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Abstract: The generalization of binary operation in the classical algebra to fuzzy binary operation is
an important development in the field of fuzzy algebra. The paper proposes a new generalization of
vector spaces over field, which is called M-hazy vector spaces over M-hazy field. Some fundamental
properties of M-hazy field, M-hazy vector spaces, and M-hazy subspaces are studied, and some
important results are also proved. Furthermore, the linear transformation of M-hazy vector spaces is
studied and their important results are also proved. Finally, it is shown that M-fuzzifying convex
spaces are induced by an M-hazy subspace of M-hazy vector space.

Keywords: M-hazy group; M-hazy ring; M-hazy field; M-hazy vector space; M-hazy subspace;
M-fuzzifying convex space

1. Introduction

In 1971, Rosenfeld [1] published an innovative paper on fuzzy subgroups. This article
introduced the new field of abstract algebra and the new field of fuzzy mathematics. Many
scientists and researchers worked in this field and obtained fruitful research. Liu [2,3] gave
an important generalization in the field of fuzzy algebra by introducing fuzzy subrings of
a ring and fuzzy ideals. Demirci [4] firstly introduced the fuzzification of binary operation
to group structure through fuzzy equality [5] and introduced “vague groups.” After this
work, many researchers used this concept and extended it to several other useful directions
such as [6–10]. In Demirci’s approach, the characteristic of the degree between the fuzzy
binary operation is not used, and the identity and inverse element of an element are also
not unique. Liu and Shi [11] proposed a new approach to fuzzify the group structure by
characterizing the degree of fuzzy binary operation, which is called M-hazy groups. It
is important to mention that M-hazy associative law has been defined in order to obtain
M-hazy groups. Mehmood et al. [12] extended this concept to the ring structure and gave a
new method to the fuzzification of rings, which is defined by M-hazy rings. It is also worth
mentioning that an M-hazy distributive law has been proposed so as to define M-hazy
rings. Furthermore, Mehmood et al. [13] also provided the homomorphism theorems of
M-hazy rings with its induced fuzzifying convexities. Liu and Shi [14] proposed M-hazy
lattices. Fan et al. [15] introduced an M-hazy Γ-semigroup.

Vector space has been the most widely studied and used in linear algebra theory.
A vector space is a set of elements with a binary addition operator and a multiplication
operator that has closure under these two operations over a field, all while satisfying a set of
axioms. Vector spaces are the realm of linear combinations, also known as superpositions,
weighted sums, and sums with coefficients. Such sums occur throughout mathematics,
both pure and applied, including statistics, science, engineering, and economics. The
key word is “linear”. Even when studying nonlinear phenomena, it is often useful to
approximate with a simpler linear model. You can say that vector spaces are one of the
great organizing tools of mathematics, helping reveal a structural similarity in a wide
variety of topics found in such different contexts that they may seem completely different.
Suppose you stand in front of a house. It is rather old but beautifully constructed of
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1. Introduction

In the comparison of multiple groups in confirmatory factor analysis (CFA) regarding
factor variables, some identifying assumptions have to be made. It is frequently assumed
that item parameters are equal across groups, denoted as measurement invariance [1].
The concept of invariance has been very prominent in psychology and the social sciences in
general [2,3]. For example, in international large-scale assessment studies in education, like
the Programme for International Student Assessment (PISA), the necessity of invariance is
strongly emphasized [4].

In the violation of measurement invariance, the invariance alignment (IA) method [5,6]
(also referred to as alignment optimization [7,8]) has been proposed to tackle such situations.
The IA method tries to make item parameters as invariant as possible while allowing a few
deviations from invariance. By doing so, group comparisons can be made more robust
against violations of measurement invariance.

Nowadays, the IA method is frequently applied in social sciences for analyzing
questionnaire data [9–12]. Unfortunately, most methodological developments of IA (but
see [13–15] for exceptions) are strongly coupled to the popular but commercial (and closed-
source) Mplus software [16]. Previous simulation studies for one-dimensional factor
models investigated the case of continuous items [5,8,17–19], dichotomous items [20,21],
and polytomous items [14,22]. IA to multidimensional factor models with continuous
items has been investigated in [23,24]. Moreover, IA was studied in longitudinal models
in [25–27]. The optimization function used in IA also gave rise to extending it to a general
framework used in penalized structural equation models [28].
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Besides the Mplus software, there exists an alternative implementation in the R pack-
age sirt [29]. However, several researchers have pointed out that there could be subtle
differences of IA between Mplus and sirt. Unfortunately, there is no systematic comparison
of the performance of invariance alignment implementations in Mplus and sirt. This article
tries to shed some light on the subtleties of implementation differences of IA. It turns
out that different identification constraints are likely the cause of the different results of
software packages. By changing the default identification constraint in sirt, Mplus and sirt
provided much more similar results. Moreover, the results from a simulation study also
question the default choices of tuning parameters in the software packages.

The rest of this article is structured as follows. In Section 2, the background of IA is
reviewed. Section 3 discusses the syntax code and estimation options of IA in Mplus and
sirt. In Section 4, the two software packages are compared by means of a simulation study.
An empirical example is presented in Section 5. Finally, the paper closes with a discussion
in Section 6.

2. Invariance Alignment

Let the random variable Xig denote item i (i = 1, . . . , I) in group g (g = 1, . . . , G).
A one-dimensional factor model [30] is defined as

Xig = νig + λigFg + ϵig , Fg ∼ N(µg, σ2
g) , ϵig ∼ N(0, ωig) , (1)

where λig are item loadings, and νig are item intercepts. Item loadings can be assumed to
be positive. If some loading is negative, the corresponding random variable Xig must be
multiplied by −1. The factor variables Fg and all residual variables ϵig are independent and
univariate normally distributed. The factor variable Fg has a factor mean µg and a factor
standard deviation σg.

Without additional assumptions, the parameters in (1) are not identified. An identified
model is obtained by assuming a standardized latent variable Fg (i.e., with a mean of 0 and
a standard deviation of 1):

Xig = νig,0 + λig,0Fg + ϵig , Fg ∼ N(0, 1) , ϵig ∼ N(0, ωig) . (2)

The parameters in (1) and (2) are related to each other by

λig,0 = λigσg and νig,0 = νig + λigµg = νig +
λig,0

σg
µg . (3)

In many applications, the factor means µg and factor standard deviations σg should be
compared across groups. To achieve this, a typical assumption in the social sciences is the
property is measurement invariance [1,3]. Measurement invariance presupposes that item
loadings λig and item intercepts νig are equal across groups. That is, there exist common
item loadings λi such that λi = λig for all g = 1, . . . , G and common item intercepts νi
such that νi = νig for g = 1, . . . , G for all items i = 1, . . . , I. The absence of measurement
invariance is also labeled as differential item functioning (DIF; [2,31]) in the item response
theory literature. If measurement invariance holds, (3) can be rewritten as

λig,0 = λiσg and νig,0 = νi +
λig,0

σg
µg . (4)

The IA method of Asparouhov and Muthén [5,6] tackles situations under sparse
violations of measurement invariance. In this case, a few item loadings or item intercepts
are allowed to differ across groups, while the majority of items (approximately) fulfills the
invariance assumption [32]. This situation is called partial invariance in the literature [33].

