
 $\leq h(A) + (\int_{A}^{t} |h'(s)|^{n} s^{\beta(n-1)} ds)^{\frac{1}{n}} (\int_{A}^{t} s^{-\beta} ds)^{\frac{n-1}{n}}$
= $h(A) + (\int_{A}^{t} |h'(s)|^{n} s^{\beta(n-1)} ds)^{\frac{1}{n}} (t^{1-\beta} - A^{1-\beta})^{\frac{n-1}{n}}.$ (21)

Now we give a lemma involving concentration-compactness alternative, by which we only need to prove that the maximizing sequence $\tilde{g}_k(x)$ in (20) does not concentrate at 0, and then we can pass to the limit in the functional. Firstly, we give a definition.

We say a sequence of functions $u_k \in W^{1,n}_{0,rad}(\mathcal{W}_1,\omega_\beta)$ concentrates at x = 0, denoted by

$$F^n(\nabla u_k)\omega_\beta dx \rightharpoonup \delta_0,$$

if $||u_k||_{\omega_\beta} \leq 1$ and any 1 > r > 0, $\int_{W_1 \setminus W_r} F^n(\nabla u_k) \omega_\beta dx \to 0$.

Lemma 3. [Concentration-compactness alternative] For any sequence \tilde{v}_k , $\tilde{v} \in W^{1,n}_{0,rad}(W_1, \omega_\beta)$, such that $\tilde{v}_k \rightarrow \tilde{v}$ in $W^{1,n}_{0,rad}(W_1, \omega_\beta)$, then up to a subsequence (still denoted by \tilde{v}_k), either (i) $J_\beta(\tilde{v}_k) \rightarrow J_\beta(\tilde{v})$, or (ii) \tilde{v}_k concentrates at x = 0.

Proof. We assume that (*ii*) does not hold; then we only need to show that (*i*) holds. Since (*ii*) does not hold, then there exist A > 0 and $\delta \in (0, 1)$ such that for sufficiently large k,

$$\int_{\mathcal{W}_1 \setminus \mathcal{W}_{e^{-\frac{A}{n}}}} F^n(\nabla \tilde{v}_k) |\log F^o(x)|^{\beta(n-1)} dx = \int_0^A \frac{|v_k'|^n t^{\beta(n-1)}}{(1-\beta)^{n-1}} dt \ge \delta,$$

where we use the variable of change

$$F^{o}(x) = e^{-\frac{t}{n}} \text{ and } \lambda_{n,\beta}^{\frac{(n-1)(1-\beta)}{n}} \tilde{v}_{k}(x) = v_{k}(t).$$

$$(22)$$

By (21), we have

$$|v_k(t) - v_k(A)| \le (1 - \delta)^{\frac{1}{n}} (t^{1 - \beta} - A^{1 - \beta})^{\frac{n - 1}{n}} \le (1 - \delta)^{\frac{1}{n}} t^{\frac{(n - 1)(1 - \beta)}{n}}.$$

Since for any *k*,

$$|v_k(A)| \le A^{\frac{(n-1)(1-\beta)}{n}}$$

we have for $t \ge T$, *T* sufficiently large,

$$v_{k}(t)^{\frac{n}{(n-1)(1-\beta)}} \leq \left[A^{\frac{(n-1)(1-\beta)}{n}} + (1-\delta)^{\frac{1}{n}} t^{\frac{(n-1)(1-\beta)}{n}}\right]^{\frac{n}{(n-1)(1-\beta)}} \leq A + (1-\frac{\delta}{2})^{\frac{1}{(n-1)(1-\beta)}} t.$$
(23)

We note that in (23), we applied the inequality if a > b > 0, p > 1. Then, for $x \in \mathbb{R}$ large enough, $(1 + ax)^p \le 1 + b^p x^p$.

We split the integral $I_{\beta}(v_k) = I_1(v_k) + I_2(v_k)$, where

$$I_1(v_k) = \int_0^T e^{|v_k(t)|^{\frac{(n-1)(1-\beta)}{n}-t}} dt,$$

and

$$I_2(v_k) = \int_T^\infty e^{|v_k| rac{(n-1)(1-eta)}{n} - t} dt$$

Since \tilde{v}_k converges pointwise to \tilde{v} , then v_k also converges pointwise to v. Then, by $|v_k(t)| \leq t^{\frac{(n-1)(1-\beta)}{n}}$ and the dominated convergence theorem, we have that $I_1(v_k) \to I_1(v)$. By (23), we have for any small $\epsilon > 0$ and T large enough,

$$I_{2}(v_{k}) = \int_{T}^{\infty} e^{|v_{k}| \frac{(n-1)(1-\beta)}{n} - t} dt$$

$$\leq e^{A} \int_{T}^{\infty} e^{[(1-\frac{\delta}{2})^{\frac{1}{(1-\beta)(n-1)}} - 1]t} dt,$$
(24)

which is smaller than ϵ . Then $I_{\beta}(v_k) \to I_{\beta}(v)$, that is, $J_{\beta}(\tilde{v}_k) \to J_{\beta}(\tilde{v})$. \Box

