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Abstract: In this article, we consider a system of ordinary differential equations (ODEs) of second
order with two variable time delays. We obtain new conditions for uniform ultimate bounded (UUB)
solutions of the considered system. The technique of the proof is based on the Lyapunov–Krasovskii
functional (LKF) method using a new LKF. The main result of this article extends and improves a
recent result for ODEs of second order with a constant delay to a more general system of ODEs of
second order with two variable time delays. In this particular case, we also give a numerical example
to verify the application of the main result of this article.
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1. Introduction

From the relevant literature, we know that ordinary differential equations (ODEs) of
second order can denote numerous real world applications. For example, the Hill equation

ẍ + a(t)x = 0,

has great importance in the study of the stability and instability of geodesics on Riemannian
manifolds, and physicists can use this fact to investigate dynamics in the Hamiltonian
systems (see Yang, Xiao-Song 1999 [1]).

Both the following linear and nonlinear ODEs of second order

(k(t)x′)′ + L(t)x = 0

and
x′′ + g(x, x′)x′ + h(x) = e(t)

are frequently encountered as mathematical models of most dynamic processes in elec-
tromechanical systems (see the book of Ahmad and Rama Mohana Rao [2]).

Next, an ODE of the form

mx′′ + ℓx′ + kx = F(t),

where m, ℓ and k are positive constants, may represent the motion of a particle of mass m
held by a linear spring, with the spring constant k, subject to an exterior disturbance F(t)
(see the book of Ahmad and Rama Mohana Rao [2]).

The nonlinear ODE of second order

x′′ + f (x)x′ + h(x) = 0
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is called the Liénard equation. This equation can be used to model oscillating circuits (see
Ahmad and Rama Mohana Rao [2]).

The electrophysiological behavior can be modeled as the ODE

dV
dt

=
Iion + Istim

Cm
,

where V is voltage, t is time, Iion is the sum of all transmembrane ionic currents, Istim is the
externally applied stimulus current and Cm is cell capacitance per unit surface area (see
Kim et al. [3]).

The desk dynamic relations, having the viscosity ratio E and mass M, together with
the installed motors having the equivalent dissipation ratio D, are represented by the
two-dimensional system of ODEs:

M
dv
dt

− m1r1
dw1

dt
sin θ1 = −Dv − Ey + m1r1w2

1 cos θ1, (1)

dy
dt

= v,
dw1

dt
= j−1

1 (h1 − q1),
dθ1

dt
= w1, (2)

where v and w1 are the desk vibration displacement speed, m1 and r1 are eccentricity mass
and eccentricity creating the imbalance and j1, h1, q1 are the rotating masses moment of
inertia, electromagnetic torque and the moment of resistance on the shaft, respectively (see
Baykov and Gordeev [4]).

On the other hand, in many real world applications, a system under consideration
may be governed by a principle of causality, i.e., the future state of the system is inde-
pendent of the past states and is determined solely by the present. For example, this fact
can be represented by the following Liénard equation with the constant delay τ and its
modified forms

x′′ + f (x)x′ + h(x(t − τ)) = 0,

(see the book of Hale and Verduyn Lunel [5]).
It can also be seen from the literature that, in applied sciences, some practical problems

concerning mechanics, the engineering technique fields, economy, control theory, physics,
chemistry, biology, medicine, atomic energy, information sciences, etc., are associated with
these types of differential equations, i.e., certain ODEs of the second order with and without
delay (see also the books of Èl’sgol’ts and Norkin [6], Krasovskii [7], Rihan [8], Gil’ [9],
Smith [10], Kuang [11] and Yoshizawa [12]). Indeed, numerous kinds of ODEs of second
order with and without delays can be used to model real world problems. However, for
the sake of brevity, we will not give more details about those models. Hence, we would
like to say that, because of the effective roles of ODEs of second order in the real world
problems and their applications, the qualitative behaviors of solutions of n-dimensional
ODEs of second order with delays deserve to be studied.

