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Abstract: We are concerned with the existence and multiplicity of normalized solutions to the

fractional Schrödinger equation

 (−∆)su + V(εx)u = λu + h(εx) f (u) in RN ,∫
RN

|u|2dx = a,
, where (−∆)s is

the fractional Laplacian, s ∈ (0, 1), a, ε > 0, λ ∈ R is an unknown parameter that appears as a
Lagrange multiplier, h : RN → [0,+∞) are bounded and continuous, and f is L2-subcritical. Under
some assumptions on the potential V, we show the existence of normalized solutions depends on the
global maximum points of h when ε is small enough.

Keywords: fractional Laplacian; normalized solution; mass critical exponent
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1. Introduction
1.1. Background and Motivation

In this paper, we investigate the multiplicity of normalized solutions for the fractional
Schrödinger equation as follows:

i
∂ψ

∂t
= (−∆)sψ + V(x)ψ − g(|ψ|2)ψ in RN, (1)

where 0 < s < 1, i denotes the imaginary unit and ψ(x, t) is a complex wave. A solution
of (1) is called a standing wave solution if it has the form ψ(x, t) = e−iλtu(x) for some
λ ∈ R. (−∆)s stands for the fractional Laplacian, and if u is small enough, it can be
computed by the following singular integral:

(−∆)su = C(N, s)P.V.
∫
RN

u(x)− u(y)
|x − y|N+2s dy.

Here, the symbol P.V. is the Cauchy principal value and C(N, s) is a suitable positive
normalizing constant.

The operator (−∆)s can be seen as the infinitesimal generators of Lévy stable diffusion
processes [1], it originates from describing various phenomena in the field of applied
science, such as fractional quantum mechanics, the barrier problem, Markov processes, and
the phase transition phenomenon, see [2–5]. In recent decades, the study of the fractional
Schrödinger equation has attracted wide attention, see, e.g., [6–9] and the references therein.

In [10], Alves considered the following class of elliptic problems with a L2-subcritical
nonlinear term:
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{ −∆u = λu + h(εx) f (u) in RN ,∫
RN

|u|2dx = a.
(2)

By using the variational approaches, the author shows that problem (2) admits multiple
normalized solutions if ε is small enough. Particularly, the numbers of the normalized
solutions are at least the numbers of the global maximum points of h. Moreover, for the
following class of problem:{ −∆u + V(εx)u = λu + f (u) in RN ,∫

RN
|u|2dx = a,

a similar result is also obtained for some negative and continuous potential V.
Motivated by [10], our interest is mainly focused on the fractional case with both

potentials and weights. Actually, our purpose of this paper is devoted to the multiplicity of
normalized solutions for the fractional Schrödinger equation{

(−∆)su + V(εx)u = λu + h(εx) f (u) in RN ,∫
RN

|u|2dx = a,
(3)

where s ∈ (0, 1), a, ε > 0, λ ∈ R is an unknown parameter that appears as a Lagrange multiplier.
In the local case, when s = 1, the fractional Laplace (−∆)s reduces to the local

differential operator −∆. If V(x) ≡ 0, Jeanjean’s [11] exploited the mountain pass geometry
to deal with the existence of normalized solutions in purely L2-supercritical, we refer [12–15]
for more results in this type of problems. In [16], they considered the related problem
for q = 2 + 4

N . The multiplicity of normalized solutions for the Schrödinger equation or
systems has also been extensively investigated, see [17–19].

For the non-potential case, a large body of literature is devoted to the following problem:{ −∆u = λu + g(u) in RN ,∫
RN

|u|2dx = a2.
(4)

In particular, for the case g(u) = |u|p−1u, by assuming the H1-precompactness of
any minimizing sequences, Cazenave and Lions [20] showed the attainability of the L2-
constraint minimization problem and the orbital stability of global minimizers, it is assumed
that Eα < 0 for all α > 0, and then the strict subadditivity condition as follows holds.

Eα+β < Eα + Eβ. (5)

However, when dealing with the general function g, it is difficult to show if (5) holds.
Shibata [19] proved the subadditivity condition (5) using a scaling argument.

In addition, if V(x) ̸≡ 0, Ikoma and Miyamoto [21] studied the existence and nonexis-
tence of a minimizer of the L2-constraint minimization problem as follows:

e(a) = inf{E(u)|u ∈ H1(RN), |u|22 = a},

where
E(u) =

1
2

∫
RN

(|∇u|2dx + V(x)|u|2)dx −
∫
RN

F(u)dx,

V and f satisfy some suitable assumptions. They performed a careful analysis to
exclude dichotomy and proved the precompactness of the modified minimizing sequence.
When dealing with general nonlinear terms in mass subcritical cases, one can apply the
subadditive inequality to prove the compactness of the minimizing sequence.
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Zhong and Zou in [22] studied the existence of a ground state normalized solution to
Schrödinger equations with potential under different assumptions, and presented a new
approach to establish the strict subadditive inequality. Alves and Thin [23] studied the
existence of multiple normalized solutions to the following class of elliptic problems:{ −∆u + V(εx)u = λu + f (u) in RN ,∫

RN
|u|2dx = a,

(6)

where ε > 0, V : RN → [0, ∞) is a continuous function, and f is a differentiable function
with L2-subcritical growth. For the normalized solutions of the nonlinear Schrödinger
equation with potential, we also see [24–26] and the references therein.

In the case 0 < s < 1, few results are available. In the paper [27], the author
proved some existence and asymptotic results for the fractional nonlinear Schrödinger
equation. For the particular case of a combined nonlinearity of power type, namely,
f (t) = µ|u|q−2u + |u|p−2u, h(x) = 1 and V(x) ≡ 0, i.e 2 < q < p < 2∗s , Luo and
Zhang [28] proved some existence and nonexistence results about the normalized solutions
for L2-subcritical, L2-critical, and L2-supercritical. Dinh [29] studied the existence and
nonexistence of normalized solutions for the fractional Schrödinger equations as follows:

(−∆)su + V(x)u = |u|p−2u, in RN . (7)

By using the concentration–compactness principle, he showed a complete classifica-
tion for the existence and nonexistence of normalized solutions for the problem (7). For
more results about the fractional Schrödinger equations, we can refer to [30,31] and the
references therein.

