Article

Anisotropic Moser-Trudinger-Type Inequality with Logarithmic Weight

Tao Zhang * and Jie Liu

Citation: Zhang, T.; Liu, J. Anisotropic Moser-Trudinger-Type Inequality with Logarithmic Weight. Mathematics 2024, 12, 785. https://doi.org/ 10.3390/math12050785

Academic Editor: Ioannis K. Argyros
Received: 8 February 2024
Revised: 2 March 2024
Accepted: 5 March 2024
Published: 6 March 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

School of Mathematics and Information Science, Yantai University, Yantai 264005, China; jieliu0202@163.com

* Correspondence: tzh@ytu.edu.cn

Abstract

Our main purpose in this paper is to study the anisotropic Moser-Trudinger-type inequalities with logarithmic weight $\omega_{\beta}(x)=\left[-\ln F^{o}(x)\right]^{(n-1) \beta}$. This can be seen as a generation result of the isotropic Moser-Trudinger inequality with logarithmic weight. Furthermore, we obtain the existence of extremal function when β is small. Finally, we give Lions' concentration-compactness principle, which is the improvement of the anisotropic Moser-Trudinger-type inequality.

Keywords: anisotropic Moser-Trudinger-type inequality; logarithmic weight; existence of extremal function

MSC: 35A23; 35A01; 35B38

1. Introduction

It is well-known that important geometric inequalities, for example, the Sobolev inequality, Moser-Trudinger inequality, etc., and the existence of extreme functions play a key role to study partial differential equations. For a bounded domain $\Omega \subset \mathbb{R}^{n}$ with $n \geq 2$, we have $W_{0}^{1, p}(\Omega) \subset L^{q}(\Omega), 1 \leq q \leq \frac{n p}{n-p}$ for $1 \leq p<n$ by the calssical Sobolev embedding theorem. Particularly, for $p=n, W_{0}^{1, n}(\Omega) \subset L^{q}(\Omega), \forall q \geq 1$. But $W_{0}^{1, n}(\Omega) \nsubseteq L^{\infty}(\Omega)$. For the borderline case $p=n$, the Moser-Trudinger inequality is the perfect replacement. In 1971, Moser [1] proved the sharpening of Trudinger's inequality as follows:

$$
\begin{equation*}
\sup _{u \in W_{0}^{1, n}(\Omega),\|\nabla u\|_{n} \leq 1} \int_{\Omega} e^{\alpha|u|^{\frac{n}{n-1}}} d x \leq C, \tag{1}
\end{equation*}
$$

for $\forall \alpha \leq \alpha_{n}=n \omega_{n-1}^{\frac{1}{n-1}}$ and ω_{n-1} stands for area of the $(n-1)$-sphere. Moreover, α_{n} is sharp, which means that if $\alpha>\alpha_{n}$, then the inequality (1) can no longer hold. Inequality (1) is the so-called Moser-Trudinger inequality, the extremal of which is related to the existence of solutions of some semi-linear Liouville-type equations.

As far as we know, there have been many important studies related to the MoserTrudinger inequality, for example, [2-8], etc. In the references listed above, readers can see the Moser-Trudinger inequality in \mathbb{R}^{n} and in hyperbolic spaces, the existence of an extremal function for the Moser-Trudinger inequality, etc. These important geometric inequalities play a key role in geometry analysis, calculus of variations, and PDEs; we refer to [9-14] and references therein. And recently, the authors of [15] studied a system of Kirchhoff type driven by the Q-Laplacian in the Heisenberg group \mathbb{H}^{n}. They obtained the existence of solutions via variational methods based on a new Moser-Trudinger-type inequality for the Heisenberg group \mathbb{H}^{n}. Moreover, in [16], the authors also focus on a Kirchhoff-type problem and establish the existence of a radial solution in the subcritical growth case by the Moser-Trudinger inequality and minimax method.

Let $\varrho_{\beta}(x)=(-\ln |x|)^{\beta(n-1)}, 0 \leq \beta<1$. Clalnchi and Ruf $[17,18]$ proved the weighed Moser-Trudinger-type inequality involving the radical functions in unit ball B :

$$
\begin{equation*}
\sup _{u \in W_{0, r a d}^{1, n}\left(B, \varrho_{\beta}\right),\|u\|_{\varrho_{\beta} \leq 1}} \int_{B} e^{\alpha|u|^{\frac{n}{(n-1)(1-\beta)}}} d x<\infty \tag{2}
\end{equation*}
$$

for any $\alpha \leq \alpha_{\beta, n}=n\left[(1-\beta) \omega_{n-1}^{\frac{1}{n-1}}\right]^{\frac{1}{1-\beta}},\|u\|_{\varrho_{\beta}}=\left(\int_{B}|\nabla u|^{n} \varrho_{\beta}(x)\right)^{\frac{1}{n}}$. Moreover, the constant $\alpha_{\beta, n}$ is sharp, i.e., if $\alpha>\alpha_{\beta, n}$, the supremum in (2) will be infinite. We note that the authors applied Leckband's inequality [19] to prove the weighed Moser-Trudinger-type inequality (2). Note that when $\beta=0$, by the Pólya-Szegö principle, (2) recovers the classical Moser-Trudinger inequality (1). Furthermore, Roy [20] proved the existence of an extremal function for inequality (2).

Recently, many researchers have intended to establish anisotropic Moser-Trudingertype inequalities. Let $F \in C^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ be a nonnegative and convex function, the polar $F^{o}(x)$ of which represents a Finsler metric on \mathbb{R}^{n}. By $F(x)$, a Finsler-Laplacian operator Δ_{F} is defined by

$$
\Delta_{F} u:=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(F(\nabla u) F_{\xi_{i}}(\nabla u)\right),
$$

where $F_{\xi_{i}}=\frac{\partial F}{\partial \xi_{i}}$. In Euclidean modulus, Δ_{F} is nothing but the common Laplacian. The Finsler-Laplacian operator is closely related to the Wulff shape, which was initiated in Wulff' work [21]. More details about the properties of $F(x)$ and $F^{o}(x)$ can be seen in Section 2.

For a bounded smooth domain $\Omega \subset \mathbb{R}^{n}$, Wang and Xia [22] proved that, for $\forall \lambda \leq \lambda_{n}=n^{\frac{n}{n-1}} \kappa_{n}^{\frac{1}{n-1}}$,

$$
\begin{equation*}
\sup _{u \in W_{0}^{1, n}(\Omega), \int_{\Omega} F^{n}(\nabla u) d x \leq 1} \int_{\Omega} e^{\lambda|u|^{\frac{n}{n-1}}} d x \leq C, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa_{n}=\left|x \in \mathbb{R}^{n}\right| F^{o}(x) \leq 1 \mid \tag{4}
\end{equation*}
$$

denotes the volume of a unit Wulff ball in \mathbb{R}^{n}.
In this paper, we intend to establish the anisotropic Moser-Trudinger-type inequality with logarithmic weight. We believe that these sharp inequalities will be the key tools to study the existence of solutions for some quasi-linear elliptic equations, such as the Finsler-Laplacian equation. For $\beta \in[0,1)$, we let

$$
\omega_{\beta}(x)=\left[-\ln F^{o}(x)\right]^{\beta(n-1)},
$$

which is the weight of logarithmic type defined on a unit Wulff ball $\mathcal{W}_{1}=\left\{x \in \mathbb{R}^{n}: F^{o}(x)<\right.$ $1\}$. And $W_{0}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$ represents the functions of completion of $C_{0}^{1}\left(\mathcal{W}_{1}\right)$ with respect to the norm

$$
\|u\|_{\omega_{\beta}}=\left(\int_{\mathcal{W}_{1}} F^{n}(\nabla u) \omega_{\beta}(x) d x\right)^{\frac{1}{n}}, \quad u \in C_{0}^{1}\left(\mathcal{W}_{1}\right)
$$

Let $W_{0, \text { rad }}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$ be the subspace of $W_{0}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$ of all radial functions with respect to F. In this paper, radial functions with respect to F means that $u(x)=\tilde{u}(r)$, where $r=F^{o}(x)$.

In the following, for convenience, we denote

$$
\begin{equation*}
A M T(n, \lambda, \beta)=\sup _{u \in W_{0, r a d}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right),\|u\|_{\omega_{\beta} \leq 1}} \int_{\mathcal{W}_{1}} e^{\lambda\|u\|^{\frac{n}{(n-1)(1-\beta)}} d x} \tag{5}
\end{equation*}
$$

We now state our main results.

Theorem 1. For any

$$
\begin{equation*}
\lambda \leq \lambda_{\beta, n}=n^{1+\frac{1}{(n-1)(1-\beta)}}\left[\kappa_{n}^{\frac{1}{n-1}}(1-\beta)\right]^{\frac{1}{1-\beta}} \tag{6}
\end{equation*}
$$

we have $\operatorname{AMT}(n, \lambda, \beta)<\infty$. Moreover, this constant $\lambda_{\beta, n}$ is sharp, i.e., if $\lambda>\lambda_{\beta, n}, \operatorname{AMT}(n, \lambda, \beta)$ is infinite.

