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Abstract: Among the invertible orthogonal transforms employed to perform the analysis and synthe-
sis of 2D signals (especially images), the ones defined by means of John von Neumann’s cardinal
sinus are extremely interesting. Their definitions rely on transforms similar to those employed
to process time-varying 1D signals. This article deals with the extension of John von Neumann’s
transforms from 1D to 2D. The approach follows the manner in which the 2D Discrete Fourier
Transform was obtained and has the great advantage of preserving the orthogonality property as
well as the invertibility. As an important consequence, the numerical procedures to compute the
direct and inverse John von Neumann’s 2D transforms can be designed to be efficient thanks to 1D
corresponding algorithms. After describing the two numerical procedures, this article focuses on the
analysis of their performance after running them on some real-life images. One black and white and
one colored image were selected to prove the transforms’ effectiveness. The results show that the 2D
John von Neumann’s Transforms are good competitors for other orthogonal transforms in terms of
compression intrinsic capacity and image recovery.

Keywords: orthogonal transforms; time/space-frequency dictionary; windowed Fourier Transforms;
analysis and synthesis of images
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1. Introduction

Bidimensional (2D) Signal Processing is an important and large subfield of Signal
Processing (SP) [1,2] that encompasses a variety of methods and algorithms. Mathematically,
the 2D signals are represented by means or matrices. Typical 2D signals are the still
(photographic) images and the complex-valued signals stored in matrices (video streams
are rather considered of the 3D or even of multi-dimensional type, where one dimension
is always associated with time). Therefore, (still) image processing is a special branch of
2D SP. This article aims to introduce John von Neumann’s Transform (JvNT) devoted to the
analysis and synthesis of such signals. The construction of 2D JvNT relies on two other
transforms: the (well known) Fourier Transform (FT) and the 1D JvNT, described at length
in [3].

Like in the case of 1D signals, the framework of 2D signals constitutes Lebesgue spaces
for which both the FT and the scalar product can be defined, as mentioned in [3]. Usually,
the bases of 2D signals are generated either by using naturally born 2D waveforms or by
coupling two sets of 1D waveforms (one dealing with rows and the other one approaching
the columns of a matrix). The orthogonality constraint generally is difficult to verify
in the case of 2D waveforms. Therefore, the second approach is often preferred, as the
orthogonality of 1D waveforms can easily be preserved.

The extension of the ideal Karhunen–Loève Transform from 1D to 2D is carried
out using the first approach, though (see [2]). Instead of working with eigenvalues and
eigenvectors of the autocorrelation matrix, like in the case of 1D signals, for 2D signals,

Mathematics 2024, 12, 767. https://doi.org/10.3390/math12050767 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12050767
https://doi.org/10.3390/math12050767
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8175-6659
https://orcid.org/0000-0002-9358-4337
https://doi.org/10.3390/math12050767
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12050767?type=check_update&version=1


Mathematics 2024, 12, 767 2 of 31

some scientists employ singular value decomposition to extract the principal components.
Other scientists preserve the 1D approach, but the autocorrelation matrix is computed
through multiplication of the signal matrix by the transposed matrix, after extracting
the average.

In the case of transforms based on orthogonal polynomials (as mentioned in [3]), the
second approach is adopted to jump into the 2D signal spaces. Nevertheless, the complexity
of such transforms can tremendously increase, as shown, for example, in [4] and, very
recently, in [5].

Beside the ideal and the polynomial-based transforms, the world of 2D orthogonal
transforms can be structured into four classes, like in the case of 1D transforms [3], by
replacing the time domain with the space domain: harmonic, space-frequency, space-scale,
space-frequency-scale. Basically, any 1D transform can be extended to a 2D transform,
under the same name.

The harmonic class is naturally generated by the FT. The extension from 1D to 2D is
performed using the “two 1D sets” approach, which will be shortly reviewed within the next
section. Despite its age, this transform continues to be employed in applications (although
some approaches reported nowadays in the literature are rather naïve). For example, in [6],
the 2D FT symmetry properties are analyzed. Symmetry is an important and desirable
property of transforms, and can help reduce the computational burden. (Unfortunately,
not all transforms are symmetric or conjugate-symmetric like FT. Fortunately, both 1D and
2D JvNTs are verified to possess such properties.) Besides 2D FT, two other versions have
been defined: Windowed Fourier Transform (WFT, which is quite old, too) [7] and fractional
Fourier Transform (frFT, which was quite recently introduced) [8,9]. In many applications,
and especially in modern signal compression technology, 2D FT was replaced by the family
of 2D Discrete Cosine Transforms, for which the analysis coefficients are real-valued (and
not complex-valued, like in the case of FT). Note, however, that the cosine coefficients are
not necessarily symmetric. Recent publications, like [10–13], prove that the employment of
these transforms still is quite intense.