1.2. Main Results

In what follows, we assume f ∈ C1(RN ,R) is odd, continuous, and satisfies the
following assumptions on f :

( f1) lim
t→0

| f (t)|
|t|q−1 = c > 0, where 2 < q < p̄ = 2 + 4s

N ;

( f2) lim
t→∞

| f (t)|
|t|p−1 = 0, where 2 < p < p̄ = 2 + 4s

N ;

( f3) There exist α, β ∈ R satisfying 2 < α ≤ β < p̄ such that

0 < αF(t) ≤ t f (t) ≤ F(t)β for any t > 0.

Moreover, h and V satisfy the following assumptions.

(A1) h ∈ C(RN ,R+), 0 < h∞ = lim
|x|→+∞

h(x) < max
x∈RN

h(x) = h(ai) for 1 ≤ i ≤ k with a1 = 0

and aj ̸= ai if i ̸= j;
(A2) V ∈ C(RN ,R), V(ai) = inf

x∈RN
V(x) < lim

|x|→+∞
V(x) = 0 for 1 ≤ i ≤ k.

The problem (3) is variational, and the associated energy functional is given by the
following:

Iε(u) =
1
2

∫
RN

|(−∆)
s
2 u|2dx +

1
2

∫
RN

V(εx)u2dx −
∫
RN

h(εx)F(u)dx, u ∈ Hs(RN), (8)

with ∫
RN

|(−∆)
s
2 u|2dx =

∫∫
R2N

|u(x)− u(y)|2
|x − y|N+2s dxdy.

It is easy to know that Iε ∈ C1(Hs(RN),R) and

I′ε(u)φ =
∫
RN

(−∆)
s
2 u(−∆)

s
2 φdx +

∫
RN

V(εx)uφdx −
∫
RN

h(εx) f (u)φdx, ∀φ ∈ Hs(RN).
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The solutions to (3) can be characterized as critical points of the function Iε(u) con-
strained on the sphere as follows:

Sa =

{
u ∈ Hs(RN) :

∫
RN

|u|2dx = a
}

. (9)

Now, we are ready to state the main result of this paper.

Theorem 1. Suppose (A1), (A2), ( f1) − ( f3) hold, then there exists ε1 > 0 such that prob-
lem (3) admits at least k couples (uj, λj) ∈ Hs(RN)×R of weak solutions for ε ∈ (0, ε1) with∫
RN |uj|2dx = a, λ < 0 and Iε(uj) < 0 for j = 1, 2, · · · , k.

The paper is organized as follows: In Section 2, we study the autonomous problem
and give some useful results, which will be used later. Section 3 is devoted to the non-
autonomous problem. In Section 4, the proof of Theorem 1, is given.

2. The Autonomous Problem

In this section, we focus on the existence of a normalized solution for the autonomous
problem. {

(−∆)su + ηu = λu + µ f (u) in RN ,∫
RN

|u|2dx = a,
(10)

where s ∈ (0, 1), a, µ > 0, η ≤ 0, and λ ∈ R is an unknown parameter that appears as
a Lagrange multiplier. With the assumptions ( f1)− ( f3), it is standard to show that the
solutions to (10) can be characterized as critical points of the function as follows:

J(u) =
1
2

∫
RN

|(−∆)
s
2 u|2dx +

η

2

∫
RN

u2dx − µ
∫
RN

F(u)dx, (11)

restricted to the sphere Sa given in (9). Meanwhile, set

J0(u) =
1
2

∫
RN

|(−∆)
s
2 u|2dx − µ

∫
RN

F(u)dx,

and

Υa = inf
Sa

J0(u).

Theorem 2. Suppose that f satisfies the conditions ( f1)− ( f3). Then, problem (10) has a couple
(u, λ) solution, where u is positive, radial and λ < η.

The proof of Theorem 2 is standard. For the sake of convenience, we give the details.
Before the proof, some lemmas are given below.

Lemma 1. Assume u is a solution to (10), then u ∈ Sa ∩ P, where

P :=
{

u ∈ Hs(RN)|
∫
RN

|(−∆)
s
2 u|2dx +

Nµ

s

∫
RN

F(u)dx − Nµ

2s

∫
RN

f (u)udx = 0
}

.

Proof. Let u be a solution (10), then we obtain the following:∫
RN

|(−∆)
s
2 u|2dx + (η − λ)

∫
RN

u2dx − µ
∫
RN

f (u)udx = 0. (12)

In addition, one can show that u satisfies the Pohozaev identity as follows:

(N − 2s)
∫
RN

|(−∆)
s
2 u|2dx + N(η − λ)

∫
RN

u2dx − 2Nµ
∫
RN

F(u) = 0,
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which combined with (12) gives the following:∫
RN

|(−∆)
s
2 u|2dx +

Nµ

s

∫
RN

F(u)dx − Nµ

2s

∫
RN

f (u)udx = 0.

Lemma 2. Assume ( f1)− ( f2), then we have the following:

(i) J is bounded from below on Sa;
(ii) Any minimizing sequence for J is bounded in Hs(RN).

Proof. (i) According to the assumptions ( f1) − ( f2), there exist C1, C2 > 0 such as the
following:

|F(t)| ≤ C1|t|q + C2|t|p, ∀t ∈ R, (13)

where q, p ∈ (2, 2 + 4s
N ). By the fractional Gagliardo–Nirenberg–Sobolev inequality [32],

∫
RN

|u|α ≤ C(s, N, α)

(∫
RN

|(−∆)
s
2 u|2

) N(α−2)
4s

(∫
RN

|u|2
) α

2 −
N(α−2)

4s
, (14)

for some positive constant C(s, N, α) > 0. Then, (13) and (14) give the following:

J(u) ≥ 1
2

∫
RN

(|(−∆)
s
2 u|2 + ηu2)dx − µC1C(s, N, q)

q
a

q
2−

N(q−2)
4s

(∫
RN

|(−∆)
s
2 u|2dx

) N(q−2)
4s

− µC2C(s, N, p)
p

a
p
2 −

N(p−2)
4s

(∫
RN

|(−∆)
s
2 u|2dx

) N(p−2)
4s

. (15)

Since q, p ∈ (2, 2 + 4s
N ), we infer that 0 < N(q−2)

4s , N(p−2)
4s < 1. Therefore J(u) is

bounded from below on Sa.
(ii) Since u ∈ Sa, the conclusion immediately follows from (15).