The following lemma is proved in [29]. For δ , a > 0, let

$$\Lambda^a_{\delta} = \{ \phi \in C^1[0,\infty) | \phi(0) = 0, \int_a^\infty |\phi'|^n dt \le \delta \}.$$

Lemma 4 ([29]). For each a > 0 and $\phi(t) \in \Lambda^a_{\delta}$, we have

$$\int_{a}^{\infty} e^{\phi \frac{n}{n-1}(t)-t} dt \leq \frac{e^{\phi \frac{n}{n-1}(a)-a}}{1-\delta^{\frac{1}{n-1}}} e^{\frac{c^{n}}{n}(\frac{n-1}{n})^{n-1}\beta_{n}} e^{1+\frac{1}{2}+\dots+\frac{1}{n-1}},$$
(25)

where $\beta_n = \delta(1 - \delta^{\frac{1}{n-1}})^{-n+1}$ and $c = \frac{n}{n-1}\phi^{\frac{1}{n-1}}(a)$. The inequality tends to an equality if $c^n\beta_n \to \infty$, $a \to \infty$ and $\delta \to 0$.

Let $\tilde{f}_k(x) \in W^{1,n}_{0,rad}(\mathcal{W}_1,\omega_\beta)$ such that $\tilde{f}_k(x)$ concentrates at 0, that is, $\|\tilde{f}_k\|_{\omega_\beta} \leq 1$, $|F^n(\nabla \tilde{f}_k)|\omega_\beta \rightharpoonup \delta_0$. Define $f_k(t)$ from $\tilde{f}_k(x)$ by the same transformation as in (22). Then, since $\tilde{f}_k(x)$ concentrates at 0, we have that $\tilde{f}_k(x) \rightharpoonup 0$ in $W^{1,n}_{0,rad}(\mathcal{W}_1,\omega_\beta)$ and converges pointwise to 0.

Lemma 5. Let $f_k(t)$ be as above. Then one of the following alternatives holds: (*i*) We can find points $a_k \in [1, \infty)$ such that

$$f_k(a_k)|^{\frac{n}{(n-1)(1-\beta)}} - a_k = -2\log a_k;$$
(26)

(ii) If such a_k does not exist, then

$$\limsup_{k \to \infty} \int_0^\infty e^{|f_k(t)| \frac{n}{(n-1)(1-\beta)} - t} dt = 1$$

What is more, if the first alternative (i) holds, we can find a_k to be the first point in $[1, \infty)$ satisfying (26) and satisfying $a_k \to \infty$ as $k \to \infty$.

Proof. Since $|f_k(t)| \le t^{\frac{(n-1)(1-\beta)}{n}}$, then if $t \in [0,1)$, $|f_k(t)|^{\frac{n}{(n-1)(1-\beta)}} - t \le 0$. However, if $t \in [0,1)$, $-2\log t > 0$, then $|f_k(t)|^{\frac{n}{(n-1)(1-\beta)}} - t < -2\log t$, which implies that we cannot find a_k satisfying (26) in [0,1).

Now we assume (*i*) does not hold. Then we have $|f_k(t)|^{\frac{n}{(n-1)(1-\beta)}} - t < -2\log t$, $t \in [1, \infty)$. Furthermore, we have

$$e^{|f_k(t)|^{\frac{n}{(n-1)(1-\beta)}}-t} \le t^{-2}$$
, if $t \in [1,\infty)$.

Define the dominating function as follows:

$$h(t) = \begin{cases} 1, & t \in (0,1), \\ \frac{1}{t^2}, & t \in [1,\infty) \end{cases}$$

Then, by the dominated convergence theorem, we obtain that $I_{\beta}(f_k) \rightarrow 1$.

