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Abstract: We have generalized, in the current study, the results of research presented earlier with
the aim of obtaining an approximate solution for the creeping, plane-parallel flow of viscoplastic
non-Newtonian fluid where the focus is on the study of rivulet fluid flows on an inclined surface.
Namely, profiles of velocity of flow have been considered to be given in the same form as previously
(i.e., Gaussian-like, non-stationary solutions) but with a novel type of pressure field p. The latter has
been chosen for solutions correlated explicitly with the critical maximal non-zero level of stress τs in
the shared plane layer of rivulet flow, when it begins to move as viscous flow (therefore, we have
considered here the purely non-Newtonian case of viscoplastic flow). Correlating phenomena such as
the above stem from the equations of motion of viscoplastic non-Newtonian fluid considered along
with the continuity equation. We have obtained a governing sub-system of two partial differential
equations of the first order for two functions, p and τs. As a result, a set of new semi-analytical
solutions are presented and graphically plotted.

Keywords: rivulet flow; non-Newtonian fluid; creeping viscoplastic flow
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1. Introduction, the Basic Model

During field observations and experimental studies of the motions of Newtonian and
non-Newtonian fluids, flows in the form of rivulets are often recorded [1–7]. Rivulet flows
can manifest themselves both as an independent (main) hydrodynamical flow and as a
secondary flow due to the loss of hydrodynamic stability [7–15].

The simplest rivulet currents obviously include the classical Couette, Poiseuille, and
Nusselt flows. These flows of a viscous incompressible Newtonian fluid are described by ex-
act solutions of the Navier–Stokes equations. One review announced a generalization of the
classical exact solutions of the Newtonian hydrodynamic equations from one-dimensional
flows to three-dimensional fluid flows [16]. Even in this Newtonian case, finding exact or
semi-analytical solutions is a difficult task.

When the non-Newtonian rheology of the liquid is taken into account, non-linear
properties begin to appear, which are caused by the properties of the material. In non-
Newtonian fluids, viscosity dependent in general case on strain rate is known to be changed
due to the non-linear dynamical properties of the medium inside the fluid’s layer, which
experiences a transition phase becoming either more liquid or more solidified. In this
case, the hydrodynamical equations become even more difficult to solve analytically. The
complexity of integrating the equations of motion with partial derivatives can explain the
rather small number of scientific papers with analytical approach describing the rivulet
flows of non-Newtonian fluids.
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In the current research, a particular class of semi-analytical solutions is proposed,
allowing a study of the structure of hydrodynamic fields for plane-parallel rivulet flows,
taking into account gravity (and additionally the dynamic Marangoni effect [17] if required
in a particular engineering problem). This made it possible to identify new directions for
future research. In this article, plane-parallel flows with a non-zero threshold for plasticity
are investigated. The flow of a non-Newtonian fluid is realized on an inclined surface
with a change in pressure field. A family of velocities is used in a form of Gaussian-type
functions for each component [17] but with a much larger choice of analytical and semi-
analytical solutions for the pressure field. Thus, this article provides a generalization of
flow of a non-Newtonian fluid of the Poiseuille and Nusselt types for a two-dimensional
velocity field.

According to [17–20], the system of Equations (1)–(3) that governs the dynamics for
a particular family of viscoplastic rivulet flows (in general, a Bingham fluid if plasticity
effect of flow is also taken into account) should be presented in a 2D case in the Cartesian
coordinates, according to the approach suggested earlier in [17–19].

We will investigate here the novel family of solutions where non-zero plasticity effect
for the flow field is also taken into account (more general solutions than those investigated
previously in [17,19,20] for the case of absence of plasticity effect). This implies that we
will consider the profiles of flow velocity in Equations (1)–(3), which are given by formulae
suggested in [19] for solutions (here and below we have chosen

(
8µ
ρ

)
= 1 in appropriate

units of scaling in the physical sense), but with a novel type of pressure field p chosen for
such solutions 
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where vx is the component of rivulet velocity in the Ox-direction; vy is the component of
rivulet velocity in the Oy-direction; µ is the coefficient of rivulet flow’s dynamic viscosity
(which is supposed to be locally constant); and ρ is the constant density of rivulet flow.

In addition, let us clarify that in the current study, we will consider (as previously
in [17]) only the Cauchy problem in the whole space for which we suggest a Gaussian-like
profile for both velocity components (1) (which are proved in [19] to satisfy the continuity
equation). This is with the aim to retrieve the internal pressure field p (inside the rivulet
flow) from Equations (2) and (3), as well as with the aim to retrieve from these aforemen-
tioned equations the variable but non-zero function for the level of flow plasticity τs (τs ̸= 0).
This would definitely mean that we should investigate a purely non-Newtonian case of
viscoplastic flow in our semi-analytical research.