The IA estimation method proceeds in two steps. In the first step, the one-dimensional
factor model (2) is separately estimated by the maximum likelihood method for all groups
in the first step. The estimated item parameters λ̂ig,0 and ν̂ig,0 (i = 1, . . . , I; g = 1, . . . , G)
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are used as the input of the IA. By rewriting (3) and inserting the estimated item loadings
and item intercepts, we obtain

λig − λih =
λ̂ig,0

σg
−

λ̂ih,0

σh
and νig − νih = ν̂ig,0 − ν̂ih,0 −

λ̂ig,0

σg
µg +

λ̂ih,0

σh
µh . (5)

These relations motivate the minimization of the following linking function in IA to deter-
mine group means µ = (µ1, . . . , µG) and standard deviations σ = (σ1, . . . , σG):

H(µ, σ) =
I

∑
i=1

G−1

∑
g=1

G

∑
h=g+1

wi1,ghρ

(
λ̂ig,0

σg
−

λ̂ih,0

σh

)
+

I

∑
i=1

G−1

∑
g=1

G

∑
h=g+1

wi2,ghρ

(
ν̂ig,0 − ν̂ih,0 −

λ̂ig,0

σg
µg +

λ̂ih,0

σh
µh

)
, (6)

where the weights wi1,gh and wi2,gh are known, and ρ is a nonnegative, symmetric loss func-
tion with ρ(0) = 0 and is monotonically increasing for nonnegative x values. Asparouhov
and Muthén [5] proposed using wi1,gh = wi2,gh =

√ngnh and ρ(x) =
√
|x|, where ng

denotes the sample size of group g.
In the minimization of (6), additional identification constraints must be imposed. As a

first alternative, the distribution parameters of the first (or any other) group can be fixed.
That is, we set µ1 = 0 and σ1 = 1. As a second alternative, one can simultaneously constrain
all estimated parameters. Then, the following identification constraints can be imposed:

G

∑
i=1

µg = 0 and
G

∏
g=1

σg = 1 . (7)

The constraints in (7) state that the arithmetic mean of the factor means equals zero, and the
geometric mean of the factor standard deviation equals one.

Note that the optimization function H of IA defined in (6) can be rewritten as

H(µ, σ) = H1(σ) + H2(µ, σ) , where (8)

H1(σ) =
I

∑
i=1

G−1

∑
g=1

G

∑
h=g+1

ρ

(
λ̂ig,0

σg
−

λ̂ih,0

σh

)
and H2(µ, σ) =

I

∑
i=1

G−1

∑
g=1

G

∑
h=g+1

ρ

(
ν̂ig,0 − ν̂ih,0 −

λ̂ig,0

σg
µg +

λ̂ih,0

σh
µh

)
. (9)

However, the function H2 can be conveniently substituted by an alternative. Note that
Equation (3) can be rewritten as

log λig,0 = log λig+ log σg and νig,0= νig +
λig,0

σg
µg . (10)

This motivates the alternative optimization function H∗
1 for determining standard devia-

tions, which employs logarithmized item loadings (see [34,35])

H∗
1 (σ

∗) =
I

∑
i=1

G−1

∑
g=1

G

∑
h=g+1

ρ
(

log λ̂ig,0 − log λ̂ih,0 − σ∗
g + σ∗

h

)
, (11)

where σ∗
g = log σg for g = 1, . . . , G. Due to the required identification constraints, we fix

σ∗
1 = 0 (i.e., σ1 = exp(σ∗

1 ) = 1). By minimizing H∗
1 , a vector of standard deviations σ̂∗

on the logarithm metric is obtained; that is, σ̂∗ = (σ̂∗
1 , . . . , σ̂∗

G). The vector of estimated
standard deviations σ̂ can be obtained by exponentiating all entries in σ̂∗.

2.1. Numerical Optimization

As mentioned above, IA uses the loss function ρ(x) =
√
|x| = |x|0.5 as the default in

the Mplus software package [16]. However, the loss function ρ(x) = |x|0.25 is also available
in Mplus [16]. The more general Lp loss function ρ(x) = |x|p for p > 0 has been studied
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for IA in [13,35]. It has been shown that values of the power p smaller than 0.5 can be
advantageous in some situations [13].

In the practical minimization of H involved in IA, the nondifferentiable Lp loss function
ρ(x) = |x|p (for 0 < p ≤ 1) is replaced by a differentiable approximation ρD (see [5,35])

ρD(x) = (x2 + ε)p/2 , (12)

where ε > 0 is a tuning parameter that controls the approximation error of ρD for ρ. The ap-
proximation error becomes smaller with ε values close to zero. However, the minimization
of H in IA becomes more difficult when choosing too small values of ε. Practical experience
led to proposals ε = 0.01 [5] or ε = 0.001 [35]. The choice ε = 0.01 is the default in Mplus
(see [13]).

2.2. A More in-Depth Look into the Identification Constraint for Standard Deviations for
Many Groups

The IA method measures the similarity between item loadings in the optimization
function H1 by

H1(σ) =
I

∑
i=1

G−1

∑
g=1

G

∑
h=g+1

ρ

(
λ̂ig,0

σg
−

λ̂ih,0

σh

)
. (13)

As mentioned above, an identification constraint could be to fix the standard deviation of
the first group to 1 or to fix the product of standard deviations to 1. Regarding the choice of
the chosen identification constraint in their Mplus software, Asparouhov and Muthén [5]
state that “[. . . ] in Mplus by default the parameters are indeed reported in that metric,
however, the alignment optimization is carried out using Equation (10) [i.e., the product
identification constraint in (7)] to ensure full symmetry between the different groups”. To
illustrate this motivation a bit, we rewrite (13) as

H1(σ) =
I

∑
i=1

G

∑
h=2

ρ

(
λ̂i1,0

σ1
−

λ̂ih,0

σh

)
+

I

∑
i=1

G−1

∑
g=2

G

∑
h=g+1

ρ

(
λ̂ig,0

σg
−

λ̂ih,0

σh

)
, (14)

where we decomposed the terms that do involve and do not involve the first group,
respectively. If the optimization would only have been carried out based on the second
term in (14), the optimization value would tend to zero if standard deviations tend to
infinity. Hence, fixing the standard deviation σ1 to 1 prevents obtaining infinite estimates
of σg for g = 2, . . . , G. If σ1 = 1 is specified in the minimization of (14), it becomes clear
that the first term in the sum involving the first group becomes less relevant if the number
of groups increases. Hence, there is a danger that estimated standard deviations are larger
if more groups are involved in the analysis. For this reason, the identification constraint
σ1 = 1 is likely not appropriate in the case of many groups. In contrast, the constraint
∏G

g=1 σg = 1 would be preferable in this case. The behavior of IA for many groups is
analyzed in a simulation study in Section 4 and an empirical example in Section 5.

3. Implementation of Invariance Alignment in Mplus and Sirt

We now describe how IA can be estimated with the commercial Mplus software (Ver-
sion 8.9; [16]) and the R (Version 4.3; [36]) package sirt [29].