Space-frequency transforms also are obtained by windowing the signals. Sometimes,
windowed transforms are referred to as smooth wavelet transforms. JvNTs are actually
such transforms, where the working window is the John von Neumann (JvN) cardinal
sinus. Besides JvNTs, some other remarkable transforms are reported in the literature.
For example, the old Morlet wavelet (well known as the Mexican hat), which initially was
devoted to geological prospections, is employed nowadays in image compression [14].
Another example is given by the Gauss–Gabor wavelet, which was extended to 2D signals
in [15] using an interesting approach.

The class of space-scale transforms is quite large and, usually, is split into two groups:
empirical transforms and generic transforms. Fractal 2D signals are mainly processed
with such transforms. In fact, the fractal wavelets constitute the foundation of this class.
The old Haar wavelet (also known as the lazy wavelet), as a typical empirical transform,
works very well with images, as recently reported in [16,17]. The more sophisticated
Walsh–Hadamard Transform (still empirical, though) can also be adapted to process
images—see, for example, [18,19] (where it works in combination with Haar wavelet).
Another empirical transform with increasing impact in image processing is the (less known)
Slant Transform [20]. Although the extension of this transform to 2D signals is not easy, it
was employed to denoise images, like in [21], and to process video streams (among other
transforms), as recently reported in [22].

Without any doubt, nowadays, generic (fractal) orthogonal and biorthogonal wavelets
are the most employed tools in image processing. Since their inception by Meyer, Mallat
and Daubechies (more than 35 years ago), the literature reporting how these wavelets work
in conjunction with images has become so vast that any attempt to encompass all the sound
(and sometimes amazing) results is very likely doomed to fail. One can only cite a few
interesting recent works, such as [23] (with application to image filtering), [24] (in which
principal component analysis is developed by means of wavelets, aiming to achieve image
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denoising), [25] (where image fusion is performed) and [26] (which deals with the efficient
implementation of 2D wavelet transforms).

Transforms of the space-frequency-scale class exhibit great complexity and usually
are non-orthogonal. Basically, any space-frequency or space-scale transform can evolve
towards this class (including JvNT). The basis of the Lebesgue space is generated by means
of all three operators: time-shifting, frequency modulation and scaling. They are applied
(in this order) to a mother waveform (or wavelet) and generate a whole dictionary of
space-frequency-scale atoms. Analysis of orthogonality and invertibility of the transform
based on such a dictionary is a difficult task (and an open problem). Working with non-
orthogonal bases is, however, necessary in many applications where image interpretation
is required (like in medicine, geography, and underwater or space exploration). In this
case, in opposition with image compression or denoising, keeping a high level of image
redundancy is crucial.

By determining the difference from 1D transforms, the collection of 2D transforms
was enriched with hybrid transforms, born through a combination of two or more al-
ready known transforms. For example, one can find a joint Cosine and Karhunen–Loève
Transform in [27], a joint Cosine and Hadamard Transform in [28], and a joint Walsh and
fractional Fourier Transform in [29].

The exploration of the scientific literature performed within this introduction is far
from complete. But the goal was not to review the entire 2D SP subfield. This study aimed
to correctly place JvNT in the wide world of orthogonal transforms and to show that, to the
best of our knowledge, no other article in the literature has reported a similar approach
and similar results to this article.

The following sections are presented next. In Section 2, after a short overview of 1D
JvNT (already introduced in [3]), the extension to space signals is described. We prove
that working with two 1D dictionaries is equivalent to working with a naturally born 2D
dictionary. Section 3 is devoted to the design of the analysis and synthesis of numerical
algorithms that allow for the efficient implementation of 2D JvNT. The simulation results
and a discussion of the obtained results can be found in Section 4. The algorithms of
Section 3 were implemented and tested on two types of images: black and white, and color.
Some concluding remarks, an acronym list and a reference list complete the article.

2. Theoretical Background
2.1. Short Overview of JvNT for Discrete Time 1D Signals

The use of JvNT for 1D signals was described at length in [3]. Within this section, only
a short overview of main notations and results from [3] is presented. The starting point is
the cardinal sinus below (which the great scientist JvN defined long time ago [30]):

ν(t) = sinc(πt) =
sin(πt)

πt
, ∀t ∈ R. (1)

A dictionary of time-frequency atoms (tfas) can be built by applying time-shifting,
frequency modulation and discretization to Function (1). More specifically, the generic tfas
can be expressed as follows:

ν
[p,k]
Ts

[n] = e2πknTs jsinc[π(nTs − p)], ∀n, p ∈ Z, ∀k ∈ N, (2)

where Ts ∈ (0, 1] is the sampling period, n is the discrete (normalized) time, p is the time-
shifting index and k is the frequency modulation index. In [3], it is proven that if Ts = 1/K,
where K ∈ N∗ is a sampling frequency (with integer values measured in Hz), then the
reduced dictionary VK =