Let (*i*) hold. We choose the first $a_k \ge 1$ satisfying (26). We now prove that $a_k \to \infty$ as $k \to \infty$. For any large number M, we need to prove that there exist $k_0 \in \mathbb{N}$, such that for any $k \ge k_0$, $a_k \ge M$. Firstly, we choose μ small, such that

$$\mu t < -2\log t + t, t \in [0, M).$$

Now, since \tilde{f}_k concentrates, we have for $t \in [0, M)$ and any $k \ge k_0$,

$$|f_k(t)|^{\frac{n}{(n-1)(1-\beta)}} \le \left(\int_0^M \frac{|f'_k|^n t^{\beta(n-1)}}{(1-\beta)^{n-1}} dt\right)^{\frac{1}{(n-1)(1-\beta)}} t < \mu t \le t - 2\log t.$$

Then we obtain for any $k \ge k_0$, $a_k \ge M$. \Box

Now we define the concentration level at 0,

$$J^{\delta}_{\beta,\omega_{\beta}}(0) = \sup_{\tilde{f}_{k} \in W^{1,n}_{0,rad}(\mathcal{W}_{1},\omega_{\beta})} \{\limsup_{k \to \infty} J_{\beta}(\tilde{f}_{k}) | \quad F^{n}(\nabla \tilde{f}_{k})\omega_{\beta} \rightharpoonup \delta_{0} \}.$$

We can give the estimate for the concentration level.

Lemma 6. For $\beta \in [0, 1)$, we have that

$$I^{\delta}_{\beta,\omega_{\beta}}(0) \le 1 + e^{1 + \frac{1}{2} + \dots + \frac{1}{n-1}}.$$
(27)

Proof. To prove the lemma, it is sufficient to assume the sequences \tilde{f}_k satisfy the first alternative in Lemma 5, because if \tilde{f}_k satisfy the second alternative, we can obtain the inequality (27) by Lemma 5.

Firstly, we show that

$$\lim_{k \to \infty} \int_0^{a_k} e^{|f_k(t)|^{\frac{n}{(n-1)(1-\beta)}} - t} = 1,$$

where f_k and a_k are as in Lemma 5. Since $F^n(\nabla \tilde{f}_k)\omega_\beta \to 0$ and (21), we have that $f_k \to 0$ uniformly on compact subsets of \mathbb{R}^+ . Then for any ϵ , A > 0, we obtain $|f_k(t)|^{\frac{n}{(n-1)(1-\beta)}} \leq \epsilon$ for $t \leq A$ and k large enough. By the property of a_k , that is, for $t \leq a_k$, $|f_k(t)|^{\frac{n}{(n-1)(1-\beta)}} \leq t - 2\log t$, we obtain

$$\begin{split} \int_{0}^{a_{k}} e^{|f_{k}(t)|\frac{n}{(n-1)(1-\beta)}-t} dt &= \int_{0}^{A} e^{|f_{k}(t)|\frac{n}{(n-1)(1-\beta)}-t} dt + \int_{a_{k}}^{A} e^{|f_{k}(t)|\frac{n}{(n-1)(1-\beta)}-t} dt \\ &\leq e^{\epsilon} \int_{0}^{A} e^{-t} dt + \int_{A}^{a_{k}} e^{-2\log t} dt \\ &= e^{\epsilon} (1-e^{-A}) + (\frac{1}{A}-\frac{1}{a_{k}}). \end{split}$$

Therefore,

$$\limsup_{k\to\infty}\int_0^{a_k}e^{|f_k(t)|\,\overline{(n-1)(1-\beta)}\,-t}dt\leq e^\epsilon(1-e^{-A})+\frac{1}{A}.$$

Now, as $\epsilon \to 0$ and $A \to \infty$, we have

$$\limsup_{k\to\infty}\int_0^{a_k}e^{|f_k(t)|\frac{n}{(n-1)(1-\beta)}-t}dt\leq 1.$$

On the other hand,

$$\limsup_{k \to \infty} \int_0^{a_k} e^{|f_k(t)| \frac{n}{(n-1)(1-\beta)} - t} dt \ge \int_0^{a_k} e^{-t} dt = 1 - e^{-a_k} \to 1.$$

Next, we prove that

$$\lim_{k \to \infty} \int_{a_k}^{\infty} e^{|f_k(t)|^{\frac{n}{(n-1)(1-\beta)}} - t} \le e^{1 + \frac{1}{2} + \dots + \frac{1}{n-1}}.$$

Set $\delta_k = \int_{a_k}^{\infty} \frac{|f'_k|^n t^{\beta(n-1)}}{(1-\beta)^{n-1}} dt$. Then, by (21) with A = 0 and $t = a_k$, we have

$$\delta_{k} = 1 - \int_{0}^{a_{k}} \frac{|f_{k}'|^{n} t^{\beta(n-1)}}{(1-\beta)^{n-1}} dt \leq 1 - \left(\frac{|f_{k}(a_{k})|^{\frac{n}{(n-1)(1-\beta)}}}{a_{k}}\right)^{(1-\beta)(n-1)} = 1 - \left(1 - \frac{2\log a_{k}}{a_{k}}\right)^{(1-\beta)(n-1)}.$$
(28)