Listing 1 contains command-line syntax for the specification of IA in Mplus (see [16,37]).
The dataset is locally saved in mydata.dat (see Line 4 in Listing 1) in an appropriate working
directory. The IA method should be applied for five items I1, . . . , I5 (see Line 6 in Listing 1).
The numeric grouping variable group is included in the dataset. The grouping variable has
to be specified as a known class variable in Mplus (see Lines 8 and 9 in Listing 1).
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Listing 1. Specification of invariance alignment in Mplus software.

1 TITLE:
2 Invariance Alignment;
3 DATA:
4 FILE IS mydata.dat;
5 VARIABLE:
6 NAMES ARE group I1 I2 I3 I4 I5;
7 USEVARIABLES ARE group I1 I2 I3 I4 I5;
8 CLASSES = c(3);
9 KNOWNCLASS = c(group = 1 group = 2 group = 3);

10 ANALYSIS:
11 TYPE = MIXTURE;
12 ESTIMATOR = MLR;
13 ALIGNMENT = FIXED (2); ! group =2 is reference group with zero mean;
14 ! ALIGNMENT = FREE for method ’FREE’;
15
16 TOLERANCE = 0.01; ! epsilon value;
17 SIMPLICITY = SQRT; ! for p=0.5;
18 ! SIMPLICITY = FOURTHRT for p=0.25;
19 MODEL:
20 %overall%
21 f1 BY I1 I2 I3 I4 I5;
22 OUTPUT:
23 alignment;

Mplus has only implemented the product constraint ∏G
g = 1 σg = 1 for standard

deviations. The method FIXED (i.e., Line 13 in Listing 1 that states ALIGNMENT=FIXED) utilizes
the zero constraint of the factor of the first group; that is, µ1 = 0. The reference to
the first group can be changed using the command ALIGNMENT=FIXED(2) (see Line 13 in
Listing 1). In this case, Group 2 is used as the reference group. Alternatively, “the FREE
alignment optimization estimates α1 as an additional parameter” [5]. This specification
seems to be overparametrized, and Mplus must have implemented some fix to prevent
nonconvergence of the IA optimization problem. The Mplus manual states, “In the FREE
setting, all factor means are estimated. FREE is the most general approach” [16]. This
statement does not certainly provide enough details for an independent implementation
of the black-box algorithms in the Mplus software. Furthermore, the TOLERANCE argument
in Line 15 in Listing 1 specifies the tuning parameter ε that appears in the differentiable
approximation (12). The default in Mplus is ε = 0.01. Finally, the SIMPLICITY argument
can either choose the power p = 0.5 (i.e., square root SQRT) or p = 0.25 (i.e., fourth
root FOURTHRT).

Listing 2 shows how IA can be estimated in the R package sirt [29,38,39]. In the first
step, group-specific estimation of the one-dimensional factor models can be carried out with
the function sirt::invariance_alignment_cfa_config() (see Line 5 in Listing 2). The group-
specific estimated item loadings lambda and item intercepts nu can be extracted from the
output of this function (see Lines 9 and 10 in Listing 2). Moreover, the weights wg1,g2 in IA
(see Equation (6)) are specified in Line 14 in Listing 2. The specification in this listing
ensures the same chosen weights as in Mplus. The function sirt::invariance.alignment()
performs IA based on estimated item loadings lambda and item intercepts nu (see Line 17
in Listing 2). The power p in IA can be separately chosen for item loadings (first entry in
align.pow) and item intercepts (second entry in align.pow). If the power p = 0.25 instead
of the default p = 0.5 should be used in the analysis, users have to specify the argu-
ment align.pow=c(0.25,0.25) in the sirt::invariance.alignment() function. The tuning
parameter ε in Equation (12) can be specified with the argument eps.
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Listing 2. Specification of invariance alignment in the R package sirt.

1 #* define items
2 items <- paste0(‘‘I’’, 1:5)
3
4 #* separate estimate of factor model in groups
5 prep <- sirt:: invariance_alignment_cfa_config(dat=dat[,items],
6 group=dat$group )
7
8 # extract item loadings and item intercepts
9 lambda <- prep$lambda

10 nu <- prep$nu
11
12 #- define weights
13 Ng <- prep$N
14 wgts <- matrix(sqrt(Ng), length(Ng), ncol(nu))
15
16 #* perform invariance alignment
17 res <- sirt:: invariance.alignment(lambda=lambda , nu=nu ,
18 align.pow=c(.5, .5), eps =0.01, wgt=wgts , meth =3)
19
20 #- extract estimated means and standard deviations
21 res$pars

The IA function in the sirt package has four different estimation methods that can be
requested with the argument meth. The default meth = 1 uses the optimization Function (6)
with the identification constraints µ1 = 0 and σ1 = 1. The method meth = 2 performs
IA on logarithmized item loadings (see Equation (11)), also using the constraints µ1 = 0
and σ1 = 1. The method meth = 3 implements the product constraint ∏G

g = 1 σg = 1 for
standard deviations and the zero mean constraint for the first group (i.e., µ1 = 0). Hence,
this method is expected to perform similarly to Mplus’ FIXED alignment method. Finally,
meth = 4 also utilizes the product constraint for standard deviations but freely estimates
the first group mean µ1. To identify the model, a penalty term ωW ∑G

g = 1 µ2
g is added to the

optimization function, where W is the sum of the involved weights in the IA optimization
function and ω = 0.01 is a small factor to achieve convergence in optimization. Likely,
this method has only conceptual similarity with Mplus’ FREE method, and no equivalent
performance can be expected.

The estimated distributed parameters can be requested by the list entry $pars (see
Line 21 in Listing 2).

4. Simulation Study
4.1. Method

The datasets in this simulation study were simulated from a one-dimensional factor
model consisting of I = 5 items and G = 3, 6, 9, or 12 groups. In the case of three groups,the
group means were 0, 0.3, and 0.8, and the group standard deviations were 1, 1.225, and
1.095, respectively. With more than three groups, all parameters (i.e., distribution and item
parameters) were replicated accordingly. For example, for six groups, the parameters were
twice replicated.

All measurement error variances were set to 1 in all groups and uncorrelated with
each other. The factor variable and residual variables were normally distributed. There
was noninvariance in item intercepts and item loadings. All item intercepts had a value of
zero except for a few cases. In the first group, the fifth item intercept was 0.5. In the second
group, the first item intercept was −0.5, while the second item had an intercept of −0.5 in
the third group. All item loadings had a value of one except for a few cases. In the first
group, the third item loading was 1.5. In the second group, the fifth item loading was 0.5,
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while the fourth item loading was 0.5 in the third group. These parameters were duplicated
with more than three groups as described above.

The sample size per group was chosen as N = 250, N = 500, N = 1000, N = 2000,
or N = Inf (i.e., infinite sample size). In the case of an infinite sample size, there was
no sampling error, and the population parameters were the data-generating parameters.
The mean vectors and the covariance matrices are sufficient statistics for the IA method.
Datasets with a sample size of N = 9999, whose empirical means and covariances equaled
the population means and covariances, respectively, were simulated in this case.

The IA method was applied in the Mplus software (Version 8.9; [16]), and the function
invariance.alignment() in the R package sirt (Version 4.1-15; [29]) was applied. Both
software packages utilized the power p = 0.5 and the tuning parameter choices ε = 0.01
and ε = 0.001. Mplus was used with the FIXED or the FREE methods, while the method
meth in sirt was specified as meth = 1, meth = 2, meth = 3, or meth = 4. To compare the
performance across methods, the estimates were linearly transformed such that the mean
and the SD of the first group were 0 and 1, respectively.

