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Abstract: To improve the inventory management of cold chain logistics, we propose an economic
order quantity (EOQ) inventory model for temperature-sensitive deteriorating products. Considering
that the products are temperature-sensitive, the deterioration rate of the proposed model is a function
of the temperature. In addition, the transportation cost, which is a function of the quantity ordered, is
considered in this study. This article aims to find the optimal value of the total profit, selling price,
and the length of the ordering cycle. Numerical examples are provided; the sensitivity analysis shows
that the total profit is much more sensitive to transportation costs, compared with ordering and
holding costs.
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transportation cost
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1. Introduction

The fierce competition among corporations in the global market has driven decision
makers to pay more attention to maneuvering their supply chain with inventory policies
strategically [1]. The classical economic order quantity (EOQ) model, proposed by Ford W.
Harris [2], has been developed extensively, with the general assumption that the perishabil-
ity of the products is negligible. This assumption holds true for durable goods such as steel
and toys for their extremely slow deterioration in quality.

However, the degree of perishability of products can be crucial to finding an effective
and efficient inventory policy. Deterioration can be defined as decay, degradation, or
spoilage during storage such as exposure to light, oxygen, moisture, air quality, microorgan-
isms, and temperature. Products such as pharmaceuticals and chemical compounds usually
lose value with a longer time from production to consumption. Ghare and Schrader [3]
were the first researchers to consider deteriorating items in the inventory model. They
established an exponentially deteriorating inventory model and divided the deterioration
characteristics into direct spoilage, physical depletion, and deterioration. Nakhai and
Jafari [4] developed a deteriorating inventory model for medicinal drugs, where the de-
mand rate was inventory level-dependent, and the deterioration rate was a function of the
ordering cycle. Extended versions of inventory models have been developed according
to the characteristics of perishable products and the factors that cause them to deteriorate,
with a similar assumption of a constant deterioration rate [5–11].

Deterioration lowers customers’ intention to purchase, forcing sellers to reduce the
selling price before the shelf time is up. To balance the losses in sales and the losses in
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excessive inventory, the objective of defining optimal inventory policies shifts from cost
minimization to profit maximization. Hwang and Shinn [12] were the first to consider non-
linear, price-dependent demand in an inventory problem with a constant deterioration rate.
Mukhopadhyay et al. [13] built a deteriorating inventory model with a price-dependent
demand rate and time-proportional deterioration rate to consider the dynamic deterioration
rate. Wang et al. [14] provided a deteriorating inventory model in a multi-echelon supply
chain setting, where the demand rate is constant and the deterioration rate is time-sensitive.
Other financial performance aspects, such as trade credit or delayed payment, can have
an impact on inventory management [15–21]. Tiwari et al. [19] proposed an integrated
inventory model under two-level partial trade credit for deterioration products, where
demand is a function of price and the deterioration rate is time-varying. Gupta et al. [20]
developed a deteriorating inventory model with permissible delay in payments, where
demand is a constant value and the deterioration rate is time-dependent. Their model
allows for partial backlogging under a two-warehouse environment. Mahata et al. [21]
proposed an EOQ model for deteriorating items under two-level trade credit, where the
deterioration rate is a non-decreasing function of time and the demand rate is a function of
the customer’s trade credit period offered.

Among the most challenging products in inventory management are temperature-
sensitive ones, such as vaccines, which requires cold chain logistics to keep the temperature
under tight control [22–25]. Dye [22] developed an inventory model with options for
preservation technology investment, where the deterioration rate is a function of the
retailer’s capital investment. Shah et al. [23] presented an inventory system for non-
instantaneously deteriorating products with a time-dependent deterioration rate while
assuming the demand rate to be a function of the selling price and frequency of adver-
tisement. Mishra et al. [24] proposed a deteriorating inventory model with preservation
technology investment. They assumed the deterioration rate to be a function of preservation
technology investment and demand to be price- and stock-related.