Define the function $g_k(t) = |f_k(t)|^{\frac{1}{1-\beta}}$. Then

$$\int_{a_k}^{\infty} e^{|f_k(t)|^{\frac{n}{(n-1)(1-\beta)}} - t} dt = \int_{a_k}^{\infty} e^{g_k(t)^{\frac{n}{n-1}} - t} dt.$$
(29)

By $|f_k^{\overline{(n-1)(1-\beta)}}(t)| \le t$, we have

$$\int_{a_{k}}^{\infty} |g_{k}'|^{n} dt = \frac{1}{(1-\beta)^{n}} \int_{a_{k}}^{\infty} f_{k}^{\frac{n\beta}{1-\beta}} |f_{k}'|^{n} dt$$

$$\leq \frac{1}{(1-\beta)^{n}} \int_{a_{k}}^{\infty} t^{(n-1)\beta} |f_{k}'|^{n} dt$$

$$\leq \frac{\delta_{k}}{1-\beta} := \delta_{k}^{*} \to 0.$$
(30)

Now, applying Lemma 4 with $\delta = \delta_k^*$ and $a = a_k$, we obtain

$$\int_{a_{k}}^{\infty} e^{|f_{k}(t)|^{\frac{n}{(n-1)(1-\beta)}-t}} dt \leq \frac{e^{g_{k}(a_{k})^{\frac{n}{n-1}}-a_{k}}}{1-|\delta_{k}^{*}|^{\frac{1}{n-1}}} e^{\frac{c^{n}}{n}(\frac{n-1}{n})^{n-1}\beta_{n}+1+\frac{1}{2}+\dots+\frac{1}{n-1}},$$
(31)

where $\beta_n = \delta_k^* (1 - |\delta_k^*|^{\frac{1}{n-1}})^{-n+1}$ and $c = \frac{n}{n-1}g_k(a_k)^{\frac{1}{n-1}}$. Therefore, it is left to show that

$$\limsup_{k \to \infty} G_k := \limsup_{k \to \infty} [g_k(a_k)^{\frac{n}{n-1}} - a_k + \frac{g_k(a_k)^{\frac{n}{n-1}} \delta_k^*}{(n-1)(1 - |\delta_k^*|^{\frac{1}{n-1}})^{n-1}}] \le 0.$$

We split G_k as follows:

$$\begin{aligned}
G_{k} &= -2\log a_{k} + \frac{(a_{k}-2\log a_{k})\delta_{k}}{(n-1)(1-\beta)(1-|\delta_{k}^{*}|^{\frac{1}{n-1}})^{n-1}} \\
&= -2\log a_{k} + \frac{a_{k}\delta_{k}}{(n-1)(1-\beta)(1-|\delta_{k}^{*}|^{\frac{1}{n-1}})^{n-1}} - \frac{2(\log a_{k})\delta_{k}}{(n-1)(1-\beta)(1-|\delta_{k}^{*}|^{\frac{1}{n-1}})^{n-1}} \\
&= \{-2\log a_{k} + \frac{a_{k}\delta_{k}}{(n-1)(1-\beta)}\} + \frac{a_{k}\delta_{k}(1-(1-|\delta_{k}^{*}|^{\frac{1}{n-1}})^{n-1})}{(n-1)(1-\beta)(1-|\delta_{k}^{*}|^{\frac{1}{n-1}})^{n-1}} \\
&= \frac{2(\log a_{k})\delta_{k}}{(n-1)(1-\beta)(1-|\delta_{k}^{*}|^{\frac{1}{n-1}})^{n-1}} \\
&=: I_{1}^{k} + I_{2}^{k} - I_{3}^{k}.
\end{aligned}$$
(32)

We make use of the Maclaurin series expansion. Firstly,

$$\delta_k = 1 - \left(-\frac{2\log a_k}{a_k} + 1\right)^{(1-\beta)(n-1)} = (1-\beta)(n-1)\frac{2\log a_k}{a_k} + C\left(\frac{2\log a_k}{a_k}\right)^2 + o\left(\left(\frac{\log a_k}{a_k}\right)^2\right),$$
(33)

for some positive constant *C*, which depends only on β , *n*. Thus, we have

$$|I_1^k| = 4C \frac{(\log a_k)^2}{a_k} + a_k o((\frac{\log a_k}{a_k})^2) \to 0, \text{ as } k \to \infty$$