{
ν
[p,k]
Ts

}
p∈Z,k∈0,K−1

is an orthogonal basis of the Lebesgue–Hilbert
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space l2 (of discrete time signals). In this case, the notation ν
[p,k]
Ts

changes to ν
[p,k]
K , and

Equation (2) becomes

ν
[p,k]
K [n] = e

2nkπ
K jsinc

[
π
( n

K
− p

)]
, ∀n, p ∈ Z, ∀k ∈ 0, K − 1. (3)

Consequently, the discrete JvNT is obtained by using the orthogonal basis VK. Thus,
the JvN coefficients of the signal x ∈ l2 can be computed by projecting it on each tfa:

NK(x)[p, k] = XK[p, k] =
〈

x,ν[p,k]
K

〉
= ∑

n∈Z
x[n]ν[p,k]

K [n] = ∑
n∈Z

x[n]sinc
[
π
( n

K
− p

)]
e−

2knπ
K j,∀p ∈ Z, ∀k ∈ 0, K − 1. (4)

To recover the signal, expansion on the basis of VK with coefficient (4) is employed:

x[n] =
1
K ∑

p∈Z

K−1

∑
k=0

XK[p, k]ν[p,k]
K [n] =

1
K ∑

p∈Z

K−1

∑
k=0

XK[p, k]sinc
[
π
( n

K
− p

)]
e

2knπ
K j, ∀n ∈ Z. (5)

If the signal x ∈ l2 is real-valued, the following remarkable property is verified:

XK[p, K − k] = XK[p, k], ∀p ∈ Z, ∀k ∈ 0, K − 1. (6)

This means the JvN coefficients are conjugate-symmetric, which allows for a reduction
in the computational burden by only evaluating approximately half of them. Moreover, the
synthesis Equation (5) can benefit from symmetry in implementation.

In Definition (4) and Equation (5), signals from l2 either have infinite or finite support.
In the second case, signals not only have finite energy, but are also stable (absolutely
summable), i.e., they also belong to l1 ⊂ l2. Consequently, Fourier Transform (FT), and
especially Discrete Fourier Transform (DFT), can be computed for such signals.

Also, for finite support signals, the JvNT yields when working with a finite number
of JvN coefficients, as shown in [3]. More specifically, depending on the signal length
N and accuracy threshold ε > 0 (which allows for truncation of the signal (1) at the
user’s convenience), the lower and upper bounds of time-shifting index p can be derived:
p ∈ Pmin, Pmax. The upper limit of the frequency modulation index, K, depends on N, as
well, and can be set according to the Gabor–Heisenberg Uncertainty Principle [2], such that
the time and frequency resolutions of the JvN spectrogram be approximately equal. For
example, this requirement is fulfilled if K =

⌊√
2N + 0.5

⌋
.

Although the synthesis of a finite-length signal with truncated tfas is not exact (except
for the normalized instants located at integer multiples of K), the reconstruction accuracy
can be controlled by the user through the parameters ε and K.

The extension of JvNT to spatial signals (images) strongly relies on the properties
above of JvNT devoted to 1D signals.

2.2. JvNT for Discrete-Space 2D Signals

Although it is possible to develop a theory of continuous-space JvNT for 2D signals, the
practical importance of such a transform is rather small. Nowadays, 2D signals (especially
images) are digitally represented, processed and transmitted. Therefore, the following
development only concerns digital signals, seen as (still) images.

Let A ∈ RNR×NC be a matrix playing the role of a 2D discrete spatial signal. The matrix
has NR rows and NC columns. If A is a digital representation of some (still) black and white
(bw) image, then its elements are referred to as pixels. Hereafter, by convention, the term of
pixel will be associated with the current element anr,nc of matrix A, located at coordinates
(nr, nc) (for nr ∈ 1, NR and nc ∈ 1, NC). In SP, such a matrix can be transformed in
two ways: by means of a dictionary with 2D genuinely born atoms or by means of two
dictionaries with 1D atoms.



Mathematics 2024, 12, 767 5 of 31

In the first approach, usually, the atoms of the dictionary are obtained by spatially
rotating a 1D mother waveform (mw). For example, in the case of JvN mw (1) and the matrix
A, one (non-unique) rotated version is as follows:

ν(x, y) = sinc

(
π

√
2NR

NR + NC
x2 +

2NC
NR + NC

y2

)
, ∀x, y ∈ R. (7)

If A is a square matrix (NR = NC), then the mw (7) becomes

ν(x, y) = sinc
(
π

√
x2 + y2

)
, ∀x, y ∈ R. (8)

In the top image in Figure 1, the shape of mw (8) (for NR = NC) is drawn, while at
the bottom, 2D FT is represented (spectrogram and phase surface).
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Figure 1. JvN 2D rotation window on (top) together with its FT spectrogram at (bottom, left side)
and phase at (bottom, right side).

The imperfections in the displayed spectrogram are due to the truncation of mw. In
fact, the two dominant corners of the spectral surface are cylindrical. This property sensibly
complicates the analysis of orthogonality. Such an analysis, although interesting, is not
developed within this article.