Moreover, since these equations are only of the second order, we would naturally be
inclined to compute their solutions explicitly or numerically. However, as we know from
practice, there are many such equations, e.g., linear equations with constant coefficients, for
which this can be effectively carried out. This case is very difficult for the ODEs or systems
of ODEs with delay. Hence, in the relevant literature, various methods or techniques have
been improved to determine the qualitative behavior of ODEs of second order with and
without delay(s) without solving them and without prior information of solutions. These
methods and techniques are called the Lyapunov’s direct method, the fixed point method,
the LKF method, the Lyapunov–Razumikhin technique and so on. According to the stability
theory of functional differential equations, when we use the Lyapunov–Krasovskii method
as a basic tool in the proof, it is needed to construct or define a Lyapunov–Krasovskii
functional such that it is positive definite and its derivative along the considered system
has to be negative or negative semi-definite.
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As for the motivation of this article, recently, Adeyanju [13] and Adeyanju and
Tunç [14] considered the following n-dimensional ODEs of second order without delay and
with the constant delay τ, respectively:

X′′ + F(X, X′)X′ + H(X) = P(t, X, X′)

and
X′′ + F(X, X′)X′ + H(X(t − τ)) = P(t, X, X′).

Adeyanju [13] discussed boundedness, uniformly boundedness and some other be-
haviors of solutions of the first ODE via the Lyapunov second method. Next, Adeyanju
and Tunç [14] constructed suitable new sufficient conditions that allow for the uniform
ultimate boundedness of solutions of the second ODE with constant delay via the LKF
method as a basic tool. On the other hand, we would like to outline some related works
as follows: the stability and boundedness of solutions of vector differential equations by
Lyapunov’s second method (see [13,15–20]), qualitative behavior of ordinary and func-
tional differential equations (see [2,21]), stability, boundedness and periodicity of solutions
of delay differential equations of second order (see [22–24]) and existence, uniqueness,
stability, etc., of ordinary and functional differential equations (see [12]); for some other
results, see [1,14,25,26].

Motivated by the works of Adeyanju [13], Adeyanju and Tunç [14] and those men-
tioned above, we consider the following system of ODEs of second order with two multiple
variable time delays:

X′′ + a(t)F(t, X, X′)X′ + b(t)G(X) +
2

∑
i=1

Hi(X(t − ri(t))) = P(t, X, X′). (3)

Equation (3) can be converted to the following differential system:

X′ =Y,

Y′ =− a(t)F(t, X, Y)Y − b(t)G(X)−
2

∑
i=1

Hi(X)

−
2

∑
i=1

Hi(X) +
2

∑
i=1

t∫
t−ri(t)

JHi (X(s))Y(s)ds + P(t, X, Y), (4)

where X, Y ∈ Rn, t ∈ R+, R+ = [0, ∞), a ∈ C(R+, (0, ∞)), b ∈ C1(R+, (0, ∞)), ri ∈
C1(R+, R+), Hi ∈ C1(Rn, Rn), Hi(0) = 0, P ∈ C(R+ × R2n, Rn), G ∈ C1(Rn, Rn), G(0) = 0
and F ∈ C(R+ × R2n, R2n) is a symmetric, positive definite matrix function depending
on the arguments displayed explicitly. Moreover, the Jacobian matrices corresponding to
Hi(X), G(X) are defined by

JH1(X) =

(
∂h1i
∂xj

)
, JH2(X) =

(
∂h2i
∂xj

)
, JG(X) =

(
∂gi
∂xj

)
, (i, j = 1, 2, ..., n),

and (h11, h12, ..., h1n) ∈ H1, (h21, h22, ..., h2n) ∈ H2, respectively.
As for the contributions of this article, we would like to summarize some of them

briefly in the following sentences. It can be observed that the ODEs of second order without
and with delay of Adeyanju [13] and Adeyanju and Tunç [14], respectively, are particular
cases of our Equation (3). The ODEs of Adeyanju [13] and Adeyanju and Tunç [14] are
without delay and with a constant delay, respectively. However, our ODE (3) has two
variable time delays. Next, Gözen [27] considered a system of ODEs of second order without
delay. However, the system of ODEs of second order of this article and that in [27] are
different mathematical models. In addition, in [27], the author discussed some qualitative
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properties of the considered system by using a Lyapunov function. Here, we proved the
main result of this article via the LKF method. Finally, the differential system of Gözen [27],
the considered problem and that in this paper are different from each other. Hence, we have
contributions ranging from the cases of those without delay and a constant delay to the
case of two variable time delays. This case is also a novelty. Furthermore, in the papers of
Ademola et al. [22], Adeyanju and Adams [15], Omeike et al. ([16,17]), Tunç [23,26], Tunç
and Tunç [19,24] and Tunç et al. [28], the boundedness and some other qualitative behaviors
of solutions of certain scalar and vector ODEs of second order with or without delay have
been investigated, and several interesting results have been obtained in these papers. It
can be checked that the ODEs of second order of these papers are particular cases of the
ODE (3) of second order, or they are included by the ODE (3) of second order for some
particular choices of them. Hence, this paper has new contributions to the results of the
mentioned papers. Finally, this is a theoretical work on the UUB solutions of functional
differential equations.