The lemma above guarantees the following:

Ea = inf
u∈Sa

J(u),

is well-defined. Now, we study the properties of the function J defined in (10) restrict to Sa
and prove Theorem 2.

Lemma 3. For any a > 0 and η ≤ 0, there holds Ea < 0. In particular, we have Ea <
ηa
2 .

Proof. From the condition ( f1), we know that lim
t→0

qF(t)
tq = c > 0, then there exists ζ > 0 as

follows:
qF(t)

tq ≥ c
2

, ∀t ∈ [0, ζ]. (16)

In fact, taking u ∈ Sa ∩ L∞(RN) as a fixed non-negative function, we define the
following:

(τ ∗ u)(x) = e
N
2 τu(eτx), for all x ∈ RN and all τ ∈ R,

then τ ∗ u ∈ Sa and ∫
RN

F((τ ∗ u)(x))dx = e−Nτ
∫
RN

F(e
Nτ
2 u(x))dx.
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Moreover, for τ < 0 and |τ| large enough, we have the following:

0 ≤ e
N
2 τu(x) ≤ ζ, ∀x ∈ RN ,

which combines with (16) to give the following:∫
RN

F((τ ∗ u)(x))dx ≥ c
2q

e
(q−2)Nτ

2

∫
RN

|u|qdx.

Hence, as follows:

J(τ ∗ u) =
1
2

∫
RN

|(−∆)
s
2 (τ ∗ u)|2dx +

ηa
2

− µ
∫
RN

F(τ ∗ u)dx

≤ 1
2

e2sτ
∫
RN

|(−∆)
s
2 u|2dx +

ηa
2

− µc
2q

e
(q−2)Nτ

2

∫
RN

|u|qdx. (17)

Since q ∈ (2, 2 + 4s
N ), increasing |τ| if necessary, we deduce the following:

1
2

e2sτ
∫
RN

|(−∆)
s
2 u|2dx − µc

2q
e
(q−2)Nτ

2

∫
RN

|u|qdx = Kτ < 0.

Hence, we obtain the following:

J(τ ∗ u) ≤ Kτ +
ηa
2

< 0,

and then Ea < 0. In particular, we have Ea <
ηa
2 . The proof is complete.

In the following, we adopt some idea introduced in [22] to obtain the subadditive
inequality:

Lemma 4. For µ > 0, η ≤ 0 and let a, b > 0, then

(i) a 7→ Ea is nonincreasing;
(ii) a 7→ Ea is continuous;
(iii) Ea+b ≤ Ea + Eb. If Ea or Eb can be attained, then Ea+b < Ea + Eb.

Proof. (i) For any ε > 0 small, there exist u ∈ Sa ∩C∞
0 (RN) and v ∈ Sb−a ∩C∞

0 (RN) such that

J(u) ≤ Ea + ε, J0(v) ≤ Υb−a + ε.

Since u and v have compact support, by using a parallel translation, we can take R
large enough, satisfying the following:

ṽ(x) = v(x − R), supp u ∩ supp ṽ = ∅.

Then u + ṽ ∈ Sb and

Eb ≤ J(u + ṽ) =
1
2

∫∫
R2N

|(u + ṽ)(x)− (u + ṽ)(y)|2
|x − y|N+2s dxdy +

η

2
|u + ṽ|22 − µ

∫
RN

F(u + ṽ)dx

= J(u) + J(ṽ) +
∫∫

R2N

(u(x)− u(y))(ṽ(x)− ṽ(y))
|x − y|N+2s dxdy.

Suppose that

supp u ⊂ BR(0) and supp ṽ ⊂ B3R(0)\B2R(0),
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we obtain the following:∫∫
R2N

(u(x)− u(y))(ṽ(x)− ṽ(y))
|x − y|N+2s dxdy =

∫∫
R2N

u(x)ṽ(x)− 2u(x)ṽ(y) + u(y)ṽ(y)
|x − y|N+2s dxdy

=
∫∫

R2N

−2u(x)ṽ(y)
|x − y|N+2s dxdy.

Noting that |x − y| ≥ R is large enough, we have the following:

Eb ≤ J(u + ṽ) ≤ J(u) + J(ṽ) + ε ≤ J(u) + J0(v) + ε ≤ Ea + Υb−a + 3ε ≤ Ea + 3ε. (18)

Here, we used the fact Υb−a < 0. Then by (18) and the arbitrariness of ε, we obtain
that Eb ≤ Ea for any b > a > 0.

(ii) We prove the following two claims:

Claim 1: lim
h→0+

Ea−h ≤ Ea.

For ε > 0, by the definition of Ea, there exists u ∈ Sa such that

Ea ≤ J(u) ≤ Ea + ε. (19)

Setting

t = t(h) = (
a − h

a
)

1
N ,

and ut(x) = u( x
t ), we obtain the following:

lim
h→0+

t = 1 and |ut|22 = tN a = a − h. (20)

Then, by using (i), we have J(ut) ≥ Ea−h. In addition,

J(ut) =
tN−2s

2

∫
RN

|(−∆)
s
2 u|2dx +

ηtN

2

∫
RN

u2dx − µtN
∫
RN

F(u)dx

=
tN−2s

2

∫
RN

|(−∆)
s
2 u|2dx + tN

(
J(u)− 1

2

∫
RN

|(−∆)
s
2 u|2dx

)
= tN J(u) +

tN−2s(1 − t2s)

2

∫
RN

|(−∆)
s
2 u|2dx,

by (19) and (20), we obtain the following:

lim
h→0+

Ea−h ≤ Ea + ε.

Since ε is arbitrary, the claim holds.

Claim 2: lim
h→0+

Ea+h ≥ Ea.

Actually, we consider the case h = 1
n , n ∈ N. Take un ∈ Sa+ 1

n
such that J(un) ≤

Ea+ 1
n
+ 1

n . Set

vn(x) :=
√

na
na + 1

un(x).

By Lemma 2, we know {un} is bounded in Hs(RN). Moreover, we have the following:

|vn|22 =
na

na + 1
|un|22 =

na
na + 1

(
a +

1
n

)
= a.