Next, we prove the existence of an extremal function for the anisotropic Moser-Trudinger-type inequality with logarithmic weight.

Theorem 2. There exists $\beta_{0} \in[0,1)$ such that, for $\forall \beta \in\left[0, \beta_{0}\right), A M T\left(n, \lambda_{\beta, n}, \beta\right)$ is attained.
Finally, we establish the Lions-type concentration-compactness property, which can be seen as an improvement of the anisotropic Moser-Trudinger-type inequality in Theorem 1 for some situations.

Theorem 3. Let $\left\{u_{k}\right\}$ be a sequence in $W_{0, \text { rad }}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$ such that $\left\|u_{k}\right\|_{\omega_{\beta}}=1$ and $u_{k} \rightharpoonup u_{0}$ in $\mathcal{W}_{0, \text { rad }}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$. Then we have

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \int_{\mathcal{W}_{1}} e^{p \lambda_{\beta, n}\left|u_{k}\right|^{\frac{n}{(n-1)(1-\beta)}}} d x<\infty \tag{7}
\end{equation*}
$$

for any $p<p\left(u_{0}\right):=\left(1-\left\|u_{0}\right\|_{\omega_{\beta}}^{n}\right)^{-\frac{1}{(n-1)(1-\beta)}}$.

2. Preliminaries

In this section, we give preliminaries involving the Finsler-Laplacian, co-area formula with respect to F and convex symmetrization u^{\sharp} of u with respect to F.

Let $F: \mathbb{R}^{n} \mapsto \mathbb{R}$ be a function that is $C^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$, convex, and even. And $F(x)$ is a homogenous function, that is, for any $t \in \mathbb{R}, \xi \in \mathbb{R}^{n}$,

$$
F(t \xi)=|t| F(\xi)
$$

Furthermore, we assume for any $\xi \neq 0, F(\xi)>0$.
By the homogeneity property of F, we can find two positive constants $0<c_{1} \leq c_{2}<\infty$ such that

$$
c_{1}|\xi| \leq F(\xi) \leq c_{2}|\xi|, \quad \forall \xi \in \mathbb{R}^{n} .
$$

The operator

$$
\Delta_{F} u:=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(F(\nabla u) F_{\xi_{i}}(\nabla u)\right)
$$

is called Finsler-Laplacian, which was studied by many mathematicians. For some important works involving the Finsler-Laplacian, we refer to [22-26] and the references therein.
$F^{o}(x)$ is the support function of $F(x)$, which is defined as $F^{o}(x):=\sup _{\xi \in K}\langle x, \xi\rangle$, where $K=\left\{x \in \mathbb{R}^{n}: F(x) \leq 1\right\}$. Then we can check that $F^{o}(x)$ is also a function that is $C^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$. And $F^{o}(x)$ is also a convex and homogeneous function. What is more, $F^{o}(x)$ is dual to $F(x)$ in the sense that

$$
F^{o}(x)=\sup _{\xi \neq 0} \frac{\langle x, \xi\rangle}{F(\xi)}, \quad F(x)=\sup _{\xi \neq 0} \frac{\langle x, \xi\rangle}{F^{o}(\xi)} .
$$

Denote the unit Wulff ball of center at origin as

$$
\mathcal{W}_{1}:=\left\{x \in \mathbb{R}^{n} \mid F^{o}(x) \leq 1\right\}
$$

and

$$
\kappa_{n}:=\left|\mathcal{W}_{1}\right|,
$$

which is the volume of a unit W ulff ball \mathcal{W}_{1}. Also, we denote \mathcal{W}_{r} as the Wulff ball of center at origin with radius r, i.e.,

$$
\mathcal{W}_{r}:=\left\{x \in \mathbb{R}^{n} \mid F^{o}(x) \leq r\right\} .
$$

For later use, by the assumptions of $F(x)$, we can obtain some properties of the function $F(x)$; see also $[25,27,28]$.

Lemma 1. We have
(i) $|F(m)-F(n)| \leq F(m+n) \leq F(m)+F(n)$;
(ii) $\frac{1}{C} \leq|\nabla F(m)| \leq C$, and $\frac{1}{C} \leq\left|\nabla F^{o}(m)\right| \leq C$ for some $C>0$ and $m \neq 0$;
(iii) $\langle m, \nabla F(m)\rangle=F(m),\left\langle m, \nabla F^{o}(m)\right\rangle=F^{o}(m)$ for $m \neq 0$;
(iv) $F\left(\nabla F^{o}(m)\right)=1, F^{o}(\nabla F(m))=1$ for $m \neq 0$;
(v) $\quad F^{o}(m) F_{\zeta}\left(\nabla F^{o}(m)\right)=m$ for $m \neq 0$.

Now, we give the co-area formula and isoperimetric inequality with respect to F, respectively. For a domain $\Omega \subset \mathbb{R}^{n}, G \subset \Omega$, let $u \in B V(\Omega)$, which we denote as a function of bounded variation. The anisotropic bounded variation of u with respect to F is defined by

$$
\int_{\Omega}|\nabla u|_{F}=\sup \left\{\int_{\Omega} u \operatorname{div} \tau d x, \tau \in C_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right), F^{o}(\tau) \leq 1\right\},
$$

and the anisotropic perimeter of G with respect to F is defined by

$$
H_{F}(G):=\int_{\Omega}\left|\nabla \mathcal{X}_{G}\right|_{F} d x
$$

where \mathcal{X}_{G} is the characteristic function defined on the subset G. Then we have the co-area formula (see [26])

$$
\begin{equation*}
\int_{\Omega}|\nabla u|_{F}=\int_{0}^{\infty} H_{F}(|u|>t) d t \tag{8}
\end{equation*}
$$

and the isoperimetric inequality

$$
\begin{equation*}
H_{F}(G) \geq n \kappa_{n}^{\frac{1}{n}}|G|^{1-\frac{1}{n}} . \tag{9}
\end{equation*}
$$

Furthermore, (9) becomes an equality if and only if G is a Wulff ball.

3. Anisotropic Moser-Trudinger-Type Inequality with Logarithmic Weight

In this section, we prove Theorem 1. Firstly, we give a useful formula involving the change in functions in a unit Wulff ball \mathcal{W}_{1}. For $u \in W_{0, \text { rad }}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$ and any $0 \leq \tilde{\beta}<\beta$, we let

$$
\begin{equation*}
v(x)=\left(\frac{\lambda_{\beta, n}}{\lambda_{\tilde{\beta}, n}}\right)^{\frac{(n-1)(1-\tilde{\beta})}{n}} u(x)|u(x)|^{\frac{\beta-\tilde{\beta}}{1-\beta}} . \tag{10}
\end{equation*}
$$

Then we have the following lemma.
Lemma 2. Let $u \in W_{0, r a d}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$ with $\|u\|_{\omega_{\beta}} \leq 1$. Define v by (10); then we have $\|v\|_{\omega_{\tilde{\beta}}} \leq 1$.

Proof. By the property of $F(x)$ in Lemma 1, we have

$$
\begin{aligned}
F^{n}(\nabla v) & =\left(\frac{\lambda_{\beta, n}}{\lambda_{\tilde{\beta}, n}}\right)^{(n-1)(1-\tilde{\beta})} \frac{(1-\tilde{\beta})^{n}}{(1-\beta)^{n}} F^{n}(\nabla u)|u(x)|^{\frac{n(\beta-\tilde{\beta})}{1-\beta}} \\
& \leq \frac{(1-\tilde{\beta})}{(1-\beta)} F^{n}(\nabla u) \frac{\omega_{\beta}(x)}{\omega_{\tilde{\beta}}(x)}\left(\int_{\mathcal{W}_{1} \backslash \mathcal{W}_{F o(x)}} F^{n}(\nabla u) \omega_{\beta} d y\right)^{\frac{\beta-\tilde{\beta}}{1-\beta}}
\end{aligned}
$$