In total, R = 1000 replications were conducted for each cell of the simulation study.
Bias, standard deviation (SD), root mean square error (RMSE), and relative RMSE were
computed to assess the performance of the different estimators for factor means and factor
standard deviations. To ease the comparability between the different estimation methods,
we computed a relative RMSE value, which was defined as the quotient of the RMSE for
a particular method and the RMSE of a reference method. This quotient was multiplied
by 100 afterward. The reference method was Mplus’ FIXED method with p = 0.5 and
ε = 0.01, which is the default in this software package. We also computed the mean
absolute difference between estimates of Mplus and sirt to determine possible differences
between software packages. Information about model specifications can be found in the
material located at https://osf.io/84ne5 (accessed on 17 February 2024) .

4.2. Results

In this section, we only present results for the distribution parameters for the second
group. The findings for the other groups were very similar.

Table 1 contains the bias of the estimated factor mean µ2 for different estimation meth-
ods in Mplus and sirt. Overall, noticeable bias occurred for ε = 0.01 and p =0.5. However,
the bias decreased with increasing sample size but still appeared in infinite sample sizes.
Moreover, note that the bias did not disappear with an increasing number of groups. Inter-
estingly, bias was substantially reduced with the tuning parameter ε = 0.001, particularly
for sample sizes of at least 1000. For three, six, or nine groups, the method meth = 1 in sirt
performed best in terms of bias. In general, the bias of both Mplus methods FIXED and FREE
was similar to those obtained from the four methods implemented in sirt. Interestingly,
sirt’s method meth = 1 had issues with an increasing number of groups. For G = 12 and
N = 250, there was a large bias in estimated factor means, which showed that meth = 1
failed for a large number of groups.

Table 2 shows the relative RMSE of the estimated factor mean µ2 in the second group.
The FREE method in Mplus was slightly inferior to the FIXED method in Mplus for more
than three groups. The tuning parameter ε = 0.001 outperformed ε = 0.01 in terms of
relative RMSE. This observation was primarily an effect of the larger bias for ε = 0.01.
The simulation study also highlighted that the SD for the different estimates was larger
for ε = 0.001 than for ε = 0.01.

Table 3 presents the average absolute difference between the estimates of the factor
mean in the second group between Mplus and sirt. It can be seen that Mplus’ FIXED
method was closest to the sirt method meth = 3. The differences were larger to sirt’s
meth = 1, which is the default in the R package sirt. Furthermore, the FREE method of Mplus
turned out to perform most similarly to sirt’s meth = 4. However, the differences between
the two methods are noticeable. Hence, it can be concluded that there is no equivalent
implementation of the Mplus FREE method in the sirt package.

https://osf.io/84ne5
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Table 1. Simulation Study: Bias of the estimated factor mean in the second group µ2 for different
estimation methods in Mplus and sirt for p = 0.5 as a function of the invariance alignment parameter
ε, sample size per group N, and number of groups G.

ε = 0.01 ε = 0.001

Mplus sirt, meth= Mplus sirt, meth=

G N FIXED FREE 1 2 3 4 FIXED FREE 1 2 3 4

3

250 −0.075 −0.073 −0.062 −0.071 −0.071 −0.070 −0.048 −0.048 −0.042 −0.050 −0.050 −0.049
500 −0.059 −0.056 −0.050 −0.057 −0.056 −0.052 −0.032 −0.028 −0.029 −0.033 −0.033 −0.027

1000 −0.046 −0.045 −0.037 −0.043 −0.042 −0.041 −0.017 −0.016 −0.014 −0.017 −0.017 −0.016
2500 −0.041 −0.040 −0.033 −0.038 −0.037 −0.036 −0.012 −0.011 −0.009 −0.011 −0.011 −0.010
Inf −0.037 −0.037 −0.030 −0.034 −0.033 −0.033 −0.006 −0.006 −0.005 −0.006 −0.006 −0.006

6

250 −0.073 −0.069 −0.052 −0.070 −0.070 −0.066 −0.046 −0.045 −0.033 −0.046 −0.047 −0.045
500 −0.065 −0.064 −0.051 −0.063 −0.063 −0.060 −0.037 −0.036 −0.029 −0.036 −0.037 −0.036

1000 −0.048 −0.048 −0.035 −0.046 −0.045 −0.044 −0.020 −0.020 −0.015 −0.020 −0.020 −0.019
2500 −0.040 −0.040 −0.029 −0.038 −0.037 −0.037 −0.012 −0.011 −0.008 −0.011 −0.011 −0.011
Inf −0.036 −0.037 −0.027 −0.034 −0.033 −0.033 −0.006 −0.006 −0.005 −0.006 −0.006 −0.006

9

250 −0.075 −0.070 −0.048 −0.075 −0.075 −0.069 −0.047 −0.043 −0.028 −0.050 −0.050 −0.046
500 −0.063 −0.061 −0.043 −0.062 −0.061 −0.058 −0.037 −0.033 −0.023 −0.035 −0.036 −0.033

1000 −0.050 −0.049 −0.033 −0.048 −0.048 −0.046 −0.022 −0.020 −0.014 −0.022 −0.022 −0.020
2500 −0.041 −0.042 −0.027 −0.040 −0.039 −0.039 −0.014 −0.013 −0.009 −0.014 −0.013 −0.013
Inf −0.035 −0.037 −0.023 −0.034 −0.033 −0.033 −0.006 −0.006 −0.004 −0.006 −0.006 −0.006

12

250 −0.086 −0.081 0.320 −0.086 −0.086 −0.078 −0.059 −0.053 3.014 −0.060 −0.060 −0.055
500 −0.054 −0.053 −0.024 −0.054 −0.053 −0.050 −0.027 −0.024 −0.009 −0.027 −0.028 −0.024

1000 −0.048 −0.048 −0.025 −0.048 −0.047 −0.045 −0.021 −0.019 −0.010 −0.021 −0.021 −0.019
2500 −0.041 −0.043 −0.023 −0.041 −0.040 −0.040 −0.014 −0.014 −0.008 −0.014 −0.014 −0.014
Inf −0.034 −0.037 −0.019 −0.034 −0.033 −0.033 −0.006 −0.006 −0.003 −0.006 −0.006 −0.006

Note: Inf = infinite sample size (i.e., using population parameters); Absolute biases larger than 0.03 are printed in
bold font. After a linear transformation of the obtained parameter estimates, the first group had a factor mean of 0
and a factor standard deviation of 1.

Table 2. Simulation Study: Relative root mean square error of the estimated factor mean in the second
group µ2 for different estimation methods in Mplus and sirt for p = 0.5 as a function of the invariance
alignment parameter ε, sample size per group N, and number of groups G.