Throughout this article, we will use the following abbreviations, respectively:

F(t, X, Y) = F(.), JG(Y) = JG(.), JHi (X) = JHi (.) and P(t, X, Y) = P(.).

Furthermore, for any two vectors X, Y in Rn, the symbol ⟨X, Y⟩ denotes the usual

scalar product in Rn, i.e., ⟨X, Y⟩ =
n
∑

i=1
xiyi; therefore, ∥X∥2 = ⟨X, X⟩.

2. Basic Concepts

Consider a system of differential equations

dx
dt

= F(t, x), (5)

where t ∈ R+ = [0, ∞), x ∈ Rn and F ∈ C(R+ × Rn, Rn).

Definition 1 (Yoshizawa [12]). The solutions of (5) are equi-ultimately bounded for bound B if
there exists a B > 0 and if, corresponding to any α > 0 and t0 ∈ I, there exists a T(t0, α) > 0 such
that x0 ∈ Sα implies that ∥x(t; x0, t0)∥ < B for all t ≥ t0 − T(t0, α).

Definition 2 (Yoshizawa [12]). The solutions of (5) are uniform ultimately bounded for bound B
if Definition 1 is independent of t0.

Definition 3 (Yoshizawa [12]). The solutions of (5) are equi-bounded if, for any α > 0 and
t0 ≡ I, there exists a β(t0, α) > 0 such that, if x0 ∈ Sα, ∥x(t; x0, t0)∥ < B(t0, α) for all t ≥ t0.

Definition 4 (Yoshizawa [12]). The solutions of (5) are uniform bounded if the B in Definition 3
is independent of t0.

3. Boundedness

The main results of this article with regard to the UUB solutions of the system of the
ODEs (3) of second order with two multiple variable time delays are given in the following
Theorem 1.

Theorem 1. In addition to the basic conditions with regard to the system (4), we assume that
there exist positive constants a(t), b(t), D0, D1, δ f , δh, ∆ f , ∆h, ε, α and ξ such that the following
conditions hold for all X, Y ∈ Rn and t ∈ R+:

(i) Hi(0) = 0, Hi(X) ̸= 0, (X ̸= 0), the Jacobian matrices JH1(.), JH2(.) and JG(X) exist
and they are symmetric and positive definite such that δhi

≤ λi(JHi (X)) ≤ ∆hi
, ∆h =

max{∆hi
}, δh = min{δhi

} δg ≤ λ(JG(X)) ≤ ∆g, where, in order, λi(JH1(X)) and
λi(JH2(X)) and λ(JG(X)) are the eigenvalues of JH1(X) and JH2(X), JG(X);



Mathematics 2024, 12, 769 5 of 11

(ii) The eigenvalues λi(JF(X, Y)) of F(.) satisfy δ f = α − ε ≤ λi(JF(X, Y)) ≤ α;
(iii)

0 ≤ ri(t) ≤ γi, γi ∈ R, γi > 0, γ = max{γi}, r′ i(t) ≤ ξi, ξi ∈ R,

ξi > 0, ξ = max{ξi}, 0 < ξ < 1; 1 ≤ a(t), 1 ≤ b(t), b′(t) ≤ 0;

(iv)
∥P(.)∥ ≤ D0 + D1{∥X∥+ ∥Y∥}.

Then, the solutions of (4) are UUB provided that

0 < γ < min
{

4αδh − αε − 2∆g

2α∆h
,
(1 − ξ)[2α − ε(4 + α)]

2∆h[α(1 − ξ) + 4]

}
.