Also,

$$|I_3^k| \le C_1 \frac{(\log a_k)^2}{a_k} + C_2 \frac{(\log a_k)^3}{a_k^2} + (\log a_k)o((\frac{\log a_k}{a_k})^2) \to 0, \text{ as } k \to \infty.$$

To estimate I_2^k , we first use the binomial expansion of $(1 - |\delta_k^*|^{\frac{1}{n-1}})^{n-1}$ to obtain $|I_2^k| \le Ca_k \delta_k |\delta_k^*|^{\frac{1}{n-1}}$. Now, using (30) and (33), we obtain

$$|I_2^k| \le C \frac{(\log a_k)^{\frac{n}{n-1}}}{a_k^{\frac{1}{n-1}}} \to 0, \text{ as } k \to \infty.$$

Then we have completed the proof of the Lemma. \Box

Proof of Theorem 2. We assume $J_{\beta}(\tilde{g}_k)$ does not converge to $J_{\beta}(\tilde{g}_0)$, where \tilde{g}_k , \tilde{g} is as in (20). Thus, by Lemma 6, we obtain

$$M_{\beta} = \lim_{k \to \infty} J_{\beta}(\tilde{g}_k) \le 1 + e^{1 + \frac{1}{2} + \dots + \frac{1}{n-1}}.$$

If we can find some $\phi \in \tilde{\Lambda}_1$ such that

$$I_{\beta}(\phi) > 1 + e^{1 + \frac{1}{2} + \dots + \frac{1}{n-1}},$$

then clearly $Q_{\beta} > 1 + e^{1 + \frac{1}{2} + \dots + \frac{1}{n-1}}$ and thus, we obtain a contradiction. Consider the function $h_n(t)$ as follows:

$$h_n(t) = \begin{cases} (1 - \frac{1}{n})(n-1)^{-\frac{1}{n}}t, & 0 \le t \le n, \\ (t-1)^{1-\frac{1}{n}}, & n \le t \le T_n, \\ (T_n-1)^{1-\frac{1}{n}}, & t \ge T_n, \end{cases}$$

where $T_n = (n-1)e^{(\frac{n}{n-1})^n - \frac{n}{n-1}} + 1$. It has been proved in [29] that $\int_0^\infty |h'_n|^n dt \le 1$ and

$$\int_{0}^{\infty} e^{h_{n}(t)\frac{n}{n-1}-t} dt = 1 + e^{1 + \frac{1}{2} + \dots + \frac{1}{n-1}} + \gamma^{*}(n)$$

$$> 1 + e^{1 + \frac{1}{2} + \dots + \frac{1}{n-1}}.$$
(34)

Set $\phi_n^{\alpha}(t) = [\alpha h_n(t)]^{1-\beta}$ for $\alpha \in (0, 1)$. Then

$$\begin{split} I_{\beta}(\phi_{n}^{\alpha}) &= \int_{0}^{\infty} e^{[\alpha h_{n}(t)]\frac{n}{n-1}-t} dt \\ &= \int_{0}^{\infty} e^{(\alpha \frac{n}{n-1}-1+1)h_{n}(t)\frac{n}{n-1}-t} dt \\ &\geq e^{(\alpha \frac{n}{n-1}-1)\|h_{n}\|_{\infty}} (1+e^{1+\frac{1}{2}+\dots+\frac{1}{n-1}}+\gamma^{*}(n)). \end{split}$$

Now we can choose $\alpha = \alpha_*$ sufficiently close to 1 such that $I_{\beta}(\phi_n^{\alpha}) > 1 + e^{1 + \frac{1}{2} + \dots + \frac{1}{n-1}}$. Let us estimate the term $\Gamma(\phi_n^{\alpha_*})$. Since $(\phi_n^{\alpha_*})' = 0$ for $t \ge T_n$, we have

$$\Gamma(\phi_{n}^{\alpha_{*}}) = \int_{0}^{+\infty} \frac{|(\phi_{n}^{\alpha_{*}})'|^{n} t^{\beta(n-1)}}{(1-\beta)^{n-1}} dt
= \int_{0}^{n} \frac{|(\phi_{n}^{\alpha_{*}})'|^{n} t^{\beta(n-1)}}{(1-\beta)^{n-1}} dt + \int_{n}^{T_{n}} \frac{|(\phi_{n}^{\alpha_{*}})'|^{n} t^{\beta(n-1)}}{(1-\beta)^{n-1}} dt
= I_{1}(\beta) + I_{2}(\beta).$$
(35)