Mathematics 2024, 12, 772 8 of 20

Hence, we obtain un ∈ Sa. On the other hand,

||vn − un||Hs(RN) =

(
1 −

√
na

na + 1

)
||un||Hs(RN) → 0 as n → +∞.

Then
Ea ≤ lim inf

n→+∞
J(vn) = lim inf

n→+∞
[J(un) + on(1)] = lim

h→0+
Ea+h.

Thus, we obtain the following:

lim
h→0+

Ea+h ≥ Ea.

Moreover, Ea−h ≥ Ea ≥ Ea+h holds due to (i). Hence, we obtain the following:

lim
h→0+

Ea−h ≥ Ea ≥ lim
h→0+

Ea+h.

We complete the proof of (ii).
(iii) Firstly, we prove that

Eθa ≤ θEa for θ > 1 closing to 1.

For any ε > 0, we take u ∈ Sa ∩ P such that

J(u) ≤ Ea + ε.

Setting ũ(x) = u(ν−
1
N x) for ν ≥ 1, by the assumption, we have |ũ|22 = νa and the

following:

J(ũ) =
1
2

∫
RN

|(−∆)
s
2 ũ|2dx +

η

2

∫
RN

ũ2dx − µ
∫
RN

F(ũ)dx

=
1
2

ν
N−2s

N

∫
RN

|(−∆)
s
2 u|2dx +

ην

2

∫
RN

u2dx − µν
∫
RN

F(u)dx.

Then, we obtain the following:

d
dν

J(ũ) =
N − 2s

2N
ν−

2s
N

∫
RN

|(−∆)
s
2 u|2dx +

η

2

∫
RN

u2dx − µ
∫
RN

F(u)dx.

Since u ∈ P, we know the following:∫
RN

|(−∆)
s
2 u|2dx +

Nµ

s

∫
RN

F(u)− Nµ

2s

∫
RN

f (u)udx = 0.

Thus

d
dν

J(ũ)− J(u) = (
N − 2s

2N
ν−

2s
N − 1

2
)
∫
RN

|(−∆)
s
2 u|2dx

= (
N − 2s

2N
ν−

2s
N − 1

2
)

Nµ

s

∫
RN

[
1
2

f (u)u − F(u)]dx

= (
N − 2s

2s
µν−

2s
N − Nµ

2s
)
∫
RN

[
1
2

f (u)u − F(u)]dx.

Obviously, if ξ > 0 is small, it follows that

N − 2s
2s

µν−
2s
N − Nµ

2s
=

Nµ(ν−
2s
N − 1)

2s
− µν−

2s
N < 0, for ν ∈ [1, 1 + ξ]. (21)
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Then by (21) and the condition ( f3), we obtain the following:

d
dν

J(ũ)− J(u) ≤ (
N − 2s

2s
µν−

2s
N − Nµ

2s
)(

α − 2
2

)
∫
RN

F(u)dx < 0.

Namely, the following:

d
dν

J(ũ)− J(u) < 0, for ∀ν ∈ [1, 1 + ξ].

Therefore, for any θ ∈ (1, 1 + ξ), we have the following:

J(ũ)− J(u) =
∫ θ

1

d
dν

J(ũ)dν <
∫ θ

1
J(u)dν = J(u)(θ − 1).

Then, it is easy to see that

Eθa ≤ J(ũ) ≤ θ J(u) ≤ θ(Ea + ε).

Since the arbitrariness of ε, we obtain the following:

Eθa ≤ θEa, θ ∈ (1, 1 + ξ).

If Ea is attained, we can take u as a minimizer in the above step, and obtain the
strictly inequality as follows:

Eθa ≤ J(ũ) < θ J(u) = θEa, θ ∈ (1, 1 + ξ).

Furthermore, following the proof of (i), since Ea is nonincreasing, if Ea < 0, for any
b ∈ (a,+∞), we can obtain some uniform ξ > 0 satisfying

Eθc ≤ θEc, ∀θ ∈ [1, 1 + ξ), ∀c ∈ [a, b].

Now, for any a > 0 with Ea < 0 and θ > 1, we take ξ > 0 such that

E(1+k)c ≤ (1 + k)Ec, ∀k ∈ [0, ξ), ∀c ∈ [a, θb].

Then, we may choose k0 ∈ (0, ξ) and n ∈ N such that

(1 + k0)
n < θ < (1 + k0)

n+1,

and so

Eθa = E(1+k0)
θ

1+k0
a ≤ (1 + k0)E θ

1+k0
a ≤ (1 + k0)

2E θ
(1+k0)

2 a

≤ (1 + k0)
nE θ

(1+k0)
n a ≤ (1 + k0)

n θ

(1 + k0)n Ea = θEa.

Then, if Ea is attained, we obtain that Eθa < θEa for any θ > 1. For 0 < b ≤ a, we obtain
the following:

Ea+b = E a+b
a a ≤

a + b
a

Ea = Ea +
b
a

Ea = Ea +
b
a

E a
b b ≤ Ea + Eb.

If Ea or Eb is attained, we obtain the following:

Ea = E a
b b <

a
b

Eb, (22)

and thus Ea+b < Ea + Eb. The proof is complete.
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The next compactness lemma on Sa is useful in the study of the autonomous problem
as well as the non-autonomous problem.

Lemma 5. Let {un} ⊂ Sa be a minimizing sequence with respect to Ea. Then, for some subsequence,
one of the following alternatives holds:

(i) {un} is strongly convergent;
(ii) There exists {yn} ⊂ Sa with |yn| → ∞ such that the sequence vn(x) = un(x + yn) is

strongly convergent to a function v ∈ Sa with J(v) = Ea.