ε = 0.01 ε = 0.001

Mplus sirt, meth= Mplus sirt, meth=

G N FIXED FREE 1 2 3 4 FIXED FREE 1 2 3 4

3

250 100 ‡ 100.3 98.4 98.9 98.9 98.9 94.8 97.2 96.6 96.1 96.2 97.6
500 100 ‡ 98.3 97.2 99.1 99.0 95.4 92.0 89.7 93.7 94.3 94.4 89.3
1000 100 ‡ 99.4 93.7 96.9 96.4 94.9 84.3 84.5 84.0 83.9 83.9 82.3
2500 100 ‡ 99.1 90.1 95.8 94.8 93.2 71.4 70.4 71.0 71.5 71.5 69.4

6

250 100 ‡ 101.0 99.2 100.6 100.5 99.7 95.9 95.9 99.3 98.5 98.3 96.2
500 100 ‡ 100.8 95.2 99.8 99.5 98.6 86.3 87.0 86.7 87.9 88.0 86.8
1000 100 ‡ 101.6 91.3 98.1 97.6 96.9 82.4 82.6 81.1 82.2 82.2 81.0
2500 100 ‡ 101.5 87.5 97.5 96.5 96.1 70.0 70.0 70.1 71.0 71.0 69.8

9

250 100 ‡ 100.3 97.8 100.8 100.7 99.5 91.8 91.5 95.6 94.2 94.0 96.2
500 100 ‡ 102.8 94.7 100.1 100.0 100.4 89.1 90.9 89.9 90.6 90.6 90.7
1000 100 ‡ 101.4 89.3 99.1 98.5 97.9 80.4 80.9 79.9 81.3 81.3 80.6
2500 100 ‡ 102.7 85.6 98.7 97.7 97.9 72.0 73.1 71.8 73.0 72.9 72.9

12

250 100 ‡ 102.2 734.9 100.6 100.4 100.3 91.9 94.5 5980 93.6 93.5 94.8
500 100 ‡ 105.0 96.3 101.4 101.2 103.0 88.9 93.1 92.6 91.8 91.7 93.7
1000 100 ‡ 105.0 89.1 100.7 100.1 101.7 82.5 86.3 83.2 84.3 84.2 86.2
2500 100 ‡ 104.9 80.6 99.9 98.9 100.1 69.8 72.4 69.0 71.2 71.1 72.4

Note: ‡ = The reference method for the computation of the relative RMSE was “Mplus, FIXED” with p = 0.5 and
ε = 0.01. Absolute RMSE values smaller than 100 are printed in bold font. After a linear transformation of the
obtained parameter estimates, the first group had a factor mean of 0 and a factor standard deviation of 1.
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Table 3. Simulation Study: Mean absolute difference between different Mplus and sirt estimation
methods of the estimated factor mean in the second group µ2 for p = 0.5 and ε = 0.01 as a function
of sample size per group N and number of groups G.

Mplus, FIXED and sirt, meth Mplus, FIXED and sirt, meth

G N 1 2 3 4 1 2 3 4

3

250 0.0174 0.0111 0.0113 0.0152 0.0200 0.0160 0.0161 0.0109
500 0.0123 0.0085 0.0087 0.0101 0.0135 0.0109 0.0110 0.0078

1000 0.0100 0.0064 0.0067 0.0067 0.0101 0.0072 0.0074 0.0061
2500 0.0083 0.0043 0.0049 0.0050 0.0081 0.0044 0.0049 0.0044

6

250 0.0234 0.0045 0.0025 0.0280 0.0411 0.0435 0.0415 0.0110
500 0.0159 0.0059 0.0046 0.0715 0.0847 0.0903 0.0877 0.0145

1000 0.0126 0.0050 0.0031 0.0651 0.0791 0.0831 0.0808 0.0134
2500 0.0109 0.0046 0.0026 0.0490 0.0625 0.0657 0.0636 0.0122

9

250 0.0293 0.0045 0.0025 0.0365 0.0502 0.0529 0.0509 0.0119
500 0.0218 0.0045 0.0025 0.0276 0.0411 0.0435 0.0415 0.0114

1000 0.0168 0.0061 0.0041 0.0728 0.0881 0.0939 0.0914 0.0153
2500 0.0140 0.0051 0.0029 0.0616 0.0766 0.0806 0.0784 0.0140

12

250 0.4073 0.0093 0.0093 0.0214 0.4028 0.0171 0.0169 0.0106
500 0.0302 0.0070 0.0071 0.0135 0.0298 0.0099 0.0098 0.0075

1000 0.0221 0.0053 0.0054 0.0097 0.0228 0.0070 0.0070 0.0055
2500 0.0182 0.0030 0.0032 0.0053 0.0198 0.0044 0.0046 0.0040

Note: After a linear transformation of the obtained parameter estimates, the first group had a factor mean of 0 and
a factor standard deviation of 1.

Table 4 shows the bias for the factor SD of the second group for p = 0.5. As for the
factor mean, the tuning parameter ε = 0.001 had superior performance compared to ε = 0.01.
For the SD, the Mplus methods FIXED and FREE as well as sirt’s meth = 3 and meth = 4
coincide. Overall, the sirt method meth = 1 was preferable for three or six groups, while its
performance deteriorated for a larger number of groups. It should be emphasized that the
bias did not even disappear in infinite sample sizes for ε = 0.01.

Table 5 presents the relative RMSE for the factor SD in the second group. The specifica-
tions with ε = 0.001 were generally preferable over ε = 0.01 in terms of RMSE. The Mplus
and sirt methods performed very similarly. Obviously, the bias issues of sirt’s meth = 1 for
many groups (i.e., 9 or 12 groups) also translated into substantially increased RMSE values.

Table 6 displays the mean absolute difference for the estimate of the factor SD in the second
group between Mplus and sirt. The Mplus method FIXED had a similar performance to the sirt
meth = 3, while Mplus’ FREE method has comparable performance with sirt’s meth = 4.

To conclude, this simulation study demonstrated that the performance of IA estimates
in Mplus can be similar to sirt if an appropriate estimation method meth in sirt is chosen.
The default sirt method meth = 1 resulted in larger differences to Mplus. However, sirt’s
meth = 1 can be preferred over Mplus and the other sirt methods for three or six groups but
cannot be recommended for many groups (i.e., at least nine groups). Overall, the tuning
parameter ε = 0.001 should be preferred over ε = 0.01 in terms of bias and RMSE.
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Table 4. Simulation Study: Bias of the estimated factor standard deviation in the second group σ2 for
different estimation methods in Mplus and sirt for p = 0.5 as a function of the invariance alignment
parameter ε, sample size per group N, and number of groups G.