The inventory problem studied here concerns perishable chilled food, such as yogurt,
which has a steep, time-proportional decay and whose freshness is very sensitive to the
storage temperature [26]. For the food industry, not only the product is perishable with a
temperature-sensitive deterioration rate [27], but also the demand is price-sensitive [28–30].
From the retailer’s perspective, the decision of optimal pricing to maximize profitability
should be integrated with the inventory policy. Yang and Tseng [30] proposed a de-
teriorating inventory model for chilled food with a price-dependent demand rate and
time-proportional deterioration rate.

Most researchers assume that the transportation cost is negligible. However, trans-
portation costs could be significant in cold chain logistics. Zhang and Liu [31] studied the
cost of cold chain logistics in the purchasing storage–sale of fresh agricultural products.
Their simulation results showed that the transportation cost accounts for almost one-third
of the total cost, more than the storage cost. When the purchase quantity increased, the total
costs of cold chain logistics increased significantly, even with the reduced traffic volume.

This research aims to fill this gap by proposing an EOQ model for temperature-
sensitive deteriorating items, assuming that the demand is nonlinear and price-dependent
and considering transportation costs in cold chain logistics. The rest of this paper is
structured as follows: The model formulations are proposed in Section 2. The numerical
experiment and results are illustrated in Section 3. The sensitivity analysis of the critical
parameters is performed in Section 4. Finally, conclusions are presented in Section 5.

2. Model Formulation
2.1. Notations and Assumptions

In this research, a deteriorating inventory model with a price-dependent demand rate
that also includes transportation cost, in addition to the holding cost and ordering cost, is
proposed. To develop a continuous-review deterministic inventory model with dynamic
deterioration, the notations used for this model are listed in Table 1.
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Table 1. Notations.

Notation Description

K Length of each cycle (decision variable)
p Selling price per unit item (decision variable)
S Ordering cost for the retailer per cycle
c Purchase cost for the retailer per unit item
h Inventory holding cost for the retailer per unit item
θ Deterioration rate; equal to θ = 0.03e0.084t

t Storage temperature of products
D(p) Demand rate, which is function of price p and equals αp−β

α Scale parameter of demand curve (α > 0)
β Shape parameter of demand curve (β > 1)
f Transportation cost per unit

TC Retailer’s total cost
TP Retailer’s total profit

Further, the following assumptions are made on the models:

(1) The deterioration rate (θ) is a function of the temperature (t), where θ = 0.03e0.084t and
0 < θ < 1. The deterioration rate (θ) increases as the temperature (t) increases [30].

(2) Shortage and backordering are not allowed in this model.
(3) The lead time is negligible.
(4) The time horizon is infinite.
(5) Deteriorated products are not replaceable or repairable.
(6) The demand rate (D(p)), depending on the selling price of the product, equals αp−β,

where α is a scale parameter and β is a price-elasticity coefficient [13].

2.2. Model Development

The inventory model is depicted graphically in Figure 1, where the solid-line curve
indicates the inventory level vs. decay and the dashed-line curve indicates the inventory
level vs. the demand rate (D(p)). Figure 2 shows the inventory profile of the retailer,
where k is the length of each cycle. According to Cohen’s [32] research, depletion co-occurs
with demand and decay. Let I(k) be the inventory level at time k (0 ≤ k ≤ K), which the
differential function can represent as

dI(k)
dk

= −θ·I(k)− d(p), 0 ≤ k ≤ K. (1)
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When k = K, we have
I(K) = 0. (2)

The solution to Equation (1) can be derived as

I(k) =
D(p)

θ
·
[
eθ(K−k) − 1

]
, 0 ≤ k ≤ K, (3)

where I(0) is the initial inventory level when there is decay and the demand rate D(p) is
assumed to be positive, having a negative derivative (d(p)) in its entire domain.