Hence, by the co-area Formula (8), we have

$$
\begin{aligned}
& \|v\|_{\omega_{\tilde{\beta}}}^{n}=\int_{\mathcal{W}_{1}} F^{n}(\nabla v) \omega_{\tilde{\beta}}(x) d x \\
\leq & \frac{(1-\tilde{\beta})}{(1-\beta)} \int_{\mathcal{W}_{1}} F^{n}(\nabla u) \omega_{\beta}(x)\left(\int_{r}^{1} n \kappa_{n}\left|u^{\prime}(s)\right|^{n} s^{n-1} \omega_{\beta}(s) d s\right)^{\frac{\beta-\tilde{\beta}}{1-\beta}} d x \\
= & \frac{(1-\tilde{\beta})}{(1-\beta)}\left(n \kappa_{n}\right)^{\frac{(1-\tilde{\beta})}{(1-\beta)}} \int_{0}^{1}\left|u^{\prime}(r)\right|^{n} \omega_{\beta}(r) r^{n-1}\left(\int_{r}^{1}\left|u^{\prime}(s)\right|^{n} \omega_{\beta}(s) s^{n-1} d s\right)^{\frac{\beta-\tilde{\beta}}{1-\beta}} d r \\
= & -\left(n \kappa_{n}\right)^{\frac{(1-\tilde{\beta})}{(1-\beta)}} \int_{0}^{1} \frac{d}{d r}\left[\left(\int_{r}^{1}\left|u^{\prime}(s)\right|^{n} \omega_{\beta}(s) s^{n-1} d s\right)^{\frac{(1-\tilde{\beta})}{(1-\beta)}}\right] d r \\
= & \left(n \kappa_{n}\right)^{\frac{(1-\tilde{\beta})}{(1-\beta)}}\left(\int_{0}^{1}\left|u^{\prime}(r)\right|^{n} \omega_{\beta}(r) r^{n-1} d r\right)^{\frac{(1-\tilde{\beta})}{(1-\beta)}} \\
= & \left(\int_{\mathcal{W}_{1}} F^{n}(\nabla u) \omega_{\beta} d x\right)^{\frac{1-\tilde{\beta}}{1-\beta}} \\
\leq & 1 .
\end{aligned}
$$

Next, in this paper, we frequently need to change the variable in the following way For $u \in W_{0, \text { rad }}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$, we change the variable as follows:

$$
F^{o}(x)=e^{-\frac{t}{n}}
$$

and set

$$
\begin{equation*}
\psi(t)=\kappa_{n}^{\frac{1}{n}} n^{\frac{1+(n-1)(1-\beta)}{n}}(1-\beta)^{\frac{n-1}{n}} u(x) . \tag{11}
\end{equation*}
$$

Then we have $\psi^{\prime}(t)=-n^{-\beta \frac{n-1}{n}} \kappa_{n}^{\frac{1}{n}}(1-\beta)^{\frac{n-1}{n}} \tilde{u}^{\prime}\left(e^{-\frac{t}{n}}\right) e^{-\frac{t}{n}}$. By Lemma 1 and co-area Formula (8), we can transform the norm as follows:

$$
\begin{align*}
& \int_{\mathcal{W}_{1}} F^{n}(\nabla u)\left|\log F^{o}(x)\right|^{\beta(n-1)} d x \\
& =\int_{\mathcal{W}_{1}} F^{n}\left(\tilde{u}^{\prime}\left(F^{o}(x)\right) \nabla F^{o}(x)\right)\left|\log F^{o}(x)\right|^{\beta(n-1)} d x \\
& =\int_{\mathcal{W}_{1}}\left[\tilde{u}^{\prime}\left(F^{o}(x)\right)\right]^{n}\left|\log F^{o}(x)\right|^{\beta(n-1)} d x \\
& =\int_{0}^{1} n \kappa_{n}\left[\tilde{u}^{\prime}\left(F^{o}(x)\right)\right]^{n}\left|\log F^{o}(x)\right|^{\beta(n-1)}\left(F^{o}(x)\right)^{n-1} d F^{o}(x) \tag{12}\\
& =\int_{0}^{+\infty} \kappa_{n}\left[\tilde{u}^{\prime}\left(e^{-\frac{t}{n}}\right)\right]^{n}\left|\frac{t}{n}\right|^{\beta(n-1)} e^{-t} d t \\
& =\int_{0}^{+\infty} \frac{\left|\psi^{\prime}\right|^{n} t^{\beta(n-1)}}{(1-\beta)^{n-1}} d t .
\end{align*}
$$

The functional changes as follows:

$$
\begin{equation*}
\frac{1}{\kappa_{n}} \int_{\mathcal{W}_{1}} e^{\lambda_{n, \beta}|u|^{\frac{n}{(n-1)(1-\beta)}}} d x=\int_{0}^{+\infty} e^{|\psi|^{\frac{n}{(n-1)(1-\beta)}}-t} d t \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\kappa_{n}} \int_{\mathcal{W}_{1}} e^{\lambda|u|^{\frac{n}{(n-1)(1-\beta)}}} d x=\int_{0}^{+\infty} e^{\bar{\lambda}|\psi|^{\frac{n}{(n-1)(1-\beta)}}-t} d t \tag{14}
\end{equation*}
$$

where $\bar{\lambda}=\frac{\lambda}{\lambda_{n, \beta}}$.
Now it is easy to prove Theorem 1 by Lemma 2.
Proof of Theorem 1. Let $u \in W_{0, r a d}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$ with $\|u\|_{\omega_{\beta}} \leq 1$. Define v by (10). By Lemma 2, we have $\|v\|_{\omega_{\tilde{\beta}}} \leq 1$ for $\forall \tilde{\beta} \leq \beta$. By the definition of $\operatorname{AMT}\left(n, \lambda_{\beta, n}, \beta\right)$, we obtain

$$
\begin{equation*}
\int_{\mathcal{W}_{1}} e^{\lambda_{\beta, n}|u|^{\frac{n}{(n-1)(1-\beta)}}} d x=\int_{\mathcal{W}_{1}} e^{\lambda_{\tilde{\beta}, n}|v|^{\frac{n}{(n-1)(1-\tilde{\beta})}}} d x \leq \operatorname{AMT}\left(n, \lambda_{\tilde{\beta}, n} \tilde{\beta}\right) \tag{15}
\end{equation*}
$$

Since (15) holds for $\forall u \in W_{0, \text { rad }}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$ with $\|u\|_{\omega_{\beta}} \leq 1$, then we have

$$
\operatorname{AMT}\left(n, \lambda_{\beta, n}, \beta\right) \leq \operatorname{AMT}\left(n, \lambda_{\tilde{\beta}, n}, \tilde{\beta}\right)
$$

for any $0 \leq \tilde{\beta} \leq \beta<1$. Hence, we obtain that the function $\beta \mapsto \operatorname{AMT}\left(n, \lambda_{\beta, n}, \beta\right)$ is decreasing on $[0,1)$. Thus, by the anisotropic Moser-Trudinger-type inequality (3), we obtain $A M T\left(n, \lambda_{\beta, n}, \beta\right)<\infty$.

Now we prove the constant $\lambda_{\beta, n}$ is sharp. We need to show that, if $\lambda>\lambda_{n, \beta}$, $\operatorname{AMT}(n, \lambda, \beta)$ is infinite. By (14), we only need to test

$$
\int_{0}^{+\infty} e^{\bar{\lambda}|\psi|^{\frac{n}{(n-1)(1-\beta)}}-t} d t
$$

where $\bar{\lambda}>1$.
Consider the family of functions of Moser's type

$$
\eta_{m}(t)= \begin{cases}\frac{t^{1-\beta}}{m^{\frac{1-\beta}{n}},} & t \leq m \\ m^{\frac{(1-\beta)(n-1)}{n}}, & t \geq m .\end{cases}
$$

By direct computation, we have $\int_{0}^{+\infty} \frac{\left|\eta_{m}^{\prime}\right|^{n} t \beta(n-1)}{(1-\beta)^{n-1}} d t=1$. However, as $m \rightarrow+\infty$,

$$
\int_{0}^{+\infty} e^{\bar{\lambda}\left|\eta_{m}\right|^{\frac{n}{(n-1)(1-\beta)}}-t} d t \geq \int_{m}^{+\infty} e^{\bar{\lambda} m-t} d t \rightarrow+\infty, \text { if } \bar{\lambda}>1
$$

The proof of Theorem 1 is completed.

4. Existence of the Extremal Function

In this section, we complete the proof of Theorem 2. Firstly, we give a uniform bound for $u \in W_{0, \text { rad }}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$. For $u \in W_{0, \text { rad }}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$, we denote by $u(r)$ the value of $u(x)$ with $r=F^{o}(x)$. By the Hölder inequality and co-area Formula (8), for any $0<r<s \leq 1$ and $u \in W_{0, \text { rad }}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$, we have

$$
\begin{align*}
& |u(r)-u(s)| \\
= & \left|\int_{s}^{r} u^{\prime}(t) d t\right| \\
\leq & \int_{s}^{r}\left|\tilde{u}^{\prime}(t)\right| t^{\frac{n-1}{n}}|\log t|^{\frac{(n-1) \beta}{n}} t^{-\frac{n-1}{n}}|\log t|^{-\frac{(n-1) \beta}{n}} d t \tag{16}\\
\leq & \left(n \kappa_{n}\right)^{-\frac{1}{n}}\left(\frac{1}{1-\beta}\right)^{\frac{n-1}{n}}\left(\int_{\mathcal{W}_{s} \backslash \mathcal{W}_{r}} F^{n}(\nabla u) \omega_{\beta} d x\right)^{\frac{1}{n}}\left(-\ln \frac{r}{s}\right)^{\frac{(n-1)(1-\beta)}{n}} \\
= & \left(\frac{n}{\lambda_{\beta, n}}\right)^{\frac{(n-1)(1-\beta)}{n}}\left(\int_{\mathcal{W}_{s} \backslash \mathcal{W}_{r}} F^{n}(\nabla u) \omega_{\beta} d x\right)^{\frac{1}{n}}\left(-\ln \frac{r}{s}\right)^{\frac{(n-1)(1-\beta)}{n}} .
\end{align*}
$$