Now, by direct calculation, we obtain

$$\begin{split} I_1(\beta) &= (1-\beta)\alpha_*^{(1-\beta)n} \int_0^n h_n^{-n\beta} |h_n'|^n t^{\beta(n-1)} dt \\ &= \alpha_*^{(1-\beta)n} (1-\beta) \int_0^n (1-\frac{1}{n})^{n(1-\beta)} (n-1)^{\beta-1} t^{-\beta} \\ &= \alpha_*^{(1-\beta)n} (1-\frac{1}{n})^{n(1-\beta)} (n-1)^{\beta-1} n^{1-\beta} \\ &= \alpha_*^{(1-\beta)n} (1-\frac{1}{n})^{(n-1)(1-\beta)} \end{split}$$

and

$$\begin{split} I_{2}(\beta) &= \alpha_{*}^{(1-\beta)n}(1-\beta)\int_{n}^{T_{n}}h_{n}^{-n\beta}|h_{n}'|^{n}t^{\beta(n-1)}dt \\ &= \alpha_{*}^{(1-\beta)n}(1-\beta)(1-\frac{1}{n})^{n}\int_{n-1}^{T_{n}-1}\frac{1}{s}(1+\frac{1}{s})^{\beta(n-1)}ds \\ &\leq \alpha_{*}^{(1-\beta)n}(1-\beta)(1-\frac{1}{n})^{n}(1+\frac{1}{n-1})^{\beta(n-1)}\int_{n-1}^{T_{n}-1}\frac{1}{s}ds \\ &\leq \alpha_{*}^{(1-\beta)n}(1-\beta)(1-\frac{1}{n})^{n}(\frac{n}{n-1})^{\beta(n-1)}[(\frac{n}{n-1})^{n}-\frac{n}{n-1}] \\ &= \alpha_{*}^{(1-\beta)n}(1-\beta)(1-\frac{1}{n})^{n-1}(\frac{n}{n-1})^{\beta(n-1)}B_{n}, \end{split}$$

where $B_n = (\frac{n}{n-1})^{n-1} - 1$. Note that by the above estimates, we have

$$I_1(0) + I_2(0) \le \alpha_*^n < 1$$

Thus, we can choose $\beta = \beta_*$, depending only on *n*, such that $I_1(\beta_*) + I_2(\beta_*) \le 1$. Thus, we have finished the proof of the Theorem. \Box

5. Improvement of the Anisotropic Moser–Trudinger Inequality

In this section, we complete the proof of Theorem 3, which can be seen as an improvement of the anisotropic Moser–Trudinger inequality when $u_k \rightharpoonup u_0$.

Proof of Theorem 3. If $u_0 \equiv 0$, then we can directly obtain (7) by Theorem 1. Thus, it is left to consider the case $u_0 \not\equiv 0$. By (16), we have that $u_k \rightarrow u_0$ uniformly on $\mathcal{W}_1 \setminus \mathcal{W}_r$, $\forall r \in (0, 1)$. Then, by (17) and dominated convergence theorem, we have $u_k \rightarrow u_0$ in $L^q(\mathcal{W}_1)$ for any $q < \infty$.

For any R > 0, $k \in \mathbb{N}$, we define the functions

$$v_{R,k} = \min\{|u_k|, L\} sign(u_k)$$
 and $w_{R,k} = u_k - v_{R,k}$

Since $\lim_{R\to\infty} \|v_{R,0}\|_{\omega_{\beta}}^{n} = \|u_{0}\|_{\omega_{\beta}}^{n}$, for $\forall p < p(u_{0})$, then there exist *R* large enough such that

$$p_0 := p(1 - \|v_{R,0}\|_{\omega_{\beta}}^n)^{\frac{1}{(n-1)(1-\beta)}} < 1.$$

Since $v_{R,k} \to v_{R,0}$ a.e. in \mathcal{W}_1 as $k \to \infty$ and $v_{R,k}$ is bounded in $W^{1,n}_{0,rad}(\mathcal{W}_1, \omega_\beta)$, up to a subsequence, we can assume that $v_{R,k} \rightharpoonup v_{R,0}$ weakly in $W^{1,n}_{0,rad}(\mathcal{W}_1, \omega_\beta)$. Then we have

$$\liminf_{k\to\infty} \|v_{R,k}\|_{\omega_{\beta}}^{n} \ge \|v_{R,0}\|_{\omega_{\beta}}^{n}$$

and

$$\limsup_{k \to \infty} \|w_{R,k}\|_{\omega_{\beta}}^n = 1 - \liminf_{k \to \infty} \|v_{R,k}\|_{\omega_{\beta}}^n \le 1 - \|v_{R,0}\|_{\omega_{\beta}}^n$$