Let Z(k) be the loss in stock due to decay in the time interval [0, k]. Consequently,
Z(K), which is the difference in inventory levels with and without decay at the end of the
cycle, can be stated as (see Appendix A)

Z(K) =
D(p)

θ
·
(

eθK − 1
)
− D(p)·K. (4)

Then, we can obtain the quantity ordered (QK) in each cycle as

QK = Z(K) + K·D(p) =
D(p)

θ
·
(

eθK − 1
)

. (5)

Based on the assumptions in Section 2.1, the total cost for the retailer per cycle is

TC(K, p) = Ordering Cost + Purchase Cost + Holding Cost + Transportation Cost

= S + c·QK + h·
∫ K

0 I(k)dk + f ·QK

(6)

Hence, the total cost for the retailer per unit of time is

TC(K, p) =
TC(K, p)

K
=

S
K
+

c·D(p)·
(
eθK − 1

)
θK

+
h·D(p)·

(
eθK − θK − 1

)
θ2K

+
f ·D(p)·

(
eθK − 1

)
θK

(7)

By using a truncated Taylor series expansion and assuming that θK ≪ 1, we have

eθK ≈ 1 + θK +
θ2K2

2
. (8)

For small values of θK, Equation (7) can be rewritten as
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TC(K, p) ≈ S
K
+

c·D(p)·
(

θK +
θ2K2

2

)
θK

+

h·D(p)·
(

θ2K2

2

)
θ2K

+

f ·D(p)·
(

θK +
θ2K2

2

)
θK

=
S
K
+ c·D(p) +

D(p)·K
2

·(c·θ + h) + f ·D(p) +
f ·D(p)·K·θ

2
.

(9)

The derivative of the total cost function can be expressed as

∂TC(K, p)
∂K

=
−S
K2 + (c + f )·D(p) + (c + f )·D(p)·θ

2
+

h·D(p)
2

(10)

We solve ∂TC(K,p)
∂K = 0 to obtain the optimal cycle length.

K∗ =

√
2S

(c + f )·D(p)·(2 + θ) + h·D(p)
(11)

The retailer’s total profit can be expressed as

TP(K, p) = p·D(p)− TC(K, p)

= p·D(p)− (c + f )· D(p)−
√

s·[(c + f )·D(p)·(2 + θ) + h·D(p)]
2

−[(c + f )·D(p)·θ + h·D(p)]·
√

S
2·(c + f )·D(p)·(2 + θ) + 2·h·D(p)

.

(12)

The derivative of the total cost function is

∂TP(K,p)
∂p = D(p) + D′(p)

·

p − (c + f )− S·(h + (c + f )·(θ + 2))

4·
√

S·(h·D(p) + D(p)·(c + f )·(θ + 2))
2

+
S·(2·h + 2·(θ + 2)·(c + f ))·D(p)·(h + θ·(c + f ))

2·
√

S·(2·D(p)·(h + (θ + 2)·(c + f )))3

−
√

S
2·D(p)·(h + (θ + 2)·(c + f ))

·(h + θ·(c + f )) ]

(13)

And let ∂TP(K,p)
∂p = 0; this yields the optimal price as

p∗ =
−D(p)
D′(p)

+ (c + f ) +
S·(h + (c + f )·(θ + 2))

4·
√

S·(h·D(p) + D(p)·(c + f )·(θ + 2))
2

− S·(2·h + 2·(θ + 2)·(c + f ))·D(p)·(h + θ·(c + f ))

2·
√

S·(2·D(p)·(h + (θ + 2)·(c + f )))3

+

√
S

2·D(p)·(h + (θ + 2)·(c + f ))
·(h + θ·(c + f ))

(14)

where D(p) equals αp−β, α is a scale parameter, and β is a price-elasticity coefficient.
We can consider the effects of alteration in product perishability and pricing on

the order decision and examine the optimal ordered quantity of the system. From
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Equations (5), (11), and (14), we can obtain the optimal order quantity, the optimal total
cost, and the optimal total profit as follows:

Q∗
K =

αp∗−β

θ
·
(

eθK∗ − 1
)

. (15)