In particular, when $s=1$, for any $0<r \leq 1$ and $u \in W_{0, \text { rad }}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$, we have

$$
\begin{equation*}
|u(r)| \leq\left(\frac{n}{\lambda_{\beta, n}}\right)^{\frac{(n-1)(1-\beta)}{n}}\left(\int_{\mathcal{W}_{1} \backslash \mathcal{W}_{r}} F^{n}(\nabla u) \omega_{\beta} d x\right)^{\frac{1}{n}}(-\ln r)^{\frac{(n-1)(1-\beta)}{n}} . \tag{17}
\end{equation*}
$$

The definition of $\psi(t)$ in (11) and (12) shows that the anisotropic norm changes as

$$
\Gamma(\psi):=\int_{0}^{+\infty} \frac{\left|\psi^{\prime}\right|^{n} t^{\beta(n-1)}}{(1-\beta)^{n-1}} d t=\int_{\mathcal{W}_{1}} F^{n}(\nabla u)\left|\log F^{o}(x)\right|^{\beta(n-1)} d x .
$$

and (13) shows that the functional $I_{\beta}(\psi)$ and $J_{\beta}(u)$ changes as

$$
\begin{equation*}
I_{\beta}(\psi):=\int_{0}^{+\infty} e^{|\psi|^{\frac{n}{(n-1)(1-\beta)}}-t} d t=\frac{1}{\kappa_{n}} \int_{\mathcal{W}_{1}} e^{\lambda_{n, \beta}|u|^{\frac{n}{(n-1)(1-\beta)}}} d x:=J_{\beta}(u) . \tag{18}
\end{equation*}
$$

For $\delta \in[0,1)$, we define

$$
\tilde{\Lambda}_{\delta}=\left\{\psi \in C^{1}[0, \infty) \mid \psi(0)=0, \Gamma(\psi) \leq \delta\right\} .
$$

Then the existence of an extremal function in Theorem 1 reduces to find $\psi_{0} \in \tilde{\Lambda}_{1}$ such that

$$
\begin{equation*}
Q_{\beta}:=I_{\beta}\left(\psi_{0}\right)=\sup _{\psi \in \tilde{\Lambda}_{1}} I_{\beta}(\psi) . \tag{19}
\end{equation*}
$$

Let $\tilde{g}_{k}(x)$ be a maximizing sequence of (19), that is, $J_{\beta}\left(\tilde{g}_{k}\right) \rightarrow Q_{\beta}$. Since

$$
\int_{\mathcal{W}_{1}} F^{n}\left(\nabla \tilde{g}_{k}\right)\left|\log F^{o}(x)\right|^{\beta(n-1)} d x \leq 1,
$$

then there exist a subsequence (still denoted by $\left.\tilde{g}_{k}\right)$ and a function $\tilde{g}_{0} \in W_{0, \text { rad }}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$ such that

$$
\begin{equation*}
\tilde{g}_{k} \rightharpoonup \tilde{g}_{0}, \quad \tilde{g}_{k} \rightarrow \tilde{g}_{0} \quad \text { pointwise. } \tag{20}
\end{equation*}
$$

Next, we give an inequality and we will use it several times. For any $h \in C^{1}[0, \infty)$ and $t \geq A \geq 0$, by the Hölder inequality, we have

$$
\begin{align*}
h(t) & =h(A)+\int_{A}^{t} h^{\prime}(s) d s \\
& =h(A)+\int_{A}^{t} h^{\prime}(s) s^{\frac{\beta(n-1)}{n}} s^{-\frac{(n-1) \beta}{n}} d s \tag{21}\\
& \leq h(A)+\left(\int_{A}^{t}\left|h^{\prime}(s)\right|^{n} s^{\beta(n-1)} d s\right)^{\frac{1}{n}}\left(\int_{A}^{t} s^{-\beta} d s\right)^{\frac{n-1}{n}} \\
& =h(A)+\left(\int_{A}^{t}\left|h^{\prime}(s)\right|^{n} S^{\beta(n-1)} d s\right)^{\frac{1}{n}}\left(t^{1-\beta}-A^{1-\beta}\right)^{\frac{n-1}{n}} .
\end{align*}
$$

Now we give a lemma involving concentration-compactness alternative, by which we only need to prove that the maximizing sequence $\tilde{g}_{k}(x)$ in (20) does not concentrate at 0 , and then we can pass to the limit in the functional. Firstly, we give a definition.

We say a sequence of functions $u_{k} \in W_{0, r a d}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$ concentrates at $x=0$, denoted by

$$
F^{n}\left(\nabla u_{k}\right) \omega_{\beta} d x \rightharpoonup \delta_{0}
$$

if $\left\|u_{k}\right\|_{\omega_{\beta}} \leq 1$ and any $1>r>0, \int_{\mathcal{W}_{1} \backslash \mathcal{W}_{r}} F^{n}\left(\nabla u_{k}\right) \omega_{\beta} d x \rightarrow 0$.
Lemma 3. [Concentration-compactness alternative] For any sequence $\tilde{v}_{k}, \tilde{v} \in W_{0, \text { rad }}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$, such that $\tilde{v}_{k} \rightharpoonup \tilde{v}$ in $W_{0, \text { rad }}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$, then up to a subsequence (still denoted by $\left.\tilde{v}_{k}\right)$, either (i) $J_{\beta}\left(\tilde{v}_{k}\right) \rightarrow J_{\beta}(\tilde{v})$, or (ii) \tilde{v}_{k} concentrates at $x=0$.

Proof. We assume that (ii) does not hold; then we only need to show that (i) holds. Since (ii) does not hold, then there exist $A>0$ and $\delta \in(0,1)$ such that for sufficiently large k,

$$
\int_{\mathcal{W}_{1} \backslash \mathcal{W}_{e^{-\frac{A}{n}}}} F^{n}\left(\nabla \tilde{v}_{k}\right)\left|\log F^{o}(x)\right|^{\beta(n-1)} d x=\int_{0}^{A} \frac{\left|v_{k}^{\prime}\right|^{n} t^{\beta(n-1)}}{(1-\beta)^{n-1}} d t \geq \delta
$$

where we use the variable of change

$$
\begin{equation*}
F^{o}(x)=e^{-\frac{t}{n}} \text { and } \lambda_{n, \beta}^{\frac{(n-1)(1-\beta)}{n}} \tilde{v}_{k}(x)=v_{k}(t) . \tag{22}
\end{equation*}
$$

By (21), we have

$$
\left|v_{k}(t)-v_{k}(A)\right| \leq(1-\delta)^{\frac{1}{n}}\left(t^{1-\beta}-A^{1-\beta}\right)^{\frac{n-1}{n}} \leq(1-\delta)^{\frac{1}{n}} t^{\frac{(n-1)(1-\beta)}{n}}
$$

Since for any k,

$$
\left|v_{k}(A)\right| \leq A^{\frac{(n-1)(1-\beta)}{n}},
$$

we have for $t \geq T, T$ sufficiently large,

$$
\begin{align*}
v_{k}(t)^{\frac{n}{(n-1)(1-\beta)}} & \leq\left[A^{\frac{(n-1)(1-\beta)}{n}}+(1-\delta)^{\frac{1}{n}} t^{\frac{(n-1)(1-\beta)}{n}}\right]^{\frac{n}{(n-1)(1-\beta)}} \\
& \leq A+\left(1-\frac{\delta}{2}\right)^{\frac{1}{(n-1)(1-\beta)}} t . \tag{23}
\end{align*}
$$

We note that in (23), we applied the inequality if $a>b>0, p>1$. Then, for $x \in \mathbb{R}$ large enough, $(1+a x)^{p} \leq 1+b^{p} x^{p}$.

We split the integral $I_{\beta}\left(v_{k}\right)=I_{1}\left(v_{k}\right)+I_{2}\left(v_{k}\right)$, where

$$
I_{1}\left(v_{k}\right)=\int_{0}^{T} e^{\left|v_{k}(t)\right| \frac{(n-1)(1-\beta)}{n}-t} d t
$$

and

$$
I_{2}\left(v_{k}\right)=\int_{T}^{\infty} e^{\left|v_{k}\right| \frac{(n-1)(1-\beta)}{n}-t} d t
$$

Since \tilde{v}_{k} converges pointwise to \tilde{v}, then v_{k} also converges pointwise to v. Then, by $\left|v_{k}(t)\right| \leq t^{\frac{(n-1)(1-\beta)}{n}}$ and the dominated convergence theorem, we have that $I_{1}\left(v_{k}\right) \rightarrow I_{1}(v)$.