Then we can find $k_0 \in \mathbb{N}$ such that for $\forall k \ge k_0$, we have

$$p\|w_{R,k}\|_{\omega_{\beta}}^{\frac{n}{(n-1)(1-\beta)}} \le \frac{p_0+1}{2} < 1.$$
(36)

Using $u_k = w_{R,k} + v_{R,k}$ and $|v_{R,k}| \le R$, we obtain

$$|u_{k}|^{\frac{n}{(n-1)(1-\beta)}} \leq (1+\epsilon)|w_{R,k}|^{\frac{n}{(n-1)(1-\beta)}} + C(n,\beta,\epsilon)R^{\frac{n}{(n-1)(1-\beta)}},$$

$$C(n,\beta,\epsilon) = (1-(1+\epsilon)^{-\frac{(n-1)(1-\beta)}{n\beta+1-\beta}})^{-\frac{n\beta+1-\beta}{(n-1)(1-\beta)}}.$$
(37)

where

Now we choose $\epsilon > 0$ such that $\frac{(1+\epsilon)(1+p_0)}{2} < 1$. By (36), we have

$$\int_{\mathcal{W}_{1}} e^{p\lambda_{\beta,n}|u_{k}|^{\frac{n}{(n-1)(1-\beta)}}} dx$$

$$\leq \int_{\mathcal{W}_{1}} e^{p\lambda_{\beta,n}(1+\epsilon)|w_{R,k}|^{\frac{n}{(n-1)(1-\beta)}} + p\lambda_{\beta,n}C(n,\beta,\epsilon)R^{\frac{n}{(n-1)(1-\beta)}}} dx$$

$$\leq C\int_{\mathcal{W}_{1}} e^{p\lambda_{\beta,n}(1+\epsilon)||w_{R,k}||^{\frac{n}{\omega_{\beta}}(n-1)(1-\beta)}} |\frac{w_{R,k}}{||w_{R,k}||\omega_{\beta}|^{\frac{n}{(n-1)(1-\beta)}}} dx$$

$$\leq C\int_{\mathcal{W}_{1}} e^{\lambda_{\beta,n}(1+\epsilon)\frac{(1+\epsilon)(1+\rho_{0})}{2}|\frac{w_{R,k}}{||w_{R,k}||\omega_{\beta}|^{\frac{n}{(n-1)(1-\beta)}}} dx$$
(38)

for any $k \ge k_0$, where *C* depends only on *n*, β , ϵ , *p* and *R*. Combining (38) with Theorem 1 and the choice of ϵ , we obtain (7). The proof is completed. \Box

6. Conclusions

In this paper, we mainly study the anisotropic Moser–Trudinger-type inequality for radical Sobolev space with logarithmic weight $\omega_{\beta}(x) = [-\ln F^o(x)]^{\beta(n-1)}$, $\beta \in [0, 1)$. Moreover, we obtain the existence of an extremal function when β is small. The extremal function is densely related to the existence of solutions of Finsler–Liouville-type equations. Finally, we obtain the Lions-type concentration-compactness principle, which is the improvement of an anisotropic Moser–Trudinger-type inequality. However, we note that the singular anisotropic Moser–Trudinger-type inequality with logarithmic weight in a unit Wulff ball W_1 and the anisotropic Moser–Trudinger-type inequality with logarithmic weight in \mathbb{R}^n are still open questions.

Author Contributions: T.Z.: Investigation and writing—original draft preparation; J.L.: writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant number: 12001472).

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors sincerely appreciate the editors and referees for their careful reading and helpful comments to improve this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Moser, J. A sharp form of an inequality by N. Trudinger. *Indiana Univ. Math. J.* **1971**, *11*, 1077–1092. [CrossRef]
- Adachi, S.; Tanaka, K. Trudinger type inequalities in ℝ^N and their best exponents. *Proc. Amer. Math. Soc.* 2000, 128, 2051–2057.
 [CrossRef]
- 3. Flucher, M. Extremal functions for Trudinger-Moser inequality in 2 dimensions. *Comment. Math. Helv.* **1992**, 67, 471–497. [CrossRef]
- Lam, N.; Lu, G.; Zhang, L. Existence and nonexistence of extremal functions for sharp Trudinger- Moser inequalities. *Adv. Math.* 2019, 352, 1253–1298. [CrossRef]
- 5. Lu, G.; Tang, H. Sharp singular Trudinger-Moser inequalities in Lorentz-Sobolev spaces. *Adv. Nonlinear Stud.* **2016**, *16*, 581–601. [CrossRef]
- 6. Lu, G.; Tang, H. Sharp Moser-Trudinger inequalities on hyperbolic spaces with the exact growth condition. *J. Geom. Anal.* 2016, 26, 837–857. [CrossRef]
- 7. Trudinger, N.S. On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 1967, 17, 473–483. [CrossRef]
- 8. Yang, Q.H.; Li, Y. Trudinger-Moser inequalities on hyperbolic spaces under Lorentz norms. J. Math. Anal. Appl. 2019, 472, 1236–1252. [CrossRef]
- 9. Chang, S.-Y.A.; Yang, P. The inequality of Moser and Trudinger and applications to conformal geometry. *Commun. Pure Appl. Math.* **2003**, *56*, 1135–1150. [CrossRef]
- 10. Cao, D.M. Nontrivial solution of semilinear elliptic equation with critical exponent in \mathbb{R}^2 . *Commun.Partial Differ. Equ.* **1992**, 17, 407–435. [CrossRef]