TC(K∗, p∗) =
S

K∗ + c·αp∗−β +
αp∗−β·K∗

2
·(c·θ + h) + f ·αp∗−β +

f ·αp∗−β·K∗·θ
2

. (16)

TP(K∗, p∗) = αp∗1−β − S
K∗ − (c + f )· αp∗−β − αp∗−β·K∗

2
·(θ·(c + f ) + h). (17)

3. Numerical Example and Results

A numerical example illustrates the proposed model, and the optimal total profit,
selling price, cycle time, and ordered quantity are solved using MATLAB R2020b. The
parameters are in appropriate units and mainly adapted from Mukhopadhyay et al. [13]
and Chen and Sarker [33], as shown in Table 2.

Table 2. Parameter settings.

Parameters Values

S 450
c 40
h 1.5
α 160,000,000
β 2.21
f 2.5

The initial set of temperature t is 0 ◦C, 7 ◦C, 16 ◦C, and 25 ◦C. For temperature t = 0 ◦C,
the p* and K* value are calculated from Equations (14) and (11). The optimal profit function
at t = 0 ◦C concerning inventory cycle time K when the price is fixed at the value of p* is
shown in Figure 3. The optimal profit peaks when cycle time K is between 0.1 and 0.2 and
then drops gradually when the cycle time is longer than 0.2. Figure 4 shows the optimal
profit function at t = 0 ◦C concerning the selling price (p) when the cycle time is fixed at the
value of K*. It shows that the optimal selling price is between 75 and 80.
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Once the values of p* and K* are obtained, the optimal ordered quantity (Q∗
K), the

optimal total cost (TC(K∗, p∗)), and the optimal total profit (TC(K∗, p∗)) at t = 0 ◦C can
then be obtained by substituting p* and K* into Equations (15)–(17). The same steps are
repeated for temperatures t = 7 ◦C, 16 ◦C, and 25 ◦C; the results are summarized in Table 3.
From the results in Table 3, we can observe that as the storage temperature (t) increased,
the deterioration rate (θ) increased, while the optimal selling price (p) decreased. It means
that increasing the storage temperature (t) leads to more severe deterioration and makes
the products lose value, forcing the manufacturer and retailer to lower the product prices.

Table 3. Optimal p, K, Qk TC, and TP at the temperatures of 0 ◦C, 7 ◦C, 16 ◦C, and 25 ◦C.

t θ K∗ p∗ TC∗ TP∗ Q∗
K

0 ◦C 0.03 0.0305 76.364 484,400 358,600 336.591
7 ◦C 0.054 0.0303 76.343 484,940 358,340 334.875

16 ◦C 0.115 0.0298 76.292 486,280 357,680 330.631
25 ◦C 0.245 0.0289 76.186 489,060 356,320 322.151

We can also notice that when the storage temperature (t) increased, the optimal cycle
time (K*) and the optimal quantity ordered (Q∗

K) decreased; the graph is shown in Figure 5.
In other words, the higher storage temperature leads to a decrease in quantity ordered and
an increase in order frequency in the system. Figure 6 reveals the joint concavity TP(K, p)
concerning the decision variables K and p, leading to the assurance of not only the global
but also the unique solution of the problem; the proof of the concavity of the total profit
function is given in Appendix B.
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4. Sensitivity Analysis

In this section, the sensitivity analysis of the critical parameters is performed. Since
the obtained total profit at t = 0 ◦C is higher than that at other storage temperatures, we
use storage temperature t = 0 ◦C as an example to perform the sensitivity analysis. The
sensitivity analysis is performed by changing a single parameter to −20%, −10%, +10%,
and +20% from the original values. The percentage of total profit difference (PTPD) is
defined as PTPD = TP(K,p)

TP∗(K,p) − 1, where TP∗(K, p) = 358, 600 for p* = 76.364 and K* = 0.0305
at t = 0 ◦C.