By (23), we have for any small $\epsilon>0$ and T large enough,

$$
\begin{align*}
I_{2}\left(v_{k}\right) & =\int_{T}^{\infty} e^{\left|v_{k}\right| \frac{(n-1)(1-\beta)}{n}-t} d t \\
& \leq e^{A} \int_{T}^{\infty} e^{\left[\left(1-\frac{\delta}{2}\right)^{\frac{(1-\beta)(n-1)}{(1)}}-1\right] t} d t, \tag{24}
\end{align*}
$$

which is smaller than ϵ. Then $I_{\beta}\left(v_{k}\right) \rightarrow I_{\beta}(v)$, that is, $J_{\beta}\left(\tilde{v}_{k}\right) \rightarrow J_{\beta}(\tilde{v})$.
The following lemma is proved in [29]. For $\delta, a>0$, let

$$
\Lambda_{\delta}^{a}=\left\{\left.\phi \in C^{1}[0, \infty)\left|\phi(0)=0, \int_{a}^{\infty}\right| \phi^{\prime}\right|^{n} d t \leq \delta\right\}
$$

Lemma 4 ([29]). For each $a>0$ and $\phi(t) \in \Lambda_{\delta}^{a}$, we have

$$
\begin{equation*}
\int_{a}^{\infty} e^{\phi^{\frac{n}{n-1}}(t)-t} d t \leq \frac{e^{\frac{n}{n-1}}(a)-a}{1-\delta^{\frac{1}{n-1}}} e^{\frac{c^{n}}{n}\left(\frac{n-1}{n}\right)^{n-1} \beta_{n}} e^{1+\frac{1}{2}+\cdots+\frac{1}{n-1}} \tag{25}
\end{equation*}
$$

where $\beta_{n}=\delta\left(1-\delta^{\frac{1}{n-1}}\right)^{-n+1}$ and $c=\frac{n}{n-1} \phi^{\frac{1}{n-1}}(a)$. The inequality tends to an equality if $c^{n} \beta_{n} \rightarrow \infty, a \rightarrow \infty$ and $\delta \rightarrow 0$.

Let $\tilde{f}_{k}(x) \in W_{0, \text { rad }}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$ such that $\tilde{f}_{k}(x)$ concentrates at 0 , that is, $\left\|\tilde{f}_{k}\right\|_{\omega_{\beta}} \leq 1$, $\left|F^{n}\left(\nabla \tilde{f}_{k}\right)\right| \omega_{\beta} \rightharpoonup \delta_{0}$. Define $f_{k}(t)$ from $\tilde{f}_{k}(x)$ by the same transformation as in (22). Then, since $\tilde{f}_{k}(x)$ concentrates at 0 , we have that $\tilde{f}_{k}(x) \rightharpoonup 0$ in $W_{0, \text { rad }}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$ and converges pointwise to 0 .

Lemma 5. Let $f_{k}(t)$ be as above. Then one of the following alternatives holds:
(i) We can find points $a_{k} \in[1, \infty)$ such that

$$
\begin{equation*}
\left|f_{k}\left(a_{k}\right)\right|^{\frac{n}{(n-1)(1-\beta)}}-a_{k}=-2 \log a_{k} ; \tag{26}
\end{equation*}
$$

(ii) If such a_{k} does not exist, then

$$
\limsup _{k \rightarrow \infty} \int_{0}^{\infty} e^{\left|f_{k}(t)\right|^{\frac{n}{(n-1)(1-\beta)}}-t} d t=1
$$

What is more, if the first alternative (i) holds, we can find a_{k} to be the first point in $[1, \infty)$ satisfying (26) and satisfying $a_{k} \rightarrow \infty$ as $k \rightarrow \infty$.

Proof. Since $\left|f_{k}(t)\right| \leq t^{\frac{(n-1)(1-\beta)}{n}}$, then if $t \in[0,1),\left|f_{k}(t)\right|^{\frac{n}{(n-1)(1-\beta)}}-t \leq 0$. However, if $t \in[0,1),-2 \log t>0$, then $\left|f_{k}(t)\right|^{\frac{n}{(n-1)(1-\beta)}}-t<-2 \log t$, which implies that we cannot find a_{k} satisfying (26) in $[0,1)$.

Now we assume (i) does not hold. Then we have $\left|f_{k}(t)\right|^{\frac{n}{(n-1)(1-\beta)}}-t<-2 \log t$, $t \in[1, \infty)$. Furthermore, we have

$$
e^{\left|f_{k}(t)\right|^{\frac{n}{(n-1)(1-\beta)}}-t} \leq t^{-2} \text {, if } t \in[1, \infty) \text {. }
$$

Define the dominating function as follows:

$$
h(t)= \begin{cases}1, & t \in(0,1) \\ \frac{1}{t^{2}}, & t \in[1, \infty)\end{cases}
$$

Then, by the dominated convergence theorem, we obtain that $I_{\beta}\left(f_{k}\right) \rightarrow 1$.
Let (i) hold. We choose the first $a_{k} \geq 1$ satisfying (26). We now prove that $a_{k} \rightarrow \infty$ as $k \rightarrow \infty$. For any large number M, we need to prove that there exist $k_{0} \in \mathbb{N}$, such that for any $k \geq k_{0}, a_{k} \geq M$. Firstly, we choose μ small, such that

$$
\mu t<-2 \log t+t, t \in[0, M)
$$

Now, since \tilde{f}_{k} concentrates, we have for $t \in[0, M)$ and any $k \geq k_{0}$,

$$
\left|f_{k}(t)\right|^{\frac{n}{(n-1)(1-\beta)}} \leq\left(\int_{0}^{M} \frac{\left|f_{k}^{\prime}\right|^{n} t^{\beta(n-1)}}{(1-\beta)^{n-1}} d t\right)^{\frac{1}{(n-1)(1-\beta)}} t<\mu t \leq t-2 \log t
$$

Then we obtain for any $k \geq k_{0}, a_{k} \geq M$.
Now we define the concentration level at 0 ,

$$
J_{\beta, \omega_{\beta}}^{\delta}(0)=\sup _{\tilde{f}_{k} \in W_{0, r a d}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)}\left\{\limsup _{k \rightarrow \infty} J_{\beta}\left(\tilde{f}_{k}\right) \mid \quad F^{n}\left(\nabla \tilde{f}_{k}\right) \omega_{\beta} \rightharpoonup \delta_{0}\right\} .
$$

We can give the estimate for the concentration level.
Lemma 6. For $\beta \in[0,1)$, we have that

$$
\begin{equation*}
J_{\beta, \omega_{\beta}}^{\delta}(0) \leq 1+e^{1+\frac{1}{2}+\cdots+\frac{1}{n-1}} \tag{27}
\end{equation*}
$$

Proof. To prove the lemma, it is sufficient to assume the sequences \tilde{f}_{k} satisfy the first alternative in Lemma 5, because if \tilde{f}_{k} satisfy the second alternative, we can obtain the inequality (27) by Lemma 5.

Firstly, we show that

$$
\lim _{k \rightarrow \infty} \int_{0}^{a_{k}} e^{\left|f_{k}(t)\right|^{\frac{n}{(n-1)(1-\beta)}}-t}=1
$$

where f_{k} and a_{k} are as in Lemma 5. Since $F^{n}\left(\nabla \tilde{f}_{k}\right) \omega_{\beta} \rightharpoonup 0$ and (21), we have that $f_{k} \rightarrow 0$ uniformly on compact subsets of \mathbb{R}^{+}. Then for any $\epsilon, A>0$, we obtain $\left|f_{k}(t)\right|^{\frac{n}{(n-1)(1-\beta)}} \leq \epsilon$ for $t \leq A$ and k large enough. By the property of a_{k}, that is, for $t \leq a_{k},\left|f_{k}(t)\right|^{\frac{n}{(n-1)(1-\beta)}} \leq$ $t-2 \log t$, we obtain

$$
\begin{aligned}
\int_{0}^{a_{k}} e^{\left|f_{k}(t)\right|^{\frac{n}{(n-1)(1-\beta)}}-t} d t & =\int_{0}^{A} e^{\left|f_{k}(t)\right|^{\frac{n}{(n-1)(1-\beta)}}-t} d t+\int_{a_{k}}^{A} e^{\left|f_{k}(t)\right|^{\frac{n}{(n-1)(1-\beta)}}-t} d t \\
& \leq e^{\epsilon} \int_{0}^{A} e^{-t} d t+\int_{A}^{a_{k}} e^{-2 \log t} d t \\
& =e^{\epsilon}\left(1-e^{-A}\right)+\left(\frac{1}{A}-\frac{1}{a_{k}}\right) .
\end{aligned}
$$

Therefore,

$$
\limsup _{k \rightarrow \infty} \int_{0}^{a_{k}} e^{\left|f_{k}(t)\right|^{\frac{n}{(n-1)(1-\beta)}}-t} d t \leq e^{\epsilon}\left(1-e^{-A}\right)+\frac{1}{A} .
$$

Now, as $\epsilon \rightarrow 0$ and $A \rightarrow \infty$, we have

$$
\limsup _{k \rightarrow \infty} \int_{0}^{a_{k}} e^{\left|f_{k}(t)\right|^{\frac{n}{(n-1)(1-\beta)}}-t} d t \leq 1
$$