Let us note, as previously in [19], that axis Ox coincides with the initial main direction
of slowly moving advancing the front of flow on a surface which is inclined on angle α with
respect to the horizontal plane. Internal dynamics of a rivulet is assumed to correspond to
the simple case of plane-parallel flow, with absence of local intermixing of plane layers of a
rivulet’s flow (see [17–19]):

ρ
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sxx = 2 (µ + τs
U ) ∂ vx

∂ x , sxy = 2 (µ + τs
U ) ( ∂ vx

∂ y +
∂ vy
∂ x ) , U = 1

µ

(√
sxx2 +

sxy2

4 − τs

)
,

∂ vx
∂ x = sxx/2(µ + τs

U ) ,

(3)

where (according to the designations in work [17]) sxx, sxy are the appropriate compo-
nents of the stress tensor (due to the specificity of this type of plane-parallel flow [18],
syx = sxy, syy = −sxx); {ρgx, ρgy} are volumetric components of the gravity field, where
{gx, gy} = {g sinα, 0}; τs is a critical maximal level of stress in the shared plane layer of rivulet
flow when it begins to move as viscous flow (we will consider here and below only the
case of non-zero plasticity τs ̸= 0, i.e., the purely non-Newtonian case of viscoplastic flow).

2. Semi-Analytical Solving Procedure for Approximation of Creeping Flow

Let us consider the creeping but non-stationary [21–24] approximation of the hydrody-
namical Equations (2) and (3) for 2D rivulet flow (1), according to the approach suggested
earlier in [20]. Such essential simplification reduces convective terms in the left part of
(2) to be approximately equal to zero due to the presence of negligible terms (for slowly
moving rivulet flow) with respect to the right part of momentum Equation (2) (mainly, to
the terms, associated with viscous forces). Indeed, we then obtain Equations (4) and (5)
presented below.

It is worth noting that components of velocity (1) have been chosen, according to the
results of [17], to satisfy Equations (4)–(6):
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(6)

So, we can obtain the sub-system of two partial differential equations of the 1st
order for two functions, p and τs, from the two first equations of system (4) (by gradually
subtracting the appropriate parts of equations of system (6)) 0 = − ∂ p

∂ x + 2 ∂ τs
∂ y + ρ g sin α,

0 = − ∂ p
∂ y + 2 ∂ τs

∂ x ,
(7)

which determines the dependence of a critical maximal level of stress in the shared plane
layer of rivulet flow when it begins to move as viscous flow (non-zero plasticity) τs on
pressure p or, more generally, that one depends on the previous flow dynamics.
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For example, in a simple case, if p in (7) equals to hydrostatic pressure depending on
height (x·sinα) in the separate sufficiently thin layer of rivulet flow (i.e., p = ρg (x sinα) for
the plane-parallel rivulet [17]), Equation (4) should be simplified to (8) below: ρ ∂ vx

∂ t = 2µ ∂2vx
∂ y2 + 2 ∂ τs

∂ y ,

ρ
∂ vy
∂ t = 2µ

∂2vy
∂ x2 + 2 ∂ τs

∂ x .
(8)

This means, taking into account (6), that the approximation for the level of flow
plasticity τs = τs (t) (τs ̸= 0) comes into play when we choose the specific realistic dynamics
representing the rivulet flow within its boundaries.

We should note that the 1st and 2nd equations of system (4) are supposed to have an
appropriate solution, (1) or (6) (components of velocity vx and vy), with respect to which,
nevertheless, the pressure field p and the level of flow plasticity τs should be correlated by
additionally using the continuity equation as shown below{

∂ vx
∂ x +

∂ vy
∂ y = 0

}
⇒

0 = − ∂2 p
∂ x2 − ∂2 p

∂ y2 + 2
∂2
(

2µ( ∂ vx
∂ y +

∂ vy
∂ x )+2τs

)
∂ x∂ y , ⇒ ∆p = 4 ∂2τs

∂ x∂ y

(9)

To obtain (9), we should differentiate the 1st equation of system (4) or (7), with respect
to coordinate x, and then the 2nd equation with respect to coordinate y. Then, afterwards,
we should sum up these results of differentiation.

It should also be highlighted that solving the algorithm for (9) could be easier to
run with the aim of obtaining the final solution for a realistic case of rivulet flow surface
dynamics in engineering applications (with appropriate boundary conditions). However,
untrue solutions may come through. For example, the pair of solutions {p = ρg (x sin α),
τs = τs (t)} is still actual and valid in both cases (7) and (9). However, if we suggest τs = τs (t)
to be a part of solution in (9) to obtain the other part of the required solution for pressure
field p, the untrue solution p ∼ 1

2π ln
(√

x2 + y2
)

could be suggested to solve (9) (it
satisfies both parts of (9) but would not satisfy both parts of (7) with a chosen function
τs = τs (t) for (7)). Hence, researchers should verify each solution of (9) to satisfy both parts
of Equation (7), additionally.