Remark 1. The condition of the stability Theorem 1 is determined based on the Routh–Hurwitz
stability condition of constant coefficient differential equations of second order (see the book Ahmed
and Rama [2], pages 89–89).

Remark 2. The result of this paper may be arranged for any number of delays. In that case, it is
necessary to update the Lyapunov–Krasovskii functional and conditions of the results accordingly.

Proof. We define an LKF V(t) = V(X(t), Y(t)) by

2V(t) =∥αX + Y∥2 + 4
2

∑
i=1

1∫
0

⟨Hi(σX), X⟩dσ + ∥Y∥2 + 2λ
2

∑
i=1

0∫
−ri(t)

t∫
t+s

⟨Y(θ), Y(θ)⟩dθds

+ 4b(t)
1∫

0

⟨G(σX), X⟩dσ, (6)

where λ > 0 and will be chosen in advance.
We will show that the LKF (6) allows for the UUB solutions to (4).
Obviously, we have V(0, 0) = 0.
From (i), it is clear that

2
2

∑
i=1

δhi∥X∥2 ≤ 4
2

∑
i=1

1∫
0

⟨Hi(σX), X⟩dσ ≤ 2
2

∑
i=1

∆hi∥X∥2.

and

δg∥X∥2 ≤ 2
1∫

0

⟨G(σX), X⟩dσ ≤ ∆g∥X∥2. (7)

By using an elementary inequality, we can write that

0 ≤ ∥αX + Y∥2 ≤ 2
{

α2∥X∥2 + ∥Y∥2
}

. (8)

Furthermore, it is also notable that

0 ≤ λ
2

∑
i=1

0∫
−ri(t)

t∫
t+s

⟨Y(θ), Y(θ)⟩dθds. (9)
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Hence, combining (7)–(9) into (6), we obtain

2V(t) ≥2
2

∑
i=1

δhi∥X∥2 + ∥Y∥2 + b(t)δg∥X∥2

≥D2{∥X∥2 + ∥Y∥2},

where D2 = min
{

2
2
∑

i=1
δhi, 1, δg

}
.

Next, depending upon the conditions of Theorem 1 and some elementary inequalities,
we can derive that

2V(t) ≤2
{

α2∥X∥2 + ∥Y∥2
}
+ 2

2

∑
i=1

∆hi∥X∥2 + ∥Y∥2

+ 2λ
2

∑
i=1

ri(t)
t∫

t−ri(t)

⟨Y(θ), Y(θ)⟩dθ + 2b(t)∆g∥X∥2

= 2(b(t)∆g + α2 +
2

∑
i=1

∆hi)∥X∥2 + 3∥Y∥2 + 2λ
2

∑
i=1

ri(t)
t∫

t−ri(t)

⟨Y(θ), Y(θ)⟩dθ

≤D3{∥X∥2 + ∥Y∥2}+ 2λ
2

∑
i=1

(γi)

t∫
t−ri(t)

⟨Y(θ), Y(θ)⟩dθ,

where

D3 = max

{
2

(
b(t)∆g + α2 +

2

∑
i=1

∆hi

)
, 3

}
.

Differentiating the LKF V(t) along the solutions of (4), we obtain

V̇(t) =
〈
αX + Y, αẊ + Ẏ

〉
+ 2

d
dt

2

∑
i=1

1∫
0

⟨Hi(σiX), X⟩dσ1 +
〈
Y, Ẏ

〉

+ λ
d
dt

2

∑
i=1

0∫
−ri(t)

t∫
t+s

⟨Y(θ), Y(θ)⟩dθds + 2
d
dt

b(t)
1∫

0

⟨G(σX), X⟩dσ

=

〈
αX + Y, αY − a(t)F(.)Y − b(t)G(X)−

2

∑
i=1

Hi(X) +
2

∑
i=1

t∫
t−ri(t)

JHi (.)Yds + P(.)

〉

+ 2
d
dt

2

∑
i=1

1∫
0

⟨Hi(σX), X⟩dσ

+

〈
Y,−a(t)F(.)Y − b(t)G(X)−

2

∑
i=1

Hi(X) +
2

∑
i=1

t∫
t−ri(t)

JHi (.)Yds + P(.)