ε = 0.01 ε = 0.001

Mplus sirt, meth= Mplus sirt, meth=

G N FIXED FREE 1 2 3 4 FIXED FREE 1 2 3 4

3

250 −0.064 −0.064 −0.020 −0.067 −0.066 −0.066 −0.037 −0.037 −0.007 −0.041 −0.042 −0.042
500 −0.058 −0.058 −0.028 −0.062 −0.059 −0.059 −0.032 −0.032 −0.015 −0.035 −0.036 −0.036

1000 −0.046 −0.046 −0.023 −0.050 −0.047 −0.047 −0.020 −0.020 −0.010 −0.022 −0.022 −0.022
2500 −0.041 −0.041 −0.022 −0.045 −0.041 −0.041 −0.015 −0.015 −0.008 −0.015 −0.015 −0.015
Inf −0.033 −0.033 −0.018 −0.038 −0.033 −0.033 −0.006 −0.006 −0.003 −0.006 −0.006 −0.006

6

250 −0.071 −0.071 0.014 −0.074 −0.073 −0.073 −0.043 −0.043 0.020 −0.044 −0.045 −0.045
500 −0.053 −0.053 0.003 −0.057 −0.054 −0.054 −0.026 −0.026 0.008 −0.026 −0.027 −0.027

1000 −0.049 −0.049 −0.006 −0.053 −0.050 −0.050 −0.023 −0.023 −0.002 −0.024 −0.024 −0.024
2500 −0.037 −0.037 −0.002 −0.041 −0.038 −0.038 −0.011 −0.011 0.002 −0.011 −0.011 −0.011
Inf −0.033 −0.033 −0.005 −0.038 −0.033 −0.033 −0.006 −0.006 −0.001 −0.006 −0.006 −0.006

9

250 −0.067 −0.067 0.069 −0.071 −0.070 −0.070 −0.040 −0.040 0.061 −0.042 −0.042 −0.042
500 −0.049 −0.049 0.042 −0.053 −0.051 −0.051 −0.021 −0.021 0.034 −0.023 −0.023 −0.023

1000 −0.042 −0.042 0.026 −0.046 −0.042 −0.042 −0.015 −0.015 0.018 −0.016 −0.016 −0.016
2500 −0.038 −0.038 0.016 −0.042 −0.038 −0.038 −0.011 −0.011 0.008 −0.012 −0.012 −0.012
Inf −0.033 −0.033 0.010 −0.038 −0.033 −0.033 −0.006 −0.006 0.002 −0.006 −0.006 −0.006

12

250 −0.062 −0.062 2.041 −0.067 −0.065 −0.065 −0.036 −0.036 14.39 −0.037 −0.038 −0.038
500 −0.047 −0.047 0.090 −0.051 −0.049 −0.049 −0.020 −0.020 0.059 −0.021 −0.021 −0.021

1000 −0.043 −0.043 0.055 −0.048 −0.044 −0.044 −0.017 −0.017 0.030 −0.018 −0.018 −0.018
2500 −0.039 −0.039 0.038 −0.043 −0.039 −0.039 −0.012 −0.012 0.014 −0.013 −0.013 −0.013
Inf −0.033 −0.033 0.028 −0.038 −0.033 −0.033 −0.006 −0.006 0.004 −0.006 −0.006 −0.006

Note: Inf = infinite sample size (i.e., using population parameters); Absolute biases larger than 0.03 are printed in
bold font. After a linear transformation of the obtained parameter estimates, the first group had a factor mean of 0
and a factor standard deviation of 1.

Table 5. Simulation Study: Relative root mean square error of the estimated factor standard deviation
in the second group σ2 for different estimation methods in Mplus and sirt for p = 0.5 as a function of
the invariance alignment parameter ε, sample size per group N, and number of groups G.

ε = 0.01 ε = 0.001

Mplus sirt, meth= Mplus sirt, meth=

G N FIXED FREE 1 2 3 4 FIXED FREE 1 2 3 4

3

250 100 ‡ 100.0 87.5 102.8 102.2 102.3 97.5 97.4 92.6 99.1 99.1 99.1
500 100 ‡ 100.0 82.8 104.1 102.4 102.4 90.5 90.5 83.1 93.6 93.8 93.8
1000 100 ‡ 100.0 83.2 104.8 101.5 101.5 83.9 83.9 80.5 85.1 85.4 85.4
2500 100 ‡ 100.0 75.3 107.2 101.3 101.3 70.3 70.3 66.4 71.4 71.3 71.3

6

250 100 ‡ 100.0 88.9 102.9 101.6 101.6 93.5 93.5 92.8 94.8 95.1 95.1
500 100 ‡ 100.0 80.8 102.7 100.7 100.7 88.2 88.2 84.3 88.1 88.2 88.2
1000 100 ‡ 100.0 73.5 104.6 101.5 101.5 80.4 80.4 75.0 81.2 81.1 81.1
2500 100 ‡ 100.0 64.8 107.8 101.8 101.8 68.4 68.4 65.7 69.7 69.5 69.5

9

250 100 ‡ 100.0 111.6 102.8 101.4 101.4 93.5 93.5 113.3 95.1 94.5 94.5
500 100 ‡ 100.0 104.4 103.4 101.4 101.4 87.1 87.1 101.3 88.4 88.1 88.1
1000 100 ‡ 100.0 89.2 104.7 101.0 101.0 80.0 80.0 83.7 80.7 80.6 80.6
2500 100 ‡ 100.0 74.5 107.2 100.6 100.6 68.4 68.4 68.0 69.4 68.5 68.5

12

250 100 ‡ 100.0 4125 102.9 101.5 101.5 94.2 94.2 30256 95.8 95.3 95.3
500 100 ‡ 100.0 151.4 103.3 101.1 101.2 87.5 87.5 122.6 88.0 88.1 88.1
1000 100 ‡ 100.0 121.0 106.0 101.3 101.3 79.1 79.1 93.2 79.9 79.4 79.4
2500 100 ‡ 100.0 103.1 107.1 101.2 101.3 67.0 67.0 70.7 67.3 67.1 67.1

Note: ‡ = The reference method for the computation of the relative RMSE was “Mplus, FIXED” with p = 0.5 and
ε = 0.01. Absolute RMSE values smaller than 100 are printed in bold font. After a linear transformation of the
obtained parameter estimates, the first group had a factor mean of 0 and a factor standard deviation of 1.



Mathematics 2024, 12, 770 11 of 16

Table 6. Simulation Study: Mean absolute difference between different Mplus and sirt estimation
methods of the estimated factor standard deviation in the second group σ2 for p = 0.5 and ε = 0.01
as a function of sample size per group N and number of groups G.

Mplus, FIXED and sirt, meth Mplus, FIXED and sirt, meth

G N 1 2 3 4 1 2 3 4

3

250 0.0438 0.0084 0.0076 0.0076 0.0438 0.0084 0.0076 0.0076
500 0.0300 0.0064 0.0051 0.0051 0.0300 0.0064 0.0051 0.0051

1000 0.0222 0.0054 0.0037 0.0037 0.0222 0.0054 0.0037 0.0037
2500 0.0186 0.0046 0.0024 0.0024 0.0186 0.0046 0.0024 0.0024

6

250 0.0850 0.0045 0.0025 0.0280 0.0411 0.0435 0.0415 0.0110
500 0.0565 0.0059 0.0046 0.0715 0.0847 0.0903 0.0877 0.0145

1000 0.0431 0.0050 0.0031 0.0651 0.0791 0.0831 0.0808 0.0134
2500 0.0345 0.0046 0.0026 0.0490 0.0625 0.0657 0.0636 0.0122

9

250 0.1362 0.0045 0.0025 0.0365 0.0502 0.0529 0.0509 0.0119
500 0.0907 0.0045 0.0025 0.0276 0.0411 0.0435 0.0415 0.0114

1000 0.0680 0.0061 0.0041 0.0728 0.0881 0.0939 0.0914 0.0153
2500 0.0537 0.0051 0.0029 0.0616 0.0766 0.0806 0.0784 0.0140

12

250 2.1033 0.0092 0.0069 0.0069 2.1033 0.0092 0.0069 0.0069
500 0.1374 0.0065 0.0045 0.0045 0.1374 0.0065 0.0045 0.0045

1000 0.0984 0.0057 0.0035 0.0035 0.0984 0.0057 0.0035 0.0035
2500 0.0766 0.0046 0.0023 0.0023 0.0766 0.0046 0.0023 0.0023

Note: After a linear transformation of the obtained parameter estimates, the first group had a factor mean of 0 and
a factor standard deviation of 1.