The second approach is more promising due to the strong similarity with 2D FT. Recall
that the 2D DFT of matrix A is defined as below [1,2]:

F(A)
(
ωx,ωy

)
=

NR−1

∑
nr=0

NC−1

∑
nc=0

anr+1,nc+1e−j(nrωx+ncωy) =
NR−1

∑
nr=0

NC−1

∑
nc=0

anr+1,nc+1e−jnrωx e−jncωy , ∀ωx,ωy ∈ [−π,+π]. (9)

The last expression in definition (9) allows us to write the following matrix form:

F(A)
(
ωx,ωy

)
= eT

NR(ωx)AeNC
(
ωy
)
, ∀ωx,ωy ∈ [−π,+π], (10)

where, by definition:

eT
N(ω) =

[
1 ejω e2jω . . . ej(N−1)ω

]
, ∀ω ∈ [−π,+π]. (11)
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Equation (10) reveals that two harmonic vectors can be employed to compute the
FT: one operating on matrix columns and another one operating on matrix rows. This
property suggests that two dictionaries of orthogonal 1D tfas can be built (3): one associated
with matrix columns and another one associated with matrix rows. Each dictionary is
configured by some sampling rate, namely KR and KC, respectively. It is not necessary
that the parameters KR and/or KC be directly correlated with the matrix sizes NR and
NC. Nevertheless, according to the previous subsection, one can set KR =

⌊√
2NR + 0.5

⌋
and KC =

⌊√
2NC + 0.5

⌋
. Also, the time-shifting index p of the previous section becomes,

in this context, a space-shifting index. Since the matrix has finite sizes, the bounds of the
space-shifting indices can be evaluated for rows, as well as for columns, and they are not
necessarily the same. They are denoted as PRmin and PRmax for columns (of length NR)
and by PCmin and PCmax for rows (of length NC). Usually, the accuracy threshold ε is
unique (for example, set to 1%).

Definition 1. The practical JvNT of 2D signals is defined as follows:

NKR,KC(A)[pr, kr, pc, kc] =
(
ν
[pr,kr]
KR

)T
Aν

[pc,kc]
KC ,∀pr ∈ PRmin, PRmax, ∀kr ∈ 0, KR − 1, ∀pc ∈ PCmin, PCmax, ∀kc ∈ 0, KC − 1, (12)

where ν
[pr,kr]
KR =

[
ν
[pr,kr]
KR [0] ν[pr,kr]

KR [1] ν[pr,kr]
KR [2] · · · ν[pr,kr]

KR [NR − 1]
]T

ν
[pc,kc]
KC =

[
ν
[pc,kc]
KC [0] ν[pc,kc]

KC [1] ν[pc,kc]
KC [2] · · · ν[pc,kc]

KC [NC − 1]
]T ,

∀pr ∈ PRmin, PRmax, ∀kr ∈ 0, KR − 1, ∀pc ∈ PCmin, PCmax, ∀kc ∈ 0, KC − 1.

(13)

Although not obvious, the definition above is equivalent to working in 2D signal space
with a 2D JvN function:

ν2D(x, y) = sinc(πx)sinc(πy) = ν(x)ν(y), ∀x, y ∈ R. (14)

Recall that Function (1) is also the impulse response of an ideal Low-Pass Filter (LPF).
This property is inherited by the discrete signal ν[0,0]

Ts
, regardless of the value of the sampling

period Ts ∈ (0, 1]. More specifically, assume the following ideal digital LPF has a frequency
response expressed as

H1

(
ejω
)
=

{
1 ,ω ∈ [−ωc,ωc]
0 ,ω ∈ [−π,+π]\[−ωc,ωc]

= χ[−ωc ,ωc ](ω), ∀ω ∈ [−π,+π], (15)

where χ[a,b] is the index function of interval [a, b] and ωc = πTs ∈ (0,π) is the cut-off
normalized pulsation. The impulse response of the filter is then

h1[n] =
ωc

π
ν
[0,0]
Ts

(ωc

π
n
)

, ∀n ∈ Z. (16)

In the 2D space of discrete signals, Equations (15) and (16) become

H2
(
ejωx , ejωy

)
=

{
1 ,
(
ωx,ωy

)
∈ [−ωcx,ωcx]×

[
−ωcy,ωcy

]
0 , otherwise

= χ[−ωcx ,ωcx ](ωx)χ[−ωcy ,ωcy ]

(
ωy
)
=

= H1
(
ejωx

)
H1
(
ejωy

)
, ∀ωx,ωy ∈ [−π,+π];

(17)

h2[nx, ny] =
ωcxωcy

π2 ν2D

(ωcx

π
nx,

ωcy

π
ny
)
=

ωcxωcy

π2 ν
(ωcx

π
nx
)
ν
(ωcy

π
ny
)