〉

+ λ
d
dt

2

∑
i=1

0∫
−ri(t)

t∫
t+s

⟨Y(θ), Y(θ)⟩dθds + 2
d
dt

b(t)
1∫

0

⟨G(σX), X⟩dσ.

Clearly, we have

d
dt

2

∑
i=1

1∫
0

⟨Hi(σX), X⟩dσ =

〈
2

∑
i=1

Hi(X), Y

〉
.
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Also, using (iii), we obtain

λ
d
dt

2

∑
i=1

0∫
−ri(t)

t∫
t+s

⟨Y(θ), Y(θ)⟩dθds =λ
2

∑
i=1

ri(t)∥Y(t)∥2 − λ
2

∑
i=1

(1 − r′ i(t))
t∫

t−ri(t)

⟨Y(θ), Y(θ)⟩dθ

≤2λγ∥Y(t)∥2 − λ(1 − ξ)
2

∑
i=1

t∫
t−ri(t)

∥Y(θ)∥2dθ.

Consequently, from gathering the above results, we find that

V̇ ≤− α

〈
X,

2

∑
i=1

Hi(X)

〉
− 2⟨Y, a(t)F(.)⟩+ α⟨Y, Y⟩

+ α⟨X, (αI − a(t)F(.))Y⟩+ α
2

∑
i=1

t∫
t−ri(t)

〈
X, JHi (.)Y

〉
ds

+ 2
2

∑
i=1

t∫
t−ri(t)

〈
Y, JHi (.)Y

〉
ds + 2λγ∥Y∥2

− λ(1 − ξ)
2

∑
i=1

t∫
t−ri(t)

∥Y(θ)∥2dθ + ∆g∥X∥2 + ⟨αX + 2Y, P(.)⟩,

where I denotes the identity matrix.
Then, if we apply the conditions (i), (ii) and the inequality ∥α∥ ∥β∥ ≤ 2−1∥α∥2 +

2−1∥β∥2, we obtain

V̇ ≤− 2αδh∥X∥2 − 2(α − ε)∥Y∥2 + α∥Y∥2 +
1
2

αε(∥X∥2 + ∥Y∥2)

+ α∆hγ(∥X∥2 + ∥Y∥2) + 2∆h

2

∑
i=1

t∫
t−ri(t)

∥Y(s)∥2ds

+ 2λγ∥Y∥2 − λ(1 − ξ)
2

∑
i=1

t∫
t−ri(t)

∥Y(θ)∥2dθ

+ ∥P(.)∥(α∥X∥+ 2∥Y∥) + ∆g∥X∥2

=− 1
2
(
4αδh − αε − 2α∆hγ − 2∆g

)
∥X∥2

− 1
2
[2α − ε(4 + α)− γ(2α∆h + 4λ)]∥Y∥2

+
1
2
(4∆h − 2λ(1 − ξ))

2

∑
i=1

t∫
t−ri(t)

∥Y(θ)∥2dθ

+ ∥P(.)∥(α∥X∥+ 2∥Y∥). (10)

Let
λ =

2∆h
1 − ξ

and

γ < min
{

4αδh − αε − 2∆g

2α∆h
,
(1 − ξ)[2α − ε(4 + α)]

2∆h[α(1 − ξ) + 4]

}
.
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Using (iv), from (10), we derive that

V̇ ≤− K1

(
∥X∥2 + ∥Y∥2

)
+ [D0 + D1(∥X∥+ ∥Y∥)][α∥X∥+ 2∥Y∥]

≤− K1

(
∥X∥2 + ∥Y∥2

)
+ D0[α∥X∥+ 2∥Y∥]

+ D1

(
2 + 3α

2

)
∥X∥2 + D1

(
α + 6

2

)
∥Y∥2

≤− (K1 − K2D1)
(
∥X∥2 + ∥Y∥2

)
+ D0[α∥X∥+ 2∥Y∥],

where K1 ∈ R, K1 > 0, K2 = max
{ 2+3α

2 , α+6
2
}

.
Letting D1 < K1K−1

2 , it is obvious that there exists some constants β > 0, k > 0 so that

V̇ ≤− β
(
∥X∥2 + ∥Y∥2

)
+ kβ(∥X∥+ ∥Y∥)

≤− β

2

(
∥X∥2 + ∥Y∥2

)
+ βk2.

Hence, we conclude that all the solutions to the system (4) are UUB.