- 11. De Figueiredo, D.G.; Miyagaki, O. H.; Ruf, B. Elliptic equations in \mathbb{R}^2 with nonlinearities in the critical growth range. *Calc. Var. Partial. Differ. Equ.* **1995**, *3*, 139–153. [CrossRef]
- 12. Lam, N.; Lu, G. Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition. *J. Geom. Anal.* 2014, 24, 118–143. [CrossRef]
- 13. Lin, C.S.; Wei, J.C. Locating the peaks of solutions via the maximum principle. II. A local version of the method of moving planes. *Comm. Pure Appl. Math.* **2013**, *56*, 784–809. [CrossRef]
- 14. Ogawa, T. Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem. *J. Math. Anal. Appl.* **1991**, *155*, 531–540. [CrossRef]
- 15. Li, S.; Liang, S.; Repov, D.D. On critical exponential Kirchhoff systems on the Heisenberg group. *Rend. Circ. Mat. Palermo Ser.* 2 2023, 72, 2565–2577. [CrossRef]
- 16. Abid, I.; Baraket, S.; Jaidane, R. On a weighted elliptic equation of N-Kirchhoff type with double exponential growth. *Dem. Math.* **2022**, *55*, 634–657. [CrossRef]
- 17. Calanchi, M.; Ruf, B. On Trudinger-Moser type inequalities with logarithmic weights. J. Differ. Equ. 2015, 258, 1967–1989. [CrossRef]
- 18. Calanchi, M.; Ruf, B. Trudinger-Moser type inequalities with logarithmic weights in dimension N. *Nonlinear Anal.* 2015, 121, 403–411. [CrossRef]
- 19. Leckband, M. A. An integral inequality with applications. Trans. Amer. Math. Soc. 1984, 283, 157-168. [CrossRef]
- 20. Roy, P. Extremal function for Moser-Trudinger type inequality with logarithmic weight. *Nonlinear Anal.* **2016**, *135*, 194–204. [CrossRef]
- 21. Wulff, G. Zur Frage der Geschwindigkeit des Wachstums und der Auflosung der Kristallflächen. Z. Krist 1901, 34, 449–530.
- 22. Wang, G.; Xia, C. Blow-up analysis of a Finsler-Liouville equation in two dimensions. J. Differ. Equ. 2012, 252, 1668–1700. [CrossRef]
- Alvino, A.; Ferone, V.; Trombetti, G.; Lions, P. Convex symmetrization and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 1997, 14, 275–293.
- Belloni, M.; Ferone, V.; Kawohl, B. Isoperimetric inequalities, wulffshape and related questions for strongly nonlinear elliptic operators. Z. Angew. Math. Phys. 2003, 54, 771–783. [CrossRef]
- 25. Ferone, V.; Kawohl, B. Remarks on a Finsler-Laplacian. Proc. Amer. Math. Soc. 2009, 137, 247–253. [CrossRef]
- 26. Fonseca, I.; Muller, S. A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinb. Sect. A. 1991, 119, 125–136. [CrossRef]
- 27. Bellettini, G.; Paolini, M. Anisotropic motion by mean curvature in the context of Finsler geometry. J. Hokkaido Math. 1996, 25, 537–566. [CrossRef]
- 28. Wang, G.; Xia, C. A characterization of the wulff shape by an overdetermined anisotropic PDE. *Arch. Ration. Mech. Anal.* **2011**, *99*, 99–155. [CrossRef]
- 29. Carleson, L.; Chang, S.-Y.A. On the existence of an extremal function for an inequality by J. Moser. *Bull. Sci. Math.* **1986**, 110, 113–127.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.