, ∀nx, ny ∈ Z. (18)
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In Equations (17) and (18), ωcx = πXs and ωcy = πYs, where Xs ∈ (0, 1] and Ys ∈ (0, 1]
are sampling distances along the Ox and Oy axes, respectively. Thus, in fact, Equation (18)
is equivalent to:

h2[nx, ny] =
ωcxωcy

π2 ν
[0,0]
Xs

(ωcx

π
n
)
ν
[0,0]
Ys

(ωcy

π
n
)
= h1[nx]h1[ny], ∀nx, ny ∈ Z. (19)

While in the space of 1D signals, the LPF frequency characteristic is a rectangle
over the [−ωc,ωc] band, and in the space of 2D signals, it is a parallelepiped over the
[−ωcx,ωcx]×

[
−ωcy,ωcy

]
band (rectangular). Orthogonality can be analyzed by shifting

the parallelepiped along the pulsation axes such that the rectangular bands are almost
disjunct (i.e., they intersect most along a vertical plane or a vertical line).

The only problem is that of defining appropriate scalar products in discrete space and
frequency. In general, defining scalar products between 2D signals (i.e., between matrices)
is a difficult task. Fortunately, as Equations (17) and (19) clearly reveal, both the impulse
response and the frequency response can be expressed in factorial form with the help of 1D
signals, one for each space or frequency axes. Hence, one can write

h2 ≡ hOx
1 hOy

1 , H2 ≡ HOx
1 HOy

1 , (20)

with natural notations. Identity (20) allows us to define special forms of scalar products in
the context of 2D signals with the help of scalar products already defined in the context of
1D signals:  ⟨h2, g2⟩ =

〈
hOx

1 hOy
1 , gOx

1 gOy
1

〉
=
〈

hOx
1 , gOx

1
〉〈

hOy
1 , gOy

1

〉
⟨H2, G2⟩ =

〈
HOx

1 HOy
1 , GOx

1 GOy
1

〉
=
〈

HOx
1 , GOx

1
〉〈

HOy
1 , GOy

1

〉 . (21)

Definition (21), together with Definition (17) and Equation (19), enable the analysis of
the orthogonality of 2D tfas by means of the orthogonality of corresponding 1D tfas. All the
orthogonality and invertibility results proven in [3] for the 1D time-frequency dictionaries
of JvN atoms can straightforwardly be transferred to 2D space-frequency dictionaries. The
generic space-frequency atom (sfa) of the JvN 2D dictionary is as follows:

ν
[pr,pc,kr,kc]
KR,KC [nr, nc] = ν

[pr,kr]
KR [nr]ν[pr,kr]

KC [nc],
∀pr ∈ PRmin, PRmax, ∀kr ∈ 0, KR − 1, ∀pc ∈ PCmin, PCmax, ∀kc ∈ 0, KC − 1.

(22)

Thanks to the factorization exhibited in Equation (22), the projection of matrix A on
any sfa of the dictionary can be defined as follows:〈

A,ν[pr,pc,kr,kc]
KR,KC [nr, nc]

〉
=

NR−1
∑

nr=0

NC−1
∑

nc=0
anr+1,nc+1ν

[pr,kr]
KR [nr]ν[pr,kr]

KC [nc],

∀pr ∈ PRmin, PRmax, ∀kr ∈ 0, KR − 1, ∀pc ∈ PCmin, PCmax, ∀kc ∈ 0, KC − 1.
(23)

At the same time, Definition (12) can be expressed at length:

NKR,KC(A)[pr, kr, pc, kc] =
NR−1

∑
nr=0

NC−1
∑

nc=0
anr+1,nc+1ν

[pr,kr]
KR [nr]ν[pr,kr]

KC [nc] =
〈

A,ν[pr,pc,kr,kc]
KR,KC [nr, nc]

〉
,

∀pr ∈ PRmin, PRmax, ∀kr ∈ 0, KR − 1, ∀pc ∈ PCmin, PCmax, ∀kc ∈ 0, KC − 1.
(24)

From Equation (24), it results that the analysis of 2D signal A is equivalently performed
by using a couple of 1D dictionaries (according to Definition (12)) or with the help of sfas
taken from a 2D dictionary (according to Definition (23)).

Furthermore, Equation (24) can be expressed in implementation form below:

NKR,KC(A)[pr, kr, pc, kc] =
NR−1

∑
nr=0

NC−1
∑

nc=0
anr+1,nc+1sinc

[
π
( nr

KR − pr
)]

sinc
[
π
( nc

KC − pc
)]

e−2π( krnr
KR + kcnc

KC )j,

∀pr ∈ PRmin, PRmax, ∀kr ∈ 0, KR − 1, ∀pc ∈ PCmin, PCmax, ∀kc ∈ 0, KC − 1.
(25)
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The JvN coefficients (25) can be grouped into a 4D array and cannot be represented
visually. To compute them, the previously mentioned symmetry property can be exploited
for each harmonic index, provided that the 2D signal is real-valued.