On the other hand,

$$
\limsup _{k \rightarrow \infty} \int_{0}^{a_{k}} e^{\left|f_{k}(t)\right|^{\frac{n}{(n-1)(1-\beta)}}-t} d t \geq \int_{0}^{a_{k}} e^{-t} d t=1-e^{-a_{k}} \rightarrow 1
$$

Next, we prove that

$$
\lim _{k \rightarrow \infty} \int_{a_{k}}^{\infty} e^{\left|f_{k}(t)\right|^{\frac{n}{(n-1)(1-\beta)}}-t} \leq e^{1+\frac{1}{2}+\cdots+\frac{1}{n-1}}
$$

Set $\delta_{k}=\int_{a_{k}}^{\infty} \frac{\left|f_{k}^{\prime}\right|^{n} t^{\beta(n-1)}}{(1-\beta)^{n-1}} d t$. Then, by (21) with $A=0$ and $t=a_{k}$, we have

$$
\begin{align*}
\delta_{k}=1-\int_{0}^{a_{k}} \frac{\left|f_{k}^{\prime}\right|^{n} t \beta(n-1)}{(1-\beta)^{n-1}} d t & \leq 1-\left(\frac{\left|f_{k}\left(a_{k}\right)\right|^{\frac{n}{(n-1)(1-\beta)}}}{a_{k}}\right)^{(1-\beta)(n-1)} \\
& =1-\left(1-\frac{2 \log a_{k}}{a_{k}}\right)^{(1-\beta)(n-1)} . \tag{28}
\end{align*}
$$

Define the function $g_{k}(t)=\left|f_{k}(t)\right|^{\frac{1}{1-\beta}}$. Then

$$
\begin{equation*}
\int_{a_{k}}^{\infty} e^{\left|f_{k}(t)\right|^{\frac{n}{(n-1)(1-\beta)}}-t} d t=\int_{a_{k}}^{\infty} e^{g_{k}(t)^{\frac{n}{n-1}}-t} d t . \tag{29}
\end{equation*}
$$

By $\left|f_{k}^{\frac{n}{(n-1)(1-\beta)}}(t)\right| \leq t$, we have

$$
\begin{align*}
\int_{a_{k}}^{\infty}\left|g_{k}^{\prime}\right|^{n} d t & =\frac{1}{(1-\beta)^{n}} \int_{a_{k}}^{\infty} f_{k}^{\frac{n \beta}{1-\beta}}\left|f_{k}^{\prime}\right|^{n} d t \\
& \leq \frac{1}{(1-\beta)^{n}} \int_{a_{k}}^{\infty} t^{(n-1) \beta}\left|f_{k}^{\prime}\right|^{n} d t \tag{30}\\
& \leq \frac{\delta_{k}}{1-\beta}:=\delta_{k}^{*} \rightarrow 0
\end{align*}
$$

Now, applying Lemma 4 with $\delta=\delta_{k}^{*}$ and $a=a_{k}$, we obtain

$$
\begin{align*}
& \int_{a_{k}}^{\infty} e^{\left|f_{k}(t)\right|^{\frac{n}{(n-1)(1-\beta)}}-t} d t \\
\leq & \frac{\left.e^{g k} k_{k}\right)^{\frac{n}{n-1}}-a_{k}}{1-\left|\delta_{k}^{*}\right|^{\frac{1}{n-1}}} e^{\frac{c^{n}}{n}\left(\frac{n-1}{n}\right)^{n-1}} \beta_{n}+1+\frac{1}{2}+\cdots+\frac{1}{n-1}, \tag{31}
\end{align*}
$$

where $\beta_{n}=\delta_{k}^{*}\left(1-\left|\delta_{k}^{*}\right|^{\frac{1}{n-1}}\right)^{-n+1}$ and $c=\frac{n}{n-1} g_{k}\left(a_{k}\right)^{\frac{1}{n-1}}$. Therefore, it is left to show that

$$
\limsup _{k \rightarrow \infty} G_{k}:=\limsup _{k \rightarrow \infty}\left[g_{k}\left(a_{k}\right)^{\frac{n}{n-1}}-a_{k}+\frac{g_{k}\left(a_{k}\right)^{\frac{n}{n-1}} \delta_{k}^{*}}{(n-1)\left(1-\left|\delta_{k}^{*}\right|^{\frac{1}{n-1}}\right)^{n-1}}\right] \leq 0
$$

We split G_{k} as follows:

$$
\begin{align*}
G_{k}= & -2 \log a_{k}+\frac{\left(a_{k}-2 \log a_{k}\right) \delta_{k}}{(n-1)(1-\beta)\left(1-\left|\delta_{k}^{*}\right|^{\frac{1}{n-1}}\right)^{n-1}} \\
= & -2 \log a_{k}+\frac{a_{k} \delta_{k}}{(n-1)(1-\beta)\left(1-\left|\delta_{k}^{*}\right|^{\left.\frac{1}{n-1}\right)^{n-1}}\right.}-\frac{2\left(\log a_{k}\right) \delta_{k}}{(n-1)(1-\beta)\left(1-\left|\delta_{k}^{*}\right|^{\frac{1}{n-1}}\right)^{n-1}} \\
= & \left\{-2 \log a_{k}+\frac{a_{k} \delta_{k}}{(n-1)(1-\beta)}\right\}+\frac{a_{k} \delta_{k}\left(1-\left(1-\left|\delta_{k}^{*}\right|^{\left.\left.\frac{1}{n-1}\right)^{n-1}\right)}\right.\right.}{(n-1)(1-\beta)\left(1-\left|\delta_{k}^{*}\right|^{\left.\frac{1}{n-1}\right)^{n-1}}\right.} \tag{32}\\
& -\frac{2\left(\log a_{k}\right) \delta_{k}}{(n-1)(1-\beta)\left(1-\left|\delta_{k}^{*}\right|^{\frac{1}{n-1}}\right)^{n-1}} \\
= & I_{1}^{k}+I_{2}^{k}-I_{3}^{k} .
\end{align*}
$$

We make use of the Maclaurin series expansion. Firstly,

$$
\begin{aligned}
\delta_{k} & =1-\left(-\frac{2 \log a_{k}}{a_{k}}+1\right)^{(1-\beta)(n-1)} \\
& =(1-\beta)(n-1) \frac{2 \log a_{k}}{a_{k}}+C\left(\frac{2 \log a_{k}}{a_{k}}\right)^{2}+o\left(\left(\frac{\log a_{k}}{a_{k}}\right)^{2}\right)
\end{aligned}
$$

for some positive constant C, which depends only on β, n. Thus, we have

$$
\left|I_{1}^{k}\right|=4 C \frac{\left(\log a_{k}\right)^{2}}{a_{k}}+a_{k} o\left(\left(\frac{\log a_{k}}{a_{k}}\right)^{2}\right) \rightarrow 0, \text { as } k \rightarrow \infty .
$$

Also,

$$
\left|I_{3}^{k}\right| \leq C_{1} \frac{\left(\log a_{k}\right)^{2}}{a_{k}}+C_{2} \frac{\left(\log a_{k}\right)^{3}}{a_{k}^{2}}+\left(\log a_{k}\right) o\left(\left(\frac{\log a_{k}}{a_{k}}\right)^{2}\right) \rightarrow 0, \text { as } k \rightarrow \infty .
$$

To estimate I_{2}^{k}, we first use the binomial expansion of $\left(1-\left|\delta_{k}^{*}\right|^{\frac{1}{n-1}}\right)^{n-1}$ to obtain $\left|I_{2}^{k}\right| \leq C a_{k} \delta_{k}\left|\delta_{k}^{*}\right|^{\frac{1}{n-1}}$. Now, using (30) and (33), we obtain

$$
\left|I_{2}^{k}\right| \leq C \frac{\left(\log a_{k}\right)^{\frac{n}{n-1}}}{a_{k}^{\frac{1}{n-1}}} \rightarrow 0, \text { as } k \rightarrow \infty .
$$

Then we have completed the proof of the Lemma.