Proof. By Lemma 2, we know J is coercive on Sa, the sequence {un} is bounded, so un ⇀ u
in Hs(RN) for some subsequence. Now we consider the following three possibilities:

(1) If u ̸≡ 0 and |u|22 = b ̸= a, we must have b ∈ (0, a). Set vn = un − u, by the
Brézis-Lieb Lemma [33], we obtain the following:

∫∫
R2N

|un(x)− un(y)|2
|x − y|N+2s dxdy =

∫∫
R2N

|vn(x)− vn(y)|2
|x − y|N+2s dxdy

+
∫∫

R2N

|u(x)− u(y)|2
|x − y|N+2s dxdy + on(1). (23)

Since F is a C1 function and has a subcritical growth in the Sobolev sense, we can see
the following: ∫

RN
F(un)dx =

∫
RN

F(un − u)dx +
∫
RN

F(u)dx + on(1). (24)

Furthermore, setting dn = |vn|22, and by using

|un|22 = |vn|22 + |un|22 + on(1),

we obtain that dn ∈ (0, a) for n large enough and |vn|22 → d with a = b + d. Hence, the
following:

Ea + on(1) = J(un)

=
1
2

∫∫
R2N

|vn(x)− vn(y)|2
|x − y|N+2s dxdy +

η

2
|vn|22 − µ

∫
RN

F(vn)dx

+
1
2

∫∫
R2N

|u(x)− u(y)|2
|x − y|N+2s dxdy +

η

2
|u|22 − µ

∫
RN

F(u)dx + on(1)

= J(vn) + J(u) + on(1)

≥ Edn + Eb + on(1).

Letting n → +∞, by Lemma 4, we find the following:

Ea ≥ Ed + Eb > Ea,

which is absurd. This possibility can not exist.
(2) If |un|22 = |u|22 = a, it is well-known that un → u in L2(RN). Then, by (13) and (14),

we have the following:∫
RN

F(un − u)dx ≤ C1

∫
RN

|un − u|qdx + C2

∫
RN

|un − u|pdx

≤ C(
∫
RN

|un − u|2dx)
q
2−

N(q−2)
4s + C(

∫
RN

|un − u|2dx)
p
2 −

N(p−2)
4s .
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Hence, we obtain
∫
RN F(un − u)dx → 0. From (24), we obtain the following:∫

RN
F(un)dx →

∫
RN

F(u)dx.

These limits together with Ea = lim
n→+∞

J(un) provide the following:

Ea = lim
n→+∞

1
2

∫
RN

|(−∆)
s
2 un|2 + ηu2

n)dx − µ
∫
RN

F(u)dx

≥ 1
2

∫
RN

|(−∆)
s
2 u|2 + ηu2)dx − µ

∫
RN

F(u)dx = J(u)

≥ Ea.

Since u ∈ Sa, we infer that Ea = J(u), then ||un||2 → ||u||2, where || || denotes the
usual norm in Hs(RN). Thus, un → u in Hs(RN), which implies that (i) occurs.

(3) If u ≡ 0; that is, un ⇀ 0 in Hs(RN). We claim that there exists β > 0 such that

lim inf
n→+∞

sup
y∈RN

∫
BR(y)

|un|2dx ≥ β, for some R > 0. (25)

Indeed, otherwise by Lemma 2.2 of [34], we have un → 0 in Ll(RN) for all l ∈ (2, 2N
N−2s).

Thus

Ea + on(1) = J(un) =
1
2

∫
RN

|(−∆)
s
2 un|2dx +

η

2

∫
RN

u2
ndx − µ

∫
RN

F(un)dx

=
1
2

∫
RN

|(−∆)
s
2 un|2dx +

η

2

∫
RN

u2
ndx + on(1),

which contradicts the Lemma 3.
Hence, from this case, (25) holds and |yn| → +∞, then we consider ũn(x) = u(x + yn),

obviously {ũn} ⊂ Sa and it is also a minimizing sequence with respect to Ja. Moreover,
there exists ũ ∈ Hs(RN)\{0} such that ũn(x) ⇀ ũ in Hs(RN). Following as in the first two
possibilities of the proof, we infer that ũn(x) → ũ in Hs(RN), which implies that (ii) occurs.
This proves the lemma.

In what follows, we begin to prove Theorem 2.

Proof of Theorem 2. By Lemmas 2 and 3, there exists a bounded minimizing sequence
{un} ⊂ Sa satisfying J(un) → Ea. Then applying Lemma 5, there exists u ∈ Sa such that
J(u) = Ea. By the Lagrange multiplier, there exists λ ∈ R such that

J′(u) = λΦ′(u) in (Hs(RN))′, (26)

where Φ(u) : Hs(RN) → R is given by the following:

Φ(u) =
1
2

∫
RN

|u|2dx, u ∈ Hs(RN).

Therefore, from (26), we have the following:

(−∆)su + ηu = λu + µ f (u) in RN . (27)

By Lemma 1, we can obtain the following:
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(λ − η)
∫
RN

u2dx =
∫
RN

|(−∆)
s
2 u|2dx − µ

∫
RN

f (u)udx

=− Nµ

s

∫
RN

F(u)dx +
Nµ

2s

∫
RN

f (u)udx − µ
∫
RN

f (u)udx

=− µ

s

[∫
RN

(NF(u)− N − 2s
2

f (u)u)dx
]

.

Furthermore, according to the condition ( f3) and the claim 3, we must have λ < η.
Next, we will prove that u can be chosen to be positive. Obviously, we have

J(u) = J(|u|). Moreover, since u ∈ Sa shows that |u| ∈ Sa, we infer that

Ea = J(u) = J(|u|) ≥ Ea,

which implies that J(|u|) = Ea, and so, we can replace u by |u|. Furthermore, if u∗ denotes
the symmetrization radial decreasing rearrangement of u (see Section 1 [35]), we observe
the following:

∫∫
R2N

|u∗(x)− u∗(y)|2
|x − y|N+2s dxdy ≤

∫∫
R2N

|u(x)− u(y)|2
|x − y|N+2s dxdy,∫

RN
|u|2dx =

∫
RN

|u∗|2dx and
∫
RN

F(u)dx =
∫
RN

F(u∗)dx, (28)

then u∗ ∈ Sa and J(u∗) = Ea, it follows that we can replace u by u∗. Similarly, as in [36], one
can show that u(x) > 0 for any x ∈ R. This completes the proof.

3. The Non-Autonomous Problem

In this section, we first give some properties of the functional Iε(u) given by (8)
restricted to the sphere Sa, and then prove Theorem 1. Define the following energy
functionals:

I∞(u) =
1
2

∫
RN

|(−∆)
s
2 u|2dx − h∞

∫
RN

F(u)dx,

and for i = 1, 2, · · · , k,

Iai (u) =
1
2

∫
RN

|(−∆)
s
2 u|2dx +

V(ai)

2

∫
RN

u2dx − h(ai)
∫
RN

F(u)dx.