As already mentioned, the orthogonality of the 2D dictionary involves the orthogonal-
ity of the transform (12). Consequently, the practical inverse of JvNT can be computed like
in [3]. More specifically, the extension to spatial signals is expressed as follows:

a. if nr = mr·KR ∈ KRN ∩ 0, NR − 1 and nc = mc·KC ∈ KCN ∩ 0, NC − 1:

ã[mrKR + 1, mcKC + 1] =
1

KR·KC

KR−1

∑
kr=0

KC−1

∑
kc=0

NKR,KC(A)[mr, kr, mc, kc]; (26)

b. if nr = mr·KR ∈ KRN ∩ 0, NR − 1 and nc ∈ 0, NC − 1\KCN:

ã[mrKR + 1, nc + 1] =

PCmax
∑

pc=PCmin

KC−1
∑

kc=0

(
KR−1

∑
kr=0

NKR,KC(A)[mr, kr, pc, kc]
)
ν
[pc,kc]
KC [nc]

KR·KC
PCmax

∑
pc=PCmin

(
ν
[pc,0]
KC [nc]

)2
; (27)

c. if nr ∈ 0, NR − 1\KRN and nc = mc·KC ∈ KCN ∩ 0, NC − 1:

ã[nr + 1, mcKC + 1] =

PRmax
∑

pr=PRmin

KR−1
∑

kr=0

(
KC−1

∑
kc=0

NKR,KC(A)[pr, kr, mc, kc]
)
ν
[pc,kc]
KC [nc]

KR·KC
PRmax

∑
pr=PRmin

(
ν
[pr,0]
KR [nr]

)2
; (28)

d. if nr ∈ 0, NR − 1\KRN and nc ∈ 0, NC − 1\KCN:

ã[nr + 1, nc + 1] =

PRmax
∑

pr=PRmin

KR−1
∑

kr=0

PCmax
∑

pc=PCmin

KC−1
∑

kc=0
NKR,KC(A)[pr, kr, pc, kc]ν[pr,kr]

KR [nr]ν[pc,kc]
KC [nc]

KR·KC

[
PRmax

∑
pr=PRmin

(
ν
[pr,0]
KR [nr]

)2
][

PCmax
∑

pc=PCmin

(
ν
[pc,0]
KC [nc]

)2
] . (29)

(The notations KRN and KCN stand for the sets of all non-negative integer multiples
of numbers KR and KC, respectively).

The reconstructed matrix Ã = [ãnr,nc] nr ∈ 1, NR
nc ∈ 1, NC

approximates the original matrix

A. Since the threshold ε is constant, the accuracy of approximation Ã only depends on the
two sampling rates KR and KC, which are set according to the Uncertainty Principle. To
evaluate the accuracy, the following cost function can be employed:

A(KR, KC, ε) =
100

1 + 10∥A−Ã∥2
∥A∥2

[%], ∀KR, KC ∈ N∗, ∀ε > 0, (30)

where ∥A∥2 is the 2-norm of matrix A (the largest singular value). Definition (30) employs
the function 1/(1 + x), which compresses the interval [0,+∞) into the interval (0, 1]. The
cost Function (30) is often referred to as fitness.

Equations (26)–(29) can involve significant computational burden, depending on the
size of the original matrix. To reduce the runtime of the corresponding numerical algorithm,
the symmetry properties should be accounted for at the expense of higher programming
effort. Working with arrays with more than two dimensions is time-consuming within
almost all programing environments. Therefore, using any property that can reduce the
computational burden is worthwhile.

3. Numerical Algorithms to Implement 2D JvNT

Two algorithms were designed and implemented based on the previous section. Only
the case of real-valued matrices was considered for direct 2D JvNT, because complex-valued
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matrices are unusual in real-life applications. Nevertheless, an algorithm for complex-
valued matrices can be designed according to general definition (4). However, another
procedure was designed to implement the inverse 2D JvNT. Although the genuine matrix
to achieve approximately recovery is real-valued, the 4D array of JvN coefficients includes
complex-valued values. In this case, Equations (26)–(29) were employed to design the
corresponding algorithm.

Both algorithms were designed to allow implementation within the MATLAB™ pro-
gramming environment (version 2018), although other high-level languages can be em-
ployed, as well (such as C++ or Python).

3.1. Direct JvNT Algorithm for Real-Valued 2D Signals

The analysis algorithm requires some preliminary preparations. The aim is to design a
procedure that invokes Algorithm 1 from [3]. In this way, most of the computations are
performed just like in the case of 1D signals. Thus, the symmetry property can fully be
exploited (the direct implementation of Equation (4) is also possible, even when considering
the symmetry).