Nevertheless, we can point out particular classes of solutions for function τs (10) which
stem from (7) as well

0 = 2
∂2 τs

∂ y2 − 2
∂2 τs

∂ x2 , (10)

where the latter equation is satisfied for the partial solutions (11) pointed out below (but is
not limited to them):

(1) τs ∼ x2 + y2 ⇒ p ∼ 4x × y + ρ gx sin α;

(2) τs ∼ sin x × sin y ⇒ p ∼ −2 cos x × cos y + ρ gx sin α;

(3) τs ∼ cos x × cos y ⇒ p ∼ − 2 sin x × sin y + ρ gx sin α.

(11)

Let us specifically note that Equation (10) is known to have its general solution in a
form (12) as follows [25]:

τs = f (x + y) + h (x − y) (12)

where {f, h} are arbitrary functions.
It is worth noting that an additional class of solutions can be presented for system (7)

with constant Bernoulli-function B (which can be associated with constant hydrodynamical
head of rivulet flow) where Bernoulli-function B is given by the expression below:

B =
1
2
(
→
v

2
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2
(
→
v

2
) ,

→
v =

{
vx, vy

}
(13)
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3. Discussion

Let us discuss a novel type of solution for the creeping, plane-parallel rivulet flow
described by Equations (1)–(3) which generalizes the results of [17]. Namely, we have
considered here profiles of velocity of flow in Equations (1)–(3), which are given below by
formulae of a Gaussian type suggested in [19] for such solutions

→
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}
=


(

8 µ
ρ

)
√

4π
(

2µ
ρ

)
t
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but with a novel type of pressure field p chosen for solutions correlated explicitly with the
help of (7) or (9) with a critical maximal non-zero level of stress τs in the shared plane layer
of rivulet flow, when it begins to move as viscous flow. Hence, we have considered here
the purely non-Newtonian cases of viscoplastic flow where the critical maximal level of
stress τs depends on the previous flow history in the sense of its dynamical characterestics.
Namely, few partial types have been considered:

1. A simple case of hydrostatic pressure p depending on height (x sinα) in the separate
sufficiently thin layer of rivulet flow (i.e., p = ρg(x sinα) for the plane-parallel rivulet),
which corresponds via (7) to the level of flow plasticity τs = τs (t) (τs ̸= 0);

2. Solutions (11) satisfying (7) and (10):

(1) τs ∼ x2 + y2 ⇒ p ∼ 4x × y + ρ gx sin α;

(2) τs ∼ sin x × sin y ⇒ p ∼ −2 cos x × cos y + ρ gx sin α;

(3) τs ∼ cos x × cos y ⇒ p ∼ − 2 sin x × sin y + ρ gx sin α;

3. Solutions with additional demand, still satisfying (7), but with constant Bernoulli-
function B (which can be associated with the constant hydrodynamical head of rivulet
flow) where Bernoulli-function B is given by the expression below:

p = B − 1
2 (

→
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) , B = const

→
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)
Finalizing the discussion, we should conclude that although a lot of exact solutions

are known to be obtained in various hydrodynamical systems of equations [23,24], any
new solution for resolving the aforementioned non-linear systems (4) and (5) of equations
videlicet would be useful for practical application. As far as we know, general, analytical
solutions do not exist for most cases of boundary or initial conditions for this system and
the only way is to obtain some particular solutions (as, e.g., presented below in Figures 1–3
for pressure p corresponding to cases (11) pointed out above):



Mathematics 2024, 12, 779 6 of 11

Mathematics 2024, 12, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 1. A schematic plot for pressure p = 4xy + ρgxsinα (meanings on vertical axis); meanings of 
{x,y} are scaled for each coordinate with respect to the appropriate horizontal axis. 

 
Figure 2. A schematic plot for pressure p = −2cosx cosy + ρgxsinα (meanings on vertical axis); mean-
ings of {x,y} are scaled for each coordinate with respect to the appropriate horizontal axis. 

Figure 1. A schematic plot for pressure p = 4xy + ρgxsinα (meanings on vertical axis); meanings of
{x,y} are scaled for each coordinate with respect to the appropriate horizontal axis.

Mathematics 2024, 12, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 1. A schematic plot for pressure p = 4xy + ρgxsinα (meanings on vertical axis); meanings of 
{x,y} are scaled for each coordinate with respect to the appropriate horizontal axis. 

 
Figure 2. A schematic plot for pressure p = −2cosx cosy + ρgxsinα (meanings on vertical axis); mean-
ings of {x,y} are scaled for each coordinate with respect to the appropriate horizontal axis. 

Figure 2. A schematic plot for pressure p = −2cosx cosy + ρgxsinα (meanings on vertical axis);
meanings of {x,y} are scaled for each coordinate with respect to the appropriate horizontal axis.