Moreover, denoted by Eε,a, Eai ,a, and E∞,a the following real numbers:

Eε,a = inf
u∈Sa

Iε(u), Eai ,a = inf
u∈Sa

Iai (u), E∞,a = inf
u∈Sa

I∞(u).

The next two lemmas establish some crucial relations involving the levels Eε,a, E∞,a,
and Eai ,a. For any α, β ∈ R, set

Jαβ(u) =
1
2

∫
RN

|(−∆)
s
2 u|2dx +

β

2

∫
RN

u2dx − α
∫
RN

F(u)dx,

where
Eαβ,a = inf

u∈Sa
Jαβ(u).

Lemma 6. Fix a > 0, let 0 < h1 < h2 and V2 < V1 ≤ 0. Then Eh2V2,a < Eh1V1,a < 0.

Proof. The proof is standard and we omit the details.

Lemma 7. lim sup
ε→0+

Eε,a ≤ Eai ,a < E∞,a < 0, i = 1, 2, · · · , k.
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Proof. By the proof of the Theorem 2, choose u0 ∈ Sa such that Iai (u0) = Eai ,a. For
1 ≤ i ≤ k, we define

u = u0

(
x − ai

ε

)
, x ∈ RN .

Then u ∈ Sa for all ε > 0, we have the following:

Eε,a ≤ Iε(u) =
1
2
|(−∆)

s
2 u0|22 +

1
2

∫
RN

V(εx + ai)u2
0dx −

∫
RN

h(εx + ai)F(u0)dx.

Letting ε → 0+, by the Lebesgue dominated convergence theorem, we deduce the
following:

lim sup
ε→0+

Eε,a ≤ lim
ε→0+

Iε(u) = Iai (u0) = Eai ,a. (29)

Noting that E∞,a can be achieved, due to 0 < h∞ < h(ai) and V(ai) < 0, we have the
following:

Eai ,a < E∞,a < 0.

It completes the proof.

Hence, by Lemma 7, there exists ε1 > 0 satisfying Eε,a < E∞,a for all ε ∈ (0, ε1). In the
following, we always assume that ε ∈ (0, ε1). The next three lemmas will be used to prove
the (PS)c condition for Iε restricts to Sa at some levels.

Lemma 8. Assume {un} ⊂ Sa such that Iε(un) → c as n → +∞ with c < E∞,a < 0, then

δ := lim inf
n→∞

sup
y∈RN

∫
B(y,1)

|un(x)|2dx > 0.

Proof. We argue by contradiction and assume that δ = 0, then up to a subsequence, we
have un → 0 in Ll(RN) for all l ∈ (2, 2N

N−2s ), by the Lebesgue dominated convergence
theorem and ( f1)− ( f2), we infer the following:∫

RN
h(εx)F(un)dx → 0 as n → +∞. (30)

Since V(x) → 0 as |x| → ∞, one can show the following:∫
RN

V(x)u2
ndx = on(1),

which combined with (30) gives the following:

0 > c = Iε(un) + o(1) =
1
2

∫
RN

|(−∆)
s
2 un|2dx + o(1) ≥ 0,

which is a contradiction.

Lemma 9. Under the assumption of Lemma 8, assume un ⇀ u in Hs(RN), then u ̸≡ 0.

Proof. By Lemma 8, we have that

lim inf
n→∞

sup
y∈RN

∫
Br(y)

|un(x)|2dx > 0.
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So if u ≡ 0, there exists {yn} satisfying |yn| → ∞, let ũn = un(x + yn), obviously
{ũn} ⊂ Sa, we have the following:

c + on(1) =Iε(un)

=
1
2

∫
RN

|(−∆)
s
2 un|2dx +

1
2

∫
RN

V(εx)u2
ndx −

∫
RN

h(εx)F(un)dx

=
1
2

∫
RN

|(−∆)
s
2 ũn|2dx +

1
2

∫
RN

V(εx + εyn)ũ2
ndx −

∫
RN

h(εx + εyn)F(ũn)dx

= I∞(ũn) +
1
2

∫
RN

(V(εx + εyn)− V∞)ũ2
ndx +

∫
RN

(h∞ − h(εx + εyn))F(ũn)dx

= I∞(ũn) + on(1) ≥ E∞,a + on(1),

which is absurd, because c < E∞,a < 0. This proves the lemma.

Lemma 10. Let {un} ⊂ Sa be a (PS)c sequence of Iε restricted to Sa with c < E∞,a < 0 and
un ⇀ uε in Hs(RN). If vn = un − uε ̸→ 0 in Hs(RN), there exists β > 0 independent of
ε ∈ (0, ε1) such that

lim inf
n→+∞

|un − uε|22 ≥ β.

Proof. Setting the functional Φ : Hs(RN) → R given by the following:

Φ(u) =
1
2

∫
RN

|u|2dx.

It follows that Sa = Φ−1({a/2}). Then, by Willem (Proposition 5.12 [33]), there exists
{λn} ⊂ R such that

||I′ε(un)− λnΦ′(un)||(Hs(RN))′ → 0 as n → +∞. (31)

By the boundedness of {un} in Hs(RN), we know {λn} is a bounded sequence, thus
there exists λε such that λn → λε as n → +∞. This together with (31) leads to the following:

I′ε(uε)− λεΦ′(uε) = 0 in (Hs(RN))′,

and then
||I′ε(vn)− λnΦ′(vn)||(Hs(RN))′ → 0 as n → +∞. (32)

By a straightforward calculation, we have the following:

E∞,a > lim inf
n→+∞

Iε(un)

= lim inf
n→+∞

(
Iε(un)−

1
2

I′ε(un)un +
1
2

λna + on(1)
)

= lim inf
n→+∞

[∫
RN

h(εx)
2

f (un)undx −
∫
RN

h(εx)F(un)dx +
1
2

λna + on(1)
]

≥ 1
2

λεa,

implying the following:

λε ≤
2E∞,a

a
< 0, for all ε ∈ (0, ε1). (33)

From (32), we obtain the following:

|(−∆)
s
2 vn|22 +

∫
RN

V(εx)|vn|2dx − λε|vn|22 −
∫
RN

h(εx) f (vn)vndx = on(1), (34)
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which combined with (33) gives the following:

|(−∆)
s
2 vn|22 +

∫
RN

V(εx)|vn|2dx − 2E∞,a

a

∫
RN

|vn|2dx ≤
∫
RN

h(εx) f (vn)vndx + on(1).