The computations in Equation (4) can be organized by using the matrix formalism.
Thus, the equivalent expression of JvN analysis coefficients is as follows:

NKR,KC(A)[pr, kr, pc, kc] =
NR−1

∑
nr=0

sinc
[
π
( nr

KR
− pr

)]
e−

2πkrnr
KR j

(
NC−1

∑
nc=0

anr+1,nc+1sinc
[
π
( nc

KC
− pc

)]
e−

2πkcnc
KC j

)
︸ ︷︷ ︸

TvN1D −R︸ ︷︷ ︸
TvN1D −C

∀pr ∈ PRmin, PRmax, ∀kr ∈ 0, KR − 1, ∀pc ∈ PCmin, PCmax, ∀kc ∈ 0, KC − 1.

(31)

In Equation (31), two JvN 1D Transforms are emphasized: one that operates with
real-valued signals and another one that deals with complex-valued signals. Focus first on
the inner JvNT. Practically every row of the real-valued matrix A produces a matrix with
complex-valued coefficients:

cnr+1
KC [pc − PCmin + 1, kc + 1] = NKC(rownr+1(A))[pc, kc] =

NC−1
∑

nc=0
anr+1,nc+1sinc

[
π
( nc

KC − pc
)]

e−
2πkcnc

KC j,

∀nr ∈ 0, NR − 1, ∀pc ∈ PCmin, PCmax, ∀kc ∈ 0, KC − 1.
(32)

All matrices from Equation (32),
{

Cnr+1
KC

}
nr∈0,NR−1

, can be packed into a 3D array, CKC,

where each matrix is a layer. The sizes of the array CKC are as follows:
PC = PCmax − PCmin + 1 rows, KC columns and NR layers. Unfortunately, the second
JvNT does not act on the columns of each layer, but on vectors extracted from the array
CKC along the layers. This is because the outer JvNT in Equation (31) is configured to
work with NR-length signals. Thus, the 3D array should be reshaped into a large matrix,
say DKC, with NR rows and M = PC·KC columns. The matrix DKC can be obtained by
linearizing each matrix Cnr+1

KC along its rows and stacking the resulting long rows from top
to bottom. Linearization can be implemented by using the well-known Theorem of Division
with Remainder (TDR) between integers. Hence, the current element of the matrix DKC is:

dKC[nr + 1, m + 1] = cnr+1
KC

[⌊ m
KC

⌋
+ 1, m%KC + 1

]
, ∀nr ∈ 0, NR − 1, ∀m ∈ 0, M − 1, (33)

where ⌊a⌋ is the (lower) integer part of number a ∈ R, while n%N stands for the reminder
of division n/N (with n ∈ Z and N ∈ N∗).

Now, the 1D JvNT can be applied to each column of the complex-valued matrix DKC
(for which the symmetry property cannot be exploited):

cm+1
KR,KC[pr − PRmin + 1, kr + 1] = NKR(colm+1(DKC))[pr, kr] =

NR−1
∑

nr=0
dKC[nr + 1, m + 1]sinc

[
π
( nr

KR − pr
)]

e−
2πkrnr

KR j,

∀m ∈ 0, M − 1, ∀pr ∈ PRmin, PRmax, ∀kr ∈ 0, KR − 1.
(34)



Mathematics 2024, 12, 767 10 of 31

The resulting matrix, Cm+1
KR,KC, can be stored in a 4D array in a cartesian position

indicated by the column index m after applying the TDR again. More specifically, if C
stands for the 4D array of analysis coefficients, then the matrix Cm+1

KR,KC is placed in C
as follows:

C
[
•, •,

⌊ m
KC

⌋
+ 1, m%KC + 1

]
= Cm+1

KR,KC, ∀m ∈ 0, M − 1, (35)

where “•“ stands for “all elements” of the corresponding dimension. Thus, the current
element of the 4D block is

c[pr − PRmin + 1, kr + 1, pc − PCmin + 1, kc + 1] = c(pc−PCmin+1)·KC+kc+1
KR,KC [pr − PRmin + 1, kr + 1],

∀pr ∈ PRmin, PRmax, ∀kr ∈ 0, KR − 1, ∀pc ∈ PCmin, PCmax, ∀kc ∈ 0, KC − 1.
(36)

As an alternative, packing the coefficients in a 4D array can be avoided by storing all
matrices Cm+1

KR,KC in a 3D array as layers:

C[•, •, m + 1] = Cm+1
KR,KC, ∀m ∈ 0, M − 1. (37)

Algorithm 1. Direct JvNT for 2D real-valued signals
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3.2. Inverse JvNT Algorithm for Real-Valued 2D Signals

For the synthesis procedure, it is suitable to invoke Algorithm 2 from [3], such that
the symmetry property can fully be exploited. Therefore, the previous matrix-oriented
approach is useful in the design of this procedure, as well.

Algorithm 2. Inverse JvNT for real-valued 2D signals
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4. Simulation Results and Discussion

After implementing the algorithms from Section 3 within the MATLAB™ program-
ming environment, several tests were performed on bw and colored images. All of them
are represented by real-valued matrices (bw images) or 3D arrays (colored images). The
simulation results for a couple of 2D signals are exhibited and discussed in this section.
The JvN dictionaries were configured with an accuracy threshold of ε = 0.01.