5. Empirical Example: Asparouhov and Muthén (2014) Dataset

This empirical example uses a dataset that was previously also analyzed in [5,40,41].
The dataset came from the European social survey (ESS) conducted in the year 2005 (ESS
2005), which included subjects from 26 countries. The factor variable of tradition and
conformity was assessed by four items presented in portrait format, where the scale of the
items is such that a high value represents a low level of tradition conformity. The wording
of the four items were as follows (see [5]): “It is important for him to be humble and
modest. He tries not to draw attention to himself” (item TR9); “Tradition is important to
him. He tries to follow the customs handed down by his religion or family” (item TR20);
“He believes that people should do what they’re told. He thinks people should follow rules
at all times, even when no one is watching” (item CO7); and “It is important for him to
always behave properly. He wants to avoid doing anything people would say is wrong”
(item CO16). The dataset for this empirical example (and used in [5]) was downloaded from
https://www.statmodel.com/Alignment.shtml (accessed on 17 February 2024).

5.1. Original Data

We analyzed the original ESS dataset but included subjects with no missing values on
the four items. The dataset used in this article can be found at https://osf.io/84ne5 (accessed
on 17 February 2024). In the 26 countries, the sample sizes ranged between 1031 and
2963 persons with a mean of 1869.5 and an SD of 454.7. The IA method was applied with
the specifications p = 0.5 and ε = 0.01 in Mplus and sirt. The same six estimation methods
(i.e., FIXED and FREE in Mplus as well as meth = 1, meth = 2, meth = 3, and meth = 4 in sirt)
were applied to the dataset.

Table 7 shows the estimated factor means and SDs for the 26 countries and the six
estimation methods. It can be seen that sirt’s default meth = 1 provides implausible esti-
mates in this example with many groups. However, the sirt methods meth = 2, meth = 3,
and meth = 4 performed comparably to Mplus’ FIXED and FREE methods. It turned out that
Mplus’ FIXED method was relatively close to sirt’s meth = 3 in terms of absolute differences
in estimated factor means (M = 0.010, SD = 0.013, Min = 0.000, Max = 0.070). In addition,
estimated factor means were also similar between the Mplus FIXED method and the sirt
meth = 2 method (absolute differences: M = 0.012, SD = 0.014, Min = 0.000, Max = 0.068).

https://www.statmodel.com/Alignment.shtml
https://osf.io/84ne5
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Moreover, Mplus’ FREE method also performed similarly to sirt’s meth = 4 for estimated
factor means (absolute differences: M = 0.010, SD = 0.016, Min = 0.000, Max = 0.086). There
was also a close resemblance for estimated factor standard deviations between the Mplus
FIXED and sirt meth = 3 methods (absolute differences: M = 0.007, SD = 0.006, Min = 0.000,
Max = 0.020). However, the differences between the estimation methods FIXED and FREE in
Mplus (or meth = 3 and meth = 4 in sirt) are noteworthy.

Table 7. Empirical Example, Original Data: Factor means and factor standard deviations estimates of
invariance alignment for 26 countries estimated estimated with Mplus and sirt.

Mean Standard Deviation

Mplus sirt, meth= Mplus sirt, meth=

Country N FIXED FREE 1 2 3 4 FIXED FREE 1 2 3 4
1 1525 0 0 0 0 0 0 1 1 1 1 1 1
2 1695 0.079 0.026 0.470 0.074 0.074 0.036 0.994 0.994 6.270 0.989 0.993 0.992
3 2320 −0.432 −0.474 −2.958 −0.438 −0.443 −0.474 1.109 1.109 7.396 1.096 1.107 1.107
4 1468 0.263 0.205 1.671 0.260 0.262 0.220 1.086 1.086 6.973 1.085 1.095 1.095
5 1031 −0.579 −0.635 −3.841 −0.588 −0.589 −0.626 0.987 0.987 6.456 0.988 0.990 0.989
6 2296 0.134 0.085 0.786 0.121 0.121 0.085 1.081 1.081 7.002 1.078 1.076 1.076
7 2963 0.316 0.268 2.007 0.305 0.309 0.274 1.135 1.135 7.388 1.123 1.137 1.137
8 1550 0.168 0.105 1.030 0.159 0.164 0.121 1.098 1.098 6.989 1.076 1.112 1.112
9 1793 0.152 0.107 0.930 0.143 0.143 0.108 0.989 0.989 6.447 0.992 0.989 0.989
10 1857 −0.245 −0.293 −1.605 −0.248 −0.251 −0.287 0.992 0.992 6.336 0.979 0.989 0.989
11 1630 0.353 0.311 2.213 0.335 0.336 0.302 1.170 1.170 7.677 1.161 1.164 1.164
12 1703 0.311 0.255 1.942 0.305 0.309 0.266 1.210 1.210 7.515 1.179 1.197 1.197
13 2356 0.106 0.060 0.636 0.099 0.101 0.065 1.145 1.145 7.286 1.128 1.157 1.157
14 2622 −0.424 −0.463 −2.783 −0.425 −0.423 −0.451 1.083 1.083 7.060 1.078 1.072 1.072
15 1562 −0.149 −0.185 −1.052 −0.158 −0.157 −0.185 1.138 1.138 7.475 1.127 1.118 1.118
16 1450 −0.232 −0.278 −1.554 −0.231 −0.231 −0.266 1.105 1.105 7.319 1.091 1.089 1.089
17 2361 0.083 0.031 0.495 0.077 0.076 0.039 1.374 1.374 8.890 1.377 1.369 1.369
18 2166 −0.303 −0.360 −2.090 −0.320 −0.323 −0.361 1.100 1.100 7.145 1.095 1.105 1.105
19 1770 0.334 0.287 2.097 0.327 0.325 0.289 1.065 1.065 6.833 1.066 1.059 1.059
20 1685 −0.288 −0.325 −2.009 −0.305 −0.302 −0.332 1.031 1.031 6.748 1.024 1.016 1.016
21 2120 0.283 0.207 2.376 0.351 0.353 0.293 0.971 0.971 6.501 0.960 0.964 0.964
22 2471 −0.080 −0.130 −0.582 −0.088 −0.088 −0.123 1.088 1.088 7.183 1.082 1.082 1.082
23 1439 0.878 0.822 5.334 0.835 0.877 0.833 1.136 1.136 6.950 1.088 1.143 1.140
24 1358 −0.397 −0.454 −2.669 −0.402 −0.405 −0.444 0.917 0.917 6.033 0.909 0.915 0.914
25 1783 −0.330 −0.377 −2.274 −0.326 −0.333 −0.368 0.997 0.997 6.669 0.955 0.977 0.977
26 1632 0.159 0.110 0.909 0.142 0.140 0.103 1.241 1.241 8.001 1.245 1.234 1.234

Note: N = sample size per country. Table entries with absolute differences smaller than 0.01 between the methods
“Mplus, FIXED” and “sirt, meth = 3” are displayed in a gray-colored background. Table entries with absolute
differences smaller than 0.01 between the methods “Mplus, FREE” and “sirt, meth = 4” are displayed in a yellow-
colored background. After a linear transformation of the obtained parameter estimates, the first country had a
factor mean of 0 and a factor standard deviation of 1.