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 3. A schematic plot for pressure p = −2sinx siny + ρgxsinα (meanings on vertical axis); mean-
ings of {x,y} are scaled for each coordinate with respect to the appropriate horizontal axis. 

Regarding the critical maximal level of stress τs corresponding to cases (11), pointed 
out above, this is presented below in Figures 4–6: 

 
Figure 4. A schematic plot for the critical maximal level of stress τs = x2 + y2 (meanings on the vertical axis); 
meanings of {x,y} are scaled for each coordinate with respect to the appropriate horizontal axis. 

Figure 3. A schematic plot for pressure p = −2sinx siny + ρgxsinα (meanings on vertical axis); meanings
of {x,y} are scaled for each coordinate with respect to the appropriate horizontal axis.



Mathematics 2024, 12, 779 7 of 11

Regarding the critical maximal level of stress τs corresponding to cases (11), pointed
out above, this is presented below in Figures 4–6:
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It is worth noting that in the current study, we have generalized the results of research
presented in [17]. Finally, let us outline restrictions on the range of applicability of the pre-
sented approach. Among these restricting assumptions are the constancy of the coefficient µ
of rivulet flow’s dynamic viscosity (which should in reality depend on heat exchange inside
rivulet flow between separated layers). As for discussion of the boundary conditions at the
free surface of the rivulet (a key feature of any rivulet flow), in the current research, we have
considered only the Cauchy problem in the whole space. It should also be mentioned that
the additional driving force of the rivulet flows is surface tension (particularly, a constant
surface tension for the chosen type of solutions, as reported previously in [17]).

Also, studies [25–60] should be mentioned, where work [38] is perhaps the key paper
on the rivulet flow of a viscoplastic fluid. Meanwhile, works [39–48] present a part of the
contributions which stem from the large body of work on Newtonian and non-Newtonian
rivulet flows carried out by Duffy and his research team in Scotland over the last couple
of decades (not a complete list). In addition, handbook [25] concerns the problem under
consideration, for which the theoretical basis has been described in detail, for solving a
one-dimensional heat equation such as equations in (6) mentioned above. Works [61–64]
describe hydrodynamical flows of incompressible couple stress or classical fluid with a
constant or invariable-under-appropriate-assumptions Bernoulli function.

4. Conclusions

In the current study, we have generalized the results of research presented earlier
(see [17,19,20]) but with a novel type of pressure field p chosen for solutions correlated
explicitly with the critical maximal non-zero level of stress τs in the shared plane layer of
rivulet flow (with help of (7) or (9)) when it begins to move as viscous flow. Therefore,
we have considered here the purely non-Newtonian case of solution {p,

→
v =

{
vx, vy

}
} of

viscoplastic flow (1), which exactly satisfies the equations of motion (2) and (3) along with
the continuity equation.

With the aim of obtaining an approximate solution for the creeping, plane-parallel flow
of viscoplastic non-Newtonian fluid where the attention is focused on the study of rivulet
fluid flows (4)–(5) on inclined surface, the profiles of velocity of flow have been considered to
be given in the same form (1) as previously (i.e., Gaussian-like, non-stationary solutions).

These are proven to satisfy the continuity equation as well as momentum Equations (2)
and (3). Profile of pressure has been chosen in a form (11) or (13) correlating to the obtained
governing sub-system (7) (stemming from alma-mater system (2) and (3) or (4) and (5)) of
two partial differential equations of the first order for two functions, p and τs. Thus, a novel
class of semi-analytical solutions for the nonlinear system, describing the rivulet flow of
viscoplastic fluid, is presented.

Let us additionally clarify that the presented profiles of velocity (1) and pressure (11)
or (13) fully satisfy the equations of motion (1)–(3) or (4) and (5). These equations of motion
have been formulated in book [18] earlier. Since our solutions stem from the comprehensive
model presented in [18], well-known among specialists in hydrodynamics over a long
period of time (one can see various types of flows presented there for different cases as well
as initial or boundary conditions), they are obviously valid. To conclude, the validity is
confirmed by a comprehensive model presented in [18].

5. Remarks (with Highlights)

• Semi-analytical ansatz is developed for modeling viscoplastic rivulet flows.
• The 2D creeping approximation for rivulet flow on inclined surface is considered.
• An analytical model is suggested for solving equations of momentum and continuity.
• A non-stationary solution to the system of PDEs for rivulet flow dynamics is obtained.
• Profiles of flow velocity have been considered to be Gaussian-like solutions.
• A non-zero critical maximal level of stress τs in the shared layer of rivulet flow is chosen.
• Pressure field p is correlated with critical maximal non-zero level of stress τs.
• Solutions satisfy gravity-driven rivulet flow, driven also by constant surface tension.
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