Then ∫
RN

|(−∆)
s
2 vn|2dx + C3

∫
RN

|vn|2dx ≤ C2

∫
RN

|vn|pdx + on(1), (35)

for some constant C3 > 0 that does not depend on ε ∈ (0, ε1). If un ̸→ uε in Hs(RN); that
is vn ̸→ 0 in Hs(RN), the last inequality ensures that there exists C0 > 0 independent of ε
such that

lim inf
n→+∞

|vn|pp ≥ C0. (36)

Then, by the fractional Gagliardo-Nirenberg-sobolev inequality,∫
RN

|vn|α ≤ C(s, N, α)(
∫
RN

|(−∆)
s
2 vn|2)

N(α−2)
4s (

∫
RN

|vn|2)
α
2 −

N(α−2)
4s ,

for some positive constant C(s, N, α) > 0. We have

lim inf
n→+∞

∫
RN

|vn|p ≤ C(s, N, p)(
∫
RN

|(−∆)
s
2 vn|2)

N(p−2)
4s (lim inf

n→+∞

∫
RN

|vn|2)
p
2 −

N(p−2)
4s

≤ C(s, N, p)K
N(p−2)

4s (lim inf
n→+∞

∫
RN

|vn|2)
p
2 −

N(p−2)
4s , (37)

where K > 0 is a suitable constant independent of ε ∈ (0, ε1) satisfying the condition∫
RN |(−∆)

s
2 vn|2 ≤ K for all n ∈ N. Now, the lemma follows from (36) and (37).

Next we will give the compactness lemma.

Lemma 11. Let

0 < ρ0 < min
{

E∞,a − Eai ,a,
β

a
(E∞,a − Eai ,a)

}
.

Then, for each ε ∈ (0, ε1), the functional Iε satisfies the (PS)c condition restricts to Sa if
c < Eai ,a + ρ0.

Proof. Let {un} be a (PS)c sequence for Iε restricts to Sa and c < Eai ,a + ρ0. It follows that
c < E∞,a < 0, since {un} is bounded in Hs(RN), we let un ⇀ uε in Hs(RN). By Lemma 9,
uε ̸≡ 0. Denote vn = un − uε, if un → uε in Hs(RN), the proof is complete. If un ̸→ uε in
Hs(RN), by Lemma 10,

lim inf
n→+∞

|vn|22 ≥ β.

Set b = |uε|22, dn = |vn|22 and suppose that |vn|22 → d > 0, then we obtain d ≥ β > 0
and a = b + d. From dn ∈ (0, a) for n large enough, we obtain the following:

c + on(1) = Iε(un) = Iε(vn) + Iε(uε) + on(1). (38)

Since vn ⇀ 0 in Hs(RN), we can follow the lines in the proof of Lemma 9. Then

Iε(vn) ≥ E∞,dn + on(1), (39)

by (38) and (39), we obtain the following:

c + on(1) = Iε(un) ≥ E∞,dn + Iε(uε) + on(1)

≥ E∞,dn + Eai ,b + on(1).
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Letting n → ∞, by the in Equation (22), we have the following:

c ≥ E∞,d + Eai ,b ≥ d
a

E∞,a +
b
a

Eai ,a

= Eai ,a +
d
a
(E∞,a − Eai ,a)

≥ Eai ,a +
β

a
(E∞,a − Eai ,a),

which is a contradiction, because c < Eai ,a +
β
a (E∞,a − Eai ,a). Therefore, we can obtain

un → uε in Hs(RN).

In what follows, let us fix ρ̄, r̄ > 0 satisfying the following:

(1) Bρ̄(ai) ∩ Bρ̄(aj) for i ̸= j and i, j ∈ {1, . . . k};
(2) ∪k

i=1Bρ̄(ai) ⊂ Br̄(0);
(3) Q ρ̄

2
= ∪l

i=1B ρ̄
2
(ai).

We set the function Gε : Hs(RN)\{0} → RN by

Gε(u) =

∫
RN χ(εx)|u|2dx∫

RN |u|2dx
,

where χ : RN → RN denotes the characteristic function; that is, the following:

χ(x) =

{
x, if |x| ≤ r̄,
r̄ x
|x| , if |x| > r̄.

The next two lemmas will be useful to obtain important (PS) sequences for Iε restricted
to Sa.

Lemma 12. For ε ∈ (0, ε1), there exists δ1 > 0 such that if u ∈ Sa and Iε(u) ≤ Eai ,a + δ1, then

Gε(u) ∈ Q ρ̄
2
, ∀ε ∈ (0, ε1).

Proof. If the lemma does not occur, there must be δn → 0, εn → 0 and {un} ⊂ Sa such that

Iεn(un) ≤ Eai ,a + δn and Gεn(un) ̸∈ Q ρ̄
2
, ∀ε ∈ (0, ε1). (40)

So we have
Eai ,a ≤ Iai (un) ≤ Iεn(un) ≤ Eai ,a + δn,

then
{un} ⊂ Sa and Iai (un) → Eai ,a.

According to Lemma 5, we have one of the following two cases:

(i) un → u in Hs(RN) for some u ∈ Sa;
(ii) There exists {yn} ⊂ Sa with |yn| → ∞ such that the sequence vn(x) = un(x + yn) in

Hs(RN) to some v ∈ Sa.

For (i): By the Lebesgue dominated convergence theorem,

Gεn(un) =

∫
RN χ(εx)|un|2dx∫

RN |un|2dx
→

∫
RN χ(0)|u|2dx∫

RN |u|2dx
= 0 ∈ Q ρ̄

2
.

Then Gεn(un) ∈ Q ρ̄
2

for n large enough, which contradicts (40).