5.2. Pseudo-Datasets

In this section, the original ESS dataset is used to create pseudo-datasets that should
provide more insights about the different behavior of the estimation methods implemented
in Mplus and sirt. The first five countries from the original datasets with sample sizes 1525,
1695, 2320, 1468, and 1031 subjects are used in the creation of the datasets. It is investigated
whether the size of the estimates depends on the number of groups. To enable clean but
idealized settings, we varied the number of included groups by replicating the original
dataset accordingly. For example, with G = 10 groups, the first five groups were the original
five countries, while groups six to ten are also the five countries but labeled as unique
groups in the IA estimation. Usually, one would expect that the results of the first five
groups should not change if the same dataset appears as duplications in the pseudo-dataset.

Table 8 presents estimated factor means and SDs for the third and the sixth group in
the pseudo-datasets involving G = 5, 10, 15, 20, 25, or 30 groups. Note that the sixth group
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coincided with the first group in the pseudo-datasets and the first country in the original
dataset. The distribution parameter estimates were transformed such that the mean and
the SD of the first group were 0 and 1, respectively.

The factor mean estimates changed as a function of a number of groups for the Mplus
FIXED and all sirt methods. Only for the Mplus FREE method were the estimates invariant
with respect to the number of groups. In particular, large differences in the estimates were
observed when comparing results in a model with 25 and 30 groups. Because the first
group had a (transformed) mean of 0, it would also be expected that Group 6 would have
factor mean estimates of 0. However, this was not the case for the estimation method,
except for Mplus’ FREE and sirt’s meth = 4 methods. Overall, this pattern is surprising
because it implies that the choice of the reference group (i.e., the first group in our case)
and the number of groups strongly affect the estimates of factor means. For the SD, only
sirt’s meth = 1 had estimates that depended on the number of groups.

Table 8. Empirical Example, Pseudo-Datasets: Factor mean and factor standard deviations estimates
of invariance alignment for Groups 3 and 6 estimated with Mplus and sirt.

Mean Standard Deviation

Mplus sirt, meth= Mplus sirt, meth=

Group G FIXED FREE 1 2 3 4 FIXED FREE 1 2 3 4

3

5 −0.371 −0.510 −0.422 −0.393 −0.408 −0.470 1.045 1.045 1.115 1.041 1.078 1.078
10 −0.358 −0.510 −0.416 −0.375 −0.389 −0.462 1.045 1.045 1.153 1.041 1.078 1.079
15 −0.345 −0.510 −0.412 −0.357 −0.370 −0.455 1.045 1.045 1.201 1.041 1.078 1.079
20 −0.330 −0.510 −0.413 −0.337 −0.349 −0.449 1.045 1.045 1.277 1.040 1.078 1.079
25 −0.310 −0.510 −0.441 −0.314 −0.325 −0.445 1.045 1.045 1.462 1.040 1.078 1.079
30 −0.113 −0.510 −0.620 −0.286 −0.296 −0.441 1.045 1.045 2.258 1.041 1.078 1.080

6

10 0.027 0.000 0.042 0.040 0.040 0.000 1.000 1.000 1.063 1.000 1.000 1.000
15 0.042 0.000 0.067 0.060 0.060 0.000 1.000 1.000 1.105 1.000 1.000 1.000
20 0.059 0.000 0.096 0.082 0.082 0.000 1.000 1.000 1.171 1.000 1.000 1.000
25 0.082 0.000 0.142 0.106 0.106 0.000 1.000 1.000 1.334 1.000 1.000 1.000
30 0.290 0.000 0.277 0.137 0.137 0.000 1.000 1.000 2.026 1.000 1.000 1.000

Note: G = number of groups. After a linear transformation of the obtained parameter estimates, the first group
had a factor mean of 0 and a factor standard deviation of 1.

6. Discussion

In this article, we compared the performance of IA estimates of the Mplus software
and the R package sirt. There are two alternative identification constraints for estimating
standard deviations ψg. Mplus uses the product constraint ∏G

g = 1 ψg = 1, which is used in
the sirt methods meth = 3 and meth = 4. However, one can alternatively fix the standard
deviation of the first group to 1. This is the default in the R package sirt (i.e., meth = 1.
The differences between Mplus and the IA function in the sirt package can primarily be
traced back to the different identification constraints for standard deviations. The difference
between Mplus and sirt can be made smaller by choosing meth = 3, which mimics the
identification constraint used in Mplus. Notably, the latter method is preferred for a large(r)
number of groups (say, more than eight), while the default of meth = 1 might be preferable
for at most six groups. The simulation study and the empirical example demonstrated that
the default meth = 1 in the sirt package does not provide trustworthy results, and users are
strongly recommended switching to meth = 2 or meth = 3.

Overall, it turned out in the simulation study that the tuning parameter ε = 0.001
generally outperforms the default Mplus choice ε = 0.01. A previous study indicated that
the choice of ε is more critical than the choice between the power p = 0.5 or p = 0.25 [15].
Minor reductions regarding bias can be obtained with the power p = 0.25 instead of p = 0.5.
However, for reasonably large sample sizes (e.g., more than 500 subjects per group), an L0
loss function [42] can even outperform the Lp loss function for p = 0.5 or p = 0.25 [15].
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Regardless of the use of a particular estimation method in Mplus or sirt, we wonder
whether the optimization function of IA is suitable in the case of many groups. The pair-
wise differences between model parameters in the optimization might lead to less stable
estimates than a linear model specification that does not involve pairwise differences. There
is some evidence that Haberman linking with the L0.5 IA loss function could be superior in
the estimation of many groups (say, more than 20 groups) in IA (see [35]). Further research
is needed to explore possible adaptations of the IA method in the case of many groups.

In this article, we only examined estimation differences between Mplus and sirt for
normally distributed data. It can be expected that estimation differences due to different
identification constraints would similarly be present for ordinal data [6] because it uses item
loadings and item thresholds from item response theory models instead of item loadings
and item intercepts from a one-dimensional factor model based on the multivariate normal
distribution as the model input.

The IA method can provide consistent estimation of factor means and standard de-
viations if there is a sparse pattern of parameters that are noninvariant across groups. It
is debatable whether such a sparse pattern of noninvariant effects can be theoretically
assumed in empirical datasets [43,44]. However, if researchers believe in such a sparsity
assumption, IA can be deemed an effective data-driven method.

The simulation study conducted in this article assumed a sparse structure of nonin-
variant parameters. It could be that the differences between Mplus and the IA function in
the sirt package were larger under different data-generating models. Future research could
further investigate the software differences for more data-generating models and could
also involve scenarios of a large number of groups.

As a cautionary remark, we would like to add that enough implementation details
must appear in publications for commercial black-box software like Mplus to enable
independent judgment, evaluation, and reimplementation of existing methods. We believe
that non-documented or sparely documented modeling approaches in commercial software,
like the IA method in Mplus, should not be used in substantive and methodological
publications because it fundamentally contradicts the principles of open science.
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