Proof of Theorem 2. We assume $J_{\beta}\left(\tilde{g}_{k}\right)$ does not converge to $J_{\beta}\left(\tilde{g}_{0}\right)$, where \tilde{g}_{k}, \tilde{g} is as in (20). Thus, by Lemma 6, we obtain

$$
M_{\beta}=\lim _{k \rightarrow \infty} J_{\beta}\left(\tilde{g}_{k}\right) \leq 1+e^{1+\frac{1}{2}+\cdots+\frac{1}{n-1}}
$$

If we can find some $\phi \in \tilde{\Lambda}_{1}$ such that

$$
I_{\beta}(\phi)>1+e^{1+\frac{1}{2}+\cdots+\frac{1}{n-1}}
$$

then clearly $Q_{\beta}>1+e^{1+\frac{1}{2}+\cdots+\frac{1}{n-1}}$ and thus, we obtain a contradiction.
Consider the function $h_{n}(t)$ as follows:

$$
h_{n}(t)= \begin{cases}\left(1-\frac{1}{n}\right)(n-1)^{-\frac{1}{n}} t, & 0 \leq t \leq n \\ (t-1)^{1-\frac{1}{n}}, & n \leq t \leq T_{n} \\ \left(T_{n}-1\right)^{1-\frac{1}{n}}, & t \geq T_{n}\end{cases}
$$

where $T_{n}=(n-1) e^{\left(\frac{n}{n-1}\right)^{n}-\frac{n}{n-1}}+1$. It has been proved in [29] that $\int_{0}^{\infty}\left|h_{n}^{\prime}\right|^{n} d t \leq 1$ and

$$
\begin{align*}
\int_{0}^{\infty} e^{h_{n}(t)^{\frac{n}{n-1}}-t} d t & =1+e^{1+\frac{1}{2}+\cdots+\frac{1}{n-1}}+\gamma^{*}(n) \tag{34}\\
& >1+e^{1+\frac{1}{2}+\cdots+\frac{1}{n-1}}
\end{align*}
$$

Set $\phi_{n}^{\alpha}(t)=\left[\alpha h_{n}(t)\right]^{1-\beta}$ for $\alpha \in(0,1)$. Then

$$
\begin{aligned}
I_{\beta}\left(\phi_{n}^{\alpha}\right) & =\int_{0}^{\infty} e^{\left[\alpha h_{n}(t)\right]^{\frac{n}{n-1}}-t} d t \\
& =\int_{0}^{\infty} e^{\left(\alpha^{\frac{n}{n-1}}-1+1\right) h_{n}(t)^{\frac{n}{n-1}}-t} d t \\
& \geq e^{\left(\alpha^{\frac{n}{n-1}}-1\right)\left\|h_{n}\right\|_{\infty}}\left(1+e^{1+\frac{1}{2}+\cdots+\frac{1}{n-1}}+\gamma^{*}(n)\right)
\end{aligned}
$$

Now we can choose $\alpha=\alpha_{*}$ sufficiently close to 1 such that $I_{\beta}\left(\phi_{n}^{\alpha}\right)>1+e^{1+\frac{1}{2}+\cdots+\frac{1}{n-1}}$. Let us estimate the term $\Gamma\left(\phi_{n}^{\alpha_{*}}\right)$. Since $\left(\phi_{n}^{\alpha_{*}}\right)^{\prime}=0$ for $t \geq T_{n}$, we have

$$
\begin{align*}
\Gamma\left(\phi_{n}^{\alpha_{*}}\right) & =\int_{0}^{+\infty} \frac{\left|\left(\phi_{n}^{\alpha_{*}}\right)^{\prime}\right|^{n} t^{\beta(n-1)}}{(1-\beta)^{n-1}} d t \\
& =\int_{0}^{n} \frac{\left|\left(\phi_{n}^{\alpha_{*}}\right)^{\prime}\right|^{n} t^{\beta(n-1)}}{(1-\beta)^{n-1}} d t+\int_{n}^{T_{n}} \frac{\left.\left|\left(\phi_{n}^{\alpha_{*}}\right)^{\prime}\right|^{n}\right|^{\beta(n-1)}}{(1-\beta)^{n-1}} d t \tag{35}\\
& =I_{1}(\beta)+I_{2}(\beta) .
\end{align*}
$$

Now, by direct calculation, we obtain

$$
\begin{aligned}
I_{1}(\beta) & =(1-\beta) \alpha_{*}^{(1-\beta) n} \int_{0}^{n} h_{n}^{-n \beta}\left|h_{n}^{\prime}\right|^{n} t^{\beta(n-1)} d t \\
& =\alpha_{*}^{(1-\beta) n}(1-\beta) \int_{0}^{n}\left(1-\frac{1}{n}\right)^{n(1-\beta)}(n-1)^{\beta-1} t^{-\beta} \\
& =\alpha_{*}^{(1-\beta) n}\left(1-\frac{1}{n}\right)^{n(1-\beta)}(n-1)^{\beta-1} n^{1-\beta} \\
& =\alpha_{*}^{(1-\beta) n}\left(1-\frac{1}{n}\right)^{(n-1)(1-\beta)}
\end{aligned}
$$

and

$$
\begin{aligned}
I_{2}(\beta) & =\alpha_{*}^{(1-\beta) n}(1-\beta) \int_{n}^{T_{n}} h_{n}^{-n \beta}\left|h_{n}^{\prime}\right|^{n} t^{\beta(n-1)} d t \\
& =\alpha_{*}^{(1-\beta) n}(1-\beta)\left(1-\frac{1}{n}\right)^{n} \int_{n-1}^{T_{n}-1} \frac{1}{s}\left(1+\frac{1}{s}\right)^{\beta(n-1)} d s \\
& \leq \alpha_{*}^{(1-\beta) n}(1-\beta)\left(1-\frac{1}{n}\right)^{n}\left(1+\frac{1}{n-1}\right)^{\beta(n-1)} \int_{n-1}^{T_{n}-1} \frac{1}{s} d s \\
& \leq \alpha_{*}^{(1-\beta) n}(1-\beta)\left(1-\frac{1}{n}\right)^{n}\left(\frac{n}{n-1}\right)^{\beta(n-1)}\left[\left(\frac{n}{n-1}\right)^{n}-\frac{n}{n-1}\right] \\
& =\alpha_{*}^{(1-\beta) n}(1-\beta)\left(1-\frac{1}{n}\right)^{n-1}\left(\frac{n}{n-1}\right)^{\beta(n-1)} B_{n},
\end{aligned}
$$

where $B_{n}=\left(\frac{n}{n-1}\right)^{n-1}-1$. Note that by the above estimates, we have

$$
I_{1}(0)+I_{2}(0) \leq \alpha_{*}^{n}<1 .
$$

Thus, we can choose $\beta=\beta_{*}$, depending only on n, such that $I_{1}\left(\beta_{*}\right)+I_{2}\left(\beta_{*}\right) \leq 1$. Thus, we have finished the proof of the Theorem.

5. Improvement of the Anisotropic Moser-Trudinger Inequality

In this section, we complete the proof of Theorem 3, which can be seen as an improvement of the anisotropic Moser-Trudinger inequality when $u_{k} \rightharpoonup u_{0}$.

Proof of Theorem 3. If $u_{0} \equiv 0$, then we can directly obtain (7) by Theorem 1 . Thus, it is left to consider the case $u_{0} \not \equiv 0$. By (16), we have that $u_{k} \rightarrow u_{0}$ uniformly on $\mathcal{W}_{1} \backslash \mathcal{W}_{r}$, $\forall r \in(0,1)$. Then, by (17) and dominated convergence theorem, we have $u_{k} \rightarrow u_{0}$ in $L^{q}\left(\mathcal{W}_{1}\right)$ for any $q<\infty$.

For any $R>0, k \in \mathbb{N}$, we define the functions

$$
v_{R, k}=\min \left\{\left|u_{k}\right|, L\right\} \operatorname{sign}\left(u_{k}\right) \quad \text { and } \quad w_{R, k}=u_{k}-v_{R, k} .
$$

Since $\lim _{R \rightarrow \infty}\left\|v_{R, 0}\right\|_{\omega_{\beta}}^{n}=\left\|u_{0}\right\|_{\omega_{\beta},}^{n}$ for $\forall p<p\left(u_{0}\right)$, then there exist R large enough such that

$$
p_{0}:=p\left(1-\left\|v_{R, 0}\right\|_{\omega_{\beta}}^{n}\right)^{\frac{1}{(n-1)(1-\beta)}}<1 .
$$

Since $v_{R, k} \rightarrow v_{R, 0}$ a.e. in \mathcal{W}_{1} as $k \rightarrow \infty$ and $v_{R, k}$ is bounded in $W_{0, r a d}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$, up to a subsequence, we can assume that $v_{R, k} \rightharpoonup v_{R, 0}$ weakly in $W_{0, \text { rad }}^{1, n}\left(\mathcal{W}_{1}, \omega_{\beta}\right)$. Then we have

$$
\liminf _{k \rightarrow \infty}\left\|v_{R, k}\right\|_{\omega_{\beta}}^{n} \geq\left\|v_{R, 0}\right\|_{\omega_{\beta}}^{n}
$$

and

$$
\limsup _{k \rightarrow \infty}\left\|w_{R, k}\right\|_{\omega_{\beta}}^{n}=1-\liminf _{k \rightarrow \infty}\left\|v_{R, k}\right\|_{\omega_{\beta}}^{n} \leq 1-\left\|v_{R, 0}\right\|_{\omega_{\beta}}^{n} .
$$

Then we can find $k_{0} \in \mathbb{N}$ such that for $\forall k \geq k_{0}$, we have

$$
\begin{equation*}
p\left\|w_{R, k}\right\|_{\omega_{\beta}}^{\frac{n}{(n-1)(1-\beta)}} \leq \frac{p_{0}+1}{2}<1 \tag{36}
\end{equation*}
$$