For (ii): We will study the following two cases: (I) |εnyn| → +∞; (II) εnyn → y for
some y ∈ RN .
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If (I) holds, the limit vn → v in Hs(RN) provides the following:

Iεn(un) =
1
2
|(−∆)

s
2 vn|22 +

1
2

∫
RN

V(εnx + εnyn)|vn|2dx −
∫
RN

h(εnx + εnyn)F(vn)dx

→I∞(v) as n → +∞. (41)

Since Iε(un) ≤ Eai ,a + δn, we deduce the following:

E∞,a ≤ I∞(v) ≤ Eai ,a,

which contradicts Eai ,a < E∞,a in Lemma 7.
If (II) holds, by (41), we obtain the following:

Iεn(un) → Ih(y)V(y)(v) as n → +∞,

and then Eh(y)V(y),a ≤ Ih(y)V(y)(v) ≤ Eai ,a. By Lemma 6, we must have h(y) = h(ai) and
V(y) = V(ai). Namely, y = ai for some i = 1, 2, . . . , k. Hence,

Gεn(un) =

∫
RN χ(εnx)|un|2dx∫

RN |un|2dx
=

∫
RN χ(εnx + εnyn)|vn|2dx∫

RN |vn|2dx

→
∫
RN χ(y)|v|2dx∫

RN |v|2dx
= 0 ∈ Q ρ̄

2
,

which implies that Gεn(un) ∈ Q ρ̄
2

for n large enough, which contradicts (40). The proof
is complete.

From now on, we will use the following notations:

• θi
ε: ={u ∈ Sa : |Gε(u)− ai| ≤ ρ̄};

• ∂θi
ε: ={u ∈ Sa : |Gε(u)− ai| = ρ̄};

• βi
ε = inf

u∈θi
ε

Iε(u);

• β̄i
ε = inf

u∈∂θi
ε

Iε(u).

Lemma 13. Let ρ0 be defined in lemma 11. Then,

βi
ε < Eai ,a + ρ0 and βi

ε < β̄i
ε, f or ∀ε ∈ (0, ε1).

Proof. Let u ∈ Sa satisfy
Iai (u) = Eai ,a.

For 1 ≤ i ≤ k, we define the following:

ûi
ε(x) := u

(
x − ai

ε

)
, x ∈ RN .

Then ûi
ε(x) ∈ Sa for all ε > 0 and 1 ≤ i ≤ k. Direct calculations give the following:

Iε(ûi
ε) =

1
2
|(−∆)

s
2 u|22 +

1
2

∫
RN

V(εx + ai)|u|2dx −
∫
RN

h(εx + ai)F(u)dx,

and then
lim
ε→0

Iε(ûi
ε) = Iai (u) = Eai ,a, (42)

we know

Gε(ûi
ε) =

∫
RN χ(εx + ai)|u|2dx∫

RN |u|2dx
→ ai as ε → 0+.
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So ûi
ε(x) ∈ θi

ε for ε small enough, which combined with (42) implies the following:

Iε(ûi
ε) < Eai ,a +

δ1

2
, ∀ε ∈ (0, ε1).

Decreasing δ1 if necessary, we know the following:

βi
ε < Eai ,a + ρ0, ∀ε ∈ (0, ε1).

For any u ∈ ∂θi
ε, which is u ∈ Sa and |Gε(u) − ai| = ρ̄, we obtain the following:

|Gε(u)| ̸∈ Q ρ̄
2
.

Then by Lemma 12,

Iε(u) > Eai ,a + δ1, for all u ∈ ∂θi
ε and ε ∈ (0, ε1),

which implies the following:

β̄i
ε = inf

u∈∂θi
ε

Iε(u) ≥ Eai ,a + δ1.

Then, we have
βi

ε < β̄i
ε, for all ε ∈ (0.ε1).

4. Proof of Theorem 1

Proof. By Lemma 13, for each i ∈ {1, 2, . . . , k}, we can use the Ekeland’s variational
principle to find a sequence {ui

n} ⊂ Sa satisfying

Iε(ui
n) → βi

ε and Iε(w) ≥ Iε(ui
n)−

1
n
||w − ui

n||, ∀w ∈ θi
ε.

Recalling Lemma 13, βi
ε < β̄i

ε , and so ui
n ∈ θi

ε\∂θi
ε for n large enough.

Let w ∈ Tui
n
Sa, there exists δ > 0 such that the path γ : (−δ, δ) → Sa defined by the

following:

γ(t) = a
(ui

n + tw)

|ui
n + tw|2

,

belongs to C1((−δ, δ), Sa) and satisfies

γ(t) ∈ θi
ε\∂θi

ε ∀t ∈ (−δ, δ), γ(0) = ui
n and γ′(0) = w.

Then for any t ∈ (0, δ),

Iε(γ(t))− Iε(γ(0))
t

=
Iε(γ(t))− Iε(ui

n)

t
≥ − 1

n

∥∥∥∥γ(t)− ui
n

t

∥∥∥∥ = − 1
n

∥∥∥∥γ(t)− γ(0)
t

∥∥∥∥.

Taking the limit of t → 0+, we obtain the following: I′ε(ui
n)(w) ≥ − 1

n ||w||. Replacing
w by −w, we obtain |I′ε(ui

n)(w)| ≤ 1
n ||w||.

Then, we have the following:

sup{|I′ε(ui
n)(w)| : ||w|| ≤ δn} ≤ 1

n
.

Consequently,

Iε(ui
n) → βi

ε as n → +∞ and ||Iε|′Sa
(ui

n)|| → 0 as n → +∞,
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that is, {ui
n} is a (PS)βi

ε
for Iε restricts to Sa. Since βi

ε < Eai ,a + ρ0, it follows from Lemma 11

that there exists ui such that ui
n → ui in Hs(RN). Then, we obtain the following:

ui ∈ θi
ε, Iε(ui

n) = βi
ε and Iε|′Sa

(ui
n) = 0.

Moreover,
Gε(ui) ∈ Bρ̄(ai), Gε(uj) ∈ Bρ̄(aj),

and
Bρ̄(ai) ∩ Bρ̄(aj) = ∅ for i ̸= j,

which implies that ui ̸= uj for i ̸= j while 1 ≤ i, j ≤ k, we can understand Iε has at least k
nontrivial critical points for any ε ∈ (0, ε1). Therefore, we obtain the theorem.
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