Tables 4 and 5 summarize the detailed sensitivity results for critical parameters α and
β of the demand curve. The shape parameter (β) is much more sensitive than the scale
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parameter (α), with opposite effects on the total profit. The PTPD increases by 20.46% when
α increases by 20%, but the real profit decreases by 84.52% when β increases by 20%. On the
other hand, the total gain decreases by 20.46% when α decreases by 20%, but it increases by
638.01% when β decreases by 20%.

Table 4. Sensitivity analysis when α changes.

α
128,000,000

(−20%)
144,000,000

(−10%) 160,000,000 176,000,000
(+10%)

192,000,000
(+20%)

p 76.218 76.297 76.364 76.422 76.472
K 0.034 0.0321 0.0305 0.0291 0.0279

TC 390,580 437,530 484,400 531,180 577,900
TP 285,380 321,970 358,600 395,260 431,960
QK 301.7093 319.6358 336.5909 352.7161 368.1271

PTPD −20.42% −10.21% – 10.22% 20.46%

Table 5. Sensitivity analysis when β changes.

β 1.758 (−20%) 1.989 (−10%) 2.21 2.431 (+10%) 2.6252
(+20%)

p 97.085 84.522 76.364 70.483 66.37
K 0.0145 0.0209 0.0305 0.0446 0.0624

TC 2,117,700 1,021,700 484,400 229,080 119,510
TP 2,646,500 965,990 358,600 133,590 55,496
QK 709.492 491.2023 336.5909 229.8477 164.5818

PTPD 638.01% 169.38% – −62.75% −84.52%

A similar sensitivity effect on the optimal selling price can be observed with the change
in the shape parameter (β) and scale parameter (α). When α increases by 20%, the optimal
price is 76.472, but it decreases to 66.37 when β increases by 20%. On the other hand, the
optimal price decreases to 76.218 when α decreases by 20%, but it increases to 97.085 when
β decreases by 20%.

However, the effect of the changes in the shape parameter (β) and the scale parameter
(α) on the optimal cycle time is reversed. The cycle time decreases to 0.0279 when α
increases by 20%, but it increases to 0.0624 when β increases by 20%. On the other hand,
the cycle time increases to 0.034 when α decreases by 20%, but it decreases to 0.0145 when
β decreases by 20%.

Tables 6–9 show the sensitivity results for ordering cost (S), purchase cost (c), inventory
holding cost (h), and transportation cost (f ), respectively. The most sensitive cost parameter
with respect to the total profit is the purchase cost (c). The PTPD decreases by 19.21% when
c increases by 20%. When c decreases by 20%, the PTPD increases by 29.34%. Second to
the purchase cost (c), the transportation cost (f ) is much more sensitive to the total profit
than the ordering cost (S) and the inventory holding cost (h). The PTPD decreases by 1.44%
when f increases by 20%. When f decreases by 20%, the PTPD increases by 1.47%.

Table 6. Sensitivity analysis when S changes.

S 360 (−20%) 405 (−10%) 450 495 (+10%) 540 (+20%)

p 76.495 76.427 76.364 76.304 76.246
K 0.0273 0.0289 0.0305 0.0319 0.0333

TC 480,990 482,750 484,400 485,970 487,490
TP 360,260 359,410 358,600 357,830 357,090
QK 300.4722 319.02 336.5909 353.334 369.3633

PTPD 0.46% 0.23% – −0.21% −0.42%
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Table 7. Sensitivity analysis when c changes.

c 32 (−20%) 36 (−10%) 40 44 (+10%) 48 (+20%)

p 62.104 69.239 76.364 83.478 90.563
K 0.0269 0.0287 0.0305 0.0322 0.0338

TC 618,720 543,920 484,400 436,010 395,940
TP 463,830 405,150 358,600 320,860 289,700
QK 468.4895 393.7079 336.5909 291.8674 256.0454

PTPD 29.34% 12.98% – −10.52% −19.21%

Table 8. Sensitivity analysis when h changes.