Using $u_{k}=w_{R, k}+v_{R, k}$ and $\left|v_{R, k}\right| \leq R$, we obtain

$$
\left|u_{k}\right|^{\frac{n}{(n-1)(1-\beta)}} \leq(1+\epsilon)\left|w_{R, k}\right|^{\frac{n}{(n-1)(1-\beta)}}+C(n, \beta, \epsilon) R^{\frac{n}{(n-1)(1-\beta)}},
$$

where

$$
\begin{equation*}
C(n, \beta, \epsilon)=\left(1-(1+\epsilon)^{-\frac{(n-1)(1-\beta)}{n \beta+1-\beta}}\right)^{-\frac{n \beta+1-\beta}{(n-1)(1-\beta)}} . \tag{37}
\end{equation*}
$$

Now we choose $\epsilon>0$ such that $\frac{(1+\epsilon)\left(1+p_{0}\right)}{2}<1$. By (36), we have

$$
\begin{align*}
& \int_{\mathcal{W}_{1}} e^{p \lambda_{\beta, n}\left|u_{k}\right|^{\frac{n}{(n-1)(1-\beta)}} d x} \tag{38}\\
\leq & \int_{\mathcal{W}_{1}} e^{p \lambda_{\beta, n}(1+\epsilon)\left|w_{R, k}\right|^{(n-1)(1-\beta)}+p \lambda_{\beta, n} C(n, \beta, \epsilon) R^{\frac{n}{(n-1)(1-\beta)}}} d x \\
\leq & \left.C \int_{\mathcal{W}_{1}} e^{p \lambda_{\beta, n}(1+\epsilon)\left\|w_{R, k}\right\| \omega_{\beta}} \frac{n}{(n-1)(1-\beta)} \right\rvert\, \frac{w_{R, k}}{\| w_{R, k}\left|\omega_{\beta}\right|^{\frac{n}{(n-1)(1-\beta)}}} d x \\
\leq & C \int_{\mathcal{W}_{1}} e^{\lambda_{\beta, n}(1+\epsilon) \frac{(1+\epsilon)\left(1+p_{0}\right)}{2}\left|\frac{w_{R, k}}{\left\|w_{R, k}\right\| \omega_{\beta}}\right|^{\left\lvert\, \frac{n}{(n-1)(1-\beta)}\right.}} d x \tag{39}
\end{align*}
$$

for any $k \geq k_{0}$, where C depends only on n, β, ϵ, p and R. Combining (38) with Theorem 1 and the choice of ϵ, we obtain (7). The proof is completed.

6. Conclusions

In this paper, we mainly study the anisotropic Moser-Trudinger-type inequality for radical Sobolev space with logarithmic weight $\omega_{\beta}(x)=\left[-\ln F^{o}(x)\right]^{\beta(n-1)}, \beta \in[0,1)$. Moreover, we obtain the existence of an extremal function when β is small. The extremal function is densely related to the existence of solutions of Finsler-Liouville-type equations. Finally, we obtain the Lions-type concentration-compactness principle, which is the improvement of an anisotropic Moser-Trudinger-type inequality. However, we note that the singular anisotropic Moser-Trudinger-type inequality with logarithmic weight in a unit Wulff ball \mathcal{W}_{1} and the anisotropic Moser-Trudinger-type inequality with logarithmic weight in \mathbb{R}^{n} are still open questions.

Author Contributions: T.Z.: Investigation and writing-original draft preparation; J.L.: writing-review and editing. All authors have read and agreed to the published version of the manuscript.
Funding: This research was funded by the National Natural Science Foundation of China (grant number: 12001472).

Data Availability Statement: Data are contained within the article.
Acknowledgments: The authors sincerely appreciate the editors and referees for their careful reading and helpful comments to improve this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Moser, J. A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 1971, 11, 1077-1092. [CrossRef]
2. Adachi, S.; Tanaka, K. Trudinger type inequalities in \mathbb{R}^{N} and their best exponents. Proc. Amer. Math. Soc. 2000, 128, $2051-2057$. [CrossRef]
3. Flucher, M. Extremal functions for Trudinger-Moser inequality in 2 dimensions. Comment. Math. Helv. 1992, 67, 471-497. [CrossRef]
4. Lam, N.; Lu, G.; Zhang, L. Existence and nonexistence of extremal functions for sharp Trudinger- Moser inequalities. Adv. Math. 2019, 352, 1253-1298. [CrossRef]
5. Lu, G.; Tang, H. Sharp singular Trudinger-Moser inequalities in Lorentz-Sobolev spaces. Adv. Nonlinear Stud. 2016, 16, 581-601. [CrossRef]
6. Lu, G.; Tang, H. Sharp Moser-Trudinger inequalities on hyperbolic spaces with the exact growth condition. J. Geom. Anal. 2016, 26, 837-857. [CrossRef]
7. Trudinger, N.S. On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 1967, 17, 473-483. [CrossRef]
8. Yang, Q.H.; Li, Y. Trudinger-Moser inequalities on hyperbolic spaces under Lorentz norms. J. Math. Anal. Appl. 2019, 472, 1236-1252. [CrossRef]
9. Chang, S.-Y.A.; Yang, P. The inequality of Moser and Trudinger and applications to conformal geometry. Commun. Pure Appl. Math. 2003, 56, 1135-1150. [CrossRef]
10. Cao, D.M. Nontrivial solution of semilinear elliptic equation with critical exponent in \mathbb{R}^{2}. Commun.Partial Differ. Equ. 1992, 17, 407-435. [CrossRef]
11. De Figueiredo, D.G.; Miyagaki, O. H.; Ruf, B. Elliptic equations in \mathbb{R}^{2} with nonlinearities in the critical growth range. Calc. Var. Partial. Differ. Equ. 1995, 3, 139-153. [CrossRef]
12. Lam, N.; Lu, G. Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition. J. Geom. Anal. 2014, 24, 118-143. [CrossRef]
13. Lin, C.S.; Wei, J.C. Locating the peaks of solutions via the maximum principle. II. A local version of the method of moving planes. Comm. Pure Appl. Math. 2013, 56, 784-809. [CrossRef]
14. Ogawa, T. Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem. J. Math. Anal. Appl. 1991, 155, 531-540. [CrossRef]
15. Li, S.; Liang, S.; Repov, D.D. On critical exponential Kirchhoff systems on the Heisenberg group. Rend. Circ. Mat. Palermo Ser. 2 2023, 72, 2565-2577. [CrossRef]
16. Abid, I.; Baraket, S.; Jaidane, R. On a weighted elliptic equation of \mathbb{N}-Kirchhoff type with double exponential growth. Dem. Math. 2022, 55, 634-657. [CrossRef]
17. Calanchi, M.; Ruf, B. On Trudinger-Moser type inequalities with logarithmic weights. J. Differ. Equ. 2015, 258, 1967-1989. [CrossRef]
18. Calanchi, M.; Ruf, B. Trudinger-Moser type inequalities with logarithmic weights in dimension N. Nonlinear Anal. 2015, 121, 403-411. [CrossRef]
19. Leckband, M. A. An integral inequality with applications. Trans. Amer. Math. Soc. 1984, 283, 157-168. [CrossRef]
20. Roy, P. Extremal function for Moser-Trudinger type inequality with logarithmic weight. Nonlinear Anal. 2016, 135, 194-204. [CrossRef]
21. Wulff, G. Zur Frage der Geschwindigkeit des Wachstums und der Auflosung der Kristallflächen. Z. Krist 1901, 34, 449-530.
22. Wang, G.; Xia, C. Blow-up analysis of a Finsler-Liouville equation in two dimensions. J. Differ. Equ. 2012, 252, 1668-1700. [CrossRef]
23. Alvino, A.; Ferone, V.; Trombetti, G.; Lions, P. Convex symmetrization and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 1997, 14, 275-293.
24. Belloni, M.; Ferone, V.; Kawohl, B. Isoperimetric inequalities, wulffshape and related questions for strongly nonlinear elliptic operators. Z. Angew. Math. Phys. 2003, 54, 771-783. [CrossRef]
25. Ferone, V.; Kawohl, B. Remarks on a Finsler-Laplacian. Proc. Amer. Math. Soc. 2009, 137, 247-253. [CrossRef]
26. Fonseca, I.; Muller, S. A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinb. Sect. A. 1991, 119, 125-136. [CrossRef]
27. Bellettini, G.; Paolini, M. Anisotropic motion by mean curvature in the context of Finsler geometry. J. Hokkaido Math. 1996, 25, 537-566. [CrossRef]
28. Wang, G.; Xia, C. A characterization of the wulff shape by an overdetermined anisotropic PDE. Arch. Ration. Mech. Anal. 2011, 99, 99-155. [CrossRef]
29. Carleson, L.; Chang, S.-Y.A. On the existence of an extremal function for an inequality by J. Moser. Bull. Sci. Math. 1986, 110, 113-127.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