4. Numerical Application

As a numerical application of Theorem 1, we give an example with regard to the
UUB solutions.

Example 1. We will deal with the following two-dimensional system that includes two variable delays:(
x′′1
x′′2

)
+ (1 +

1
1 + t2 )

(
14 + e−(3x2

1+4x2
2) 0

0 14 + e−(3x′21+4x′22)

)(
x′1
x′2

)
+ (1 +

1
1 + 2t2 )

(
2x1 + sin x1
2x2 + sin x2

)

+

(
3x1(t − r1(t)) + sin x1(t − r1(t))
3x2(t − r1(t)) + sin x2(t − r1(t))

)
=

 2x1+3x′1+4
25+t4

2x2+3x′2+4
25+t4

,

where
a(t) = 1 +

1
1 + t2 ≥ 1,

b(t) = 1 +
1

1 + 2t2 ≥ 1,

b′(t) = − 4t

(1 + 2t2)2 ≤ 0,

r1(t) =
1

40
sin2(t).

A comparison between the above equation and (4) shows that

F(.) =

(
14 + e−(3x2

1+4x2
2) 0

0 14 + e−(3x′21+4x′22)

)
,

2

∑
i=1

Hi(x(t − ri(t))) =
(

3x1(t − r1(t)) + sin x1(t − r1(t))
3x2(t − r1(t)) + sin x2(t − r1(t))

)
,

P(.) =

(
2x1+3x′1+4

25+t4
2x2+3x′2+4

25+t4

)
.
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Then, we have the following relations, respectively:

0 ≤ r1(t) =
1

40
sin2(t) ≤ 1

40
= γ,

i = 1, 2,

and
r′1(t) =

1
20

sin(t) cos(t) ≤ 1
20

= ξ.

The matrix F(.) admits the eigenvalues

λ1(F(.)) = 14 + e−(3x2
1+4x2

2)

and
λ2(F(.)) = 14 + e−(3x′21+4x′22).

Hence, we have
δ f = 14 ≤ λi(F(.)) ≤ ∆ f = 15.

JH1(X(t − r1(t))) is given by

JH1(X(t − r1(t))) =
(

3 + cos x1(t − r1(t)) 0
0 3 + cos x2(t − r1(t))

)
,

and its eigenvalues satisfy
δhi

= 2 ≤ λi(JHi (X)) ≤ ∆hi
= 4.

JG(X) =

(
2 + cos x1 0

0 2 + cos x2

)
,

and its eigenvalues satisfy
1 = δg ≤ λi(JH(X)) ≤ ∆g = 3.

Hence,

n = 2, δ f = 14, ∆ f = 15, δhi
= 2, ∆hi

= 4, ε = 1, α = 13, γ =
1

40
, ξ =

1
20

, δg = 1, ∆g = 3.

Therefore, it is clear that

0 < γ < min
{

4αδh − αε − 2∆g

2α∆h
,
(1 − ξ)[2α − ε(4 + α)]

2∆h[α(1 − ξ) + 4]

}
= min

{
85

104
,

57
872

}
=

57
872

,

∥P(.)∥ ≤ (8 +
√

10
{
∥X∥+

∥∥X′∥∥}).
As a result, the given example meets all the conditions of Theorem 1.

The above system was solved using the fourth- order Runge–Kutta method in MAT-
LAB. Here, the graphs of Figure 1 show the behaviors of paths of solutions.
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0.2 0.4 0.6 0.8 1.0

t

0.005

0.010

0.015

0.020
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0.030

0.035

x

x2HtL

x1HtL

Figure 1. Numerical results of the test problem for N = 64 and ε = 2−2.

5. Conclusions

In this article, a system of ODEs of second order with two variable delays is considered.
New sufficient conditions are established under which solutions of the considered system
are UUB. The technique used in the proof depends on the definition of a new LKF. Our
result improves and extends the result of Adeyanju and Tunç ([14], Theorem 3.1) and
provides essential contributions with a new result to the relevant literature. The Ulam-type
stabilities of the system of the ODEs in the form of (3) and qualitative behaviors of the
system of the ODEs (3) with Caputo fractional order and delay(s) can be considered as
open problems. For the sake of brevity, we would not like to give proper mathematical
models here.
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