h 1.2 (−20%) 1.35 (−10%) 1.5 1.65 (+10%) 1.8 (+20%)

p 76.37 76.367 76.364 76.361 76.358
K 0.0305 0.0305 0.0305 0.0304 0.0304

TC 484,240 484,320 484,400 484,480 484,550
TP 358,680 358,640 358,600 358,560 358,520
QK 337.1386 336.8644 336.5909 336.3182 336.0461

PTPD 0.02% 0.01% – −0.01% −0.02%

Table 9. Sensitivity analysis when f changes.

f 2 (−20%) 2.25 (−10%) 2.5 2.75 (+10%) 3 (+20%)

p 75.474 75.919 76.364 76.809 77.254
K 0.0303 0.0304 0.0305 0.0306 0.0307

TC 491,160 487,760 484,400 481,080 477,800
TP 363,880 361,220 358,600 356,010 353,450
QK 342.9671 339.7548 336.5909 333.4746 330.4049

PTPD 1.47% 0.73% – −0.72% −1.44%

Other than the purchase cost (c), the selling prices also increase as the transportation
cost (f ) increases, but to a minimal degree The purchase cost (c) is also the most sensitive
parameter with respect to the optimal selling price. The selling price increases to 90.583
when c increases by 20% and decreases to 62.104 when c decreases by 20%. The selling
price increases to 77.254 when f increases by 20% and decreases to 75.474 when f decreases
by 20%. Both purchase cost (c) and ordering cost (S) are sensitive to the optimal cycle time.
The cycle time increases to 0.0338 and 0.0333 when c and S decrease by 20%, respectively.
The cycle time decreases to 0.0269 and 0.0273 when c and S increase by 20%.

Figure 7 summarizes the detailed results of the sensitivity to total profit changes for
all parameter changes other than the change in the shape parameter (β) of the demand
curve. This is due to the reason that the shape parameter (β) is the most sensitive parameter
and increases the total profit by six times when it decreases by 20%. On the other hand,
the scale parameter (α) of the demand curve is positively correlated to the total profit. By
looking at the demand equation D(p) = αp−β, the scale parameter (α) can be recognized
as the size of the market. When α increases, the total profit increases. The increase in α is
beneficial to the model as it helps increase the total gain for the system. All cost parameters
are negatively correlated to the total profit. Among ordering cost (S), holding cost (h), and
transportation cost (f ), the total profit of the model is much more sensitive to changes in
the value of the transportation cost (f ).

The sensitivity results for all parameter changes with respect to the optimal price are
shown in Figure 8. Similar to the sensitivity to the total profit, both parameters of the
demand curve are highly sensitive to the selling price. For cost parameters, the changes
in price are very minor, while the transportation cost seems to have a slightly greater
positive impact.
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Regarding the optimal cycle time, Figure 9 depicts the sensitivity results for all param-
eter changes. Again, the shape parameter (β) is the most sensitive among all parameters.
The impact of changes in the purchasing cost and the ordering cost are similar, while the
changes in the holding costs and the transportation cost are almost negligible.
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5. Conclusions

This research develops an EOQ model with nonlinear, price-dependent demand
and temperature-dependent deterioration rates, focusing on temperature-sensitive items.
As discussed in Section 1, many scholars have studied perishable products, but only
some have considered the deterioration rate’s temperature dependence, and none have
considered the transportation cost in the model. The model proposed here is developed and
solved analytically. Then, a numerical example with hypothetical parameters is used for
illustration purposes, as well as for the sensitivity analysis of demand and cost parameters.

An EOQ model is proposed for temperature-sensitive deteriorating items, assuming
that the demand is nonlinear and price-dependent and has a non-negligible transportation
cost. This research demonstrates that this model’s total profit is concave. As the storage
temperature (t) increased, the deterioration rate (θ) increased, while the optimal selling
price (p), the optimal cycle time (K), and the optimal ordered quantity decreased. That is
to say, the increase in storage temperature leads to more severe deterioration, and lower
temperatures could achieve higher profit. However, the level of changes in the selling
price is rather limited, even negligible. This observation is quite different from the results
obtained by Yang and Tseng [30]. The chilled product studied was pork sandwiches, and
poor-quality sandwiches could cause fatal illness [30]. This study assumes that chilled
products like yogurt would lose value due to deterioration in storage but would still be
sellable for a much longer period. It implies that the selling price would be more sensitive
for chilled products with a shorter shelf life.

The sensitivity analysis shows that the transportation cost is more sensitive than the
ordering cost and the holding cost to the total profit. A managerial insight could be that for
firms who try to improve their performance in total profit, they might want to focus more
on lowering transportation costs than on experimenting with different selling prices. This
paper can be extended in several ways, such as for multi-items or by allowing for shortage
or backordering. It is also appropriate to consider fuzzy techniques in deciding the best
storage temperature depending on environmental factors or choices of storage devices. For
real-world implications, this study can be further improved with practical data on chilled
products to simulate temperature’s real impact on inventory policies.
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Appendix A

According to Equation (3), the initial inventory level is

I(0) =
D(p)

θ
·
[
eθK − 1

]
. (A1)

Let I(k) be the instantaneous inventory level at any time k (0 ≤ k ≤ K) without decay;
we have

I(k) = I(0)− D(p)·k. (A2)

The loss in stock due to deterioration at the end is equal to I(k)− I(k); then,

Z(k) = I(k)− I(k)
= I(0)− D(p)·k − D(p)

θ ·
[
eθ(K−k) − 1

]
.

(A3)

According to (A2) and (A4), we have

Z(k) =
D(p)

θ
·
[
eθK − eθ(K−k)

]
− D(p)·k. (A4)

Appendix B

To examine the total profit of the system (TP(K, p)) has a unique point of maximization;
we apply the Hessian matrix to show the concavity condition of the total profit function
as follows:

TP(K, p) = αp1−β − S
K
− (c + f )·αp−β·

(
1 +

θK
2

)
− h·αp−β·K

2
. (A5)

∂TP(K, p)
∂K

=
S

K2 − (c + f )·αp−β·θ
2

− h·αp−β

2
. (A6)

∂TP(K, p)
∂p

= αp−β·(1 − β) + αp−β−1·β·(c + f )·
(

1 +
θK
2

)
+

h·αp−β−1·β·K
2

· (A7)

∂2TP(K, p)
∂K2 = − 2S

K3 . (A8)

∂2TP(K, p)
∂p2 = −αp−β−1·β·(1 − β)− αp−β−2·(β + 1)·(c + f )·

(
1 +

θK
2

)
− h·αp−β−2·β·(β + 1)·K

2
. (A9)

∂2TP(K, p)
∂K∂p

=
αp−β−1·β·θ·(c + f )

2
+

h·αp−β−1·β
2

. (A10)

A Hessian matrix is applied and is given by
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H =

 ∂2TP(K,p)
∂K2

∂2TP(K,p)
∂K∂p

∂2TP(K,p)
∂K∂p

∂2TP(K,p)
∂p2

, with minor determinant as D1 = ∂2TP(K,p)
∂K2 , D2 =

∂2TP(K,p)
∂p2 , D3 = ∂2TP(K,p)

∂K∂p , and D4 =

∣∣∣∣∣∣
∂2TP(K,p)

∂K2
∂2TP(K,p)

∂K∂p
∂2TP(K,p)

∂K∂p
∂2TP(K,p)

∂p2

∣∣∣∣∣∣.
The function TP(K, p) is concave if D1 < 0, D2 < 0, and D4 > 0. We substitute

the data in Table 2 into Equations (A8)–(A10), and the values of D1, D2, D3,, and D4 at
t = 0 ◦C can be calculated as D1 = −3.1721×107, D2 = −184.7498, D3 = 443.2744, and
D4 = 5.8602×109. The above result proves that the total profit function has concavity; the
model’s concavity is also shown in Figure 6.
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