Two types of tests were performed: a reconstruction test and a redundancy reduction
test. The first one targets the image reconstruction accuracy (i.e., the transform invertibility
accuracy), depending on the JvNT parameters and the dictionary size. The second one
was preferred (among other tests) because there is a direct link between the orthogonality
property and the capacity of an orthogonal transform to reduce the redundancy of a signal.
Usually, the redundancy is assessed by means of the compression ratio/factor, obtained
after selecting the most important transform coefficients, to represent the signal (instead of
signals samples). For the 2D JvNT (like in the case of 1D JvNT in [3]), only the theoretical
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compression capacity was estimated, as the whole compression algorithm depends on
various other techniques to be applied on JvNT coefficients afterwards. Thus, the higher
the theoretical compression capacity, the stronger the redundancy reduction.

4.1. Black and White Image

The image on top in Figure 2 is a picture of Daisy—a fashionable young singer in the
sixties (the photo was downloaded from a public site [31]). In the MATLAB™ programming
environment, the photo can be uploaded and displayed as a bw image—see the picture
on the left side, on the bottom in Figure 2. Digital bw images like Daisy are represented
in gray scale, which means the corresponding matrix includes pixels with integer values
varying from 0 (pure black) to 255 (pure white). Each pixel takes one unsigned byte (8 bites)
of binary representation. Thus, the visual effect of gray tones is achieved.
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uploaded from [31]. At bottom: original image displayed by MATLAB™ (left side) and original
image displayed as 3D surface, after pixel normalization (right side).
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Applying JvNT directly on bw image is unwise, as the resulting coefficients are not
integers anymore and large errors can be obtained when trying to synthesize the image
from them. (In general, for 2D signals with integer values, integer-to-integer transforms
are more suitable to employ—see, for example [32,33].) Therefore, the integer pixels were
normalized in the range of [−1, +1], with floating point (fp) values. The resulting matrix can
be represented as a 3D surface, like that on the right side on the bottom in Figure 2. The
image sizes are NR = 658 and NC = 566 (with a total of 372,428 pixels).

The 2D FT applied to the normalized image led to the spectrum and phase of Figure 3.
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Figure 3. Frequency representation of Daisy image. On (top): spectrum on a linear scale (left side);
spectrum in dB (right side). At (bottom): phase in deg.

The information of the Daisy image is concentrated in two corners, according to the
first window of the figure (on top), where the spectrum on a linear scale is depicted. To the
right, the spectrum in dB can be seen. The dominant frequencies are not so obvious under
this surface. The phase surface is depicted at the bottom of the figure and reveals almost
linear variations along the first frequency axis.

JvN analysis can be performed through Algorithm 1 in two cases:

• for [KR
∣∣∣KC] =

⌊√
[NR|NC] + 0.5

⌋
= [26

∣∣∣24] ;

• for [KR
∣∣∣KC] =

⌊√
2[NR|NC] + 0.5

⌋
= [36

∣∣∣34] .
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The resulting coefficients cannot be displayed because they belong to 3D or 4D arrays.
Note that the total number of coefficients is 4,831,632 for [KR|KC] = [26, 24] and 8,029,440
for [KR|KC] = [36|34] . Both numbers are very large.

To estimate the theoretical compression capacity of JvNT, the approach is similar to
the one in [3]. Thus, the linearized arrays of JvN coefficients were first sorted in descending
order of their magnitude. Assume that the total amount of energy accumulated by all
coefficients is E (the sum of squared magnitudes) and set a threshold η ∈ [0, 1] of relative
energy. Then, the first coefficients that accumulate an amount of energy at least equal to ηE
are counted. Denote their number as Nη ∈ N. In Figure 4, the variations in Nη (depending
on the threshold η) are drawn in both cases. From the figures, one can notice that, if
η = 0.95, then N0.95 = 689 or N0.95 = 571, which represents no more than [0.014|0.007]%
of the total coefficient number, respectively. When comparing to the total number of pixels
in the image (i.e., 372,428), both numbers N0.95 are very small.
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Nevertheless, to be fair, it should be outlined that, based on the difference from the
binary representation of pixels, the JvN coefficients are complex-valued and represented in
fp double precision, which means that N0.95 must be multiplied first by 2, and then, by the
number of bytes allocated to double precision, e.g., 8, on a 64-bit computer. In this case, the
number of selected bytes is [11, 024|9136] , which means approximately [2.96|2.45]% of the
total number of bytes in the image. If the symmetry properties are considered, the number
of bytes can be almost halved. Thus, [1.62|1.35]% of the total number of bytes in the image
are sufficient to recover the Daisy picture with fair accuracy.

The two depicted angles standing for the theoretical compression capacity were
computed as explained in [3]. The interval [0, 1] of η was discretized with a step of 0.01,
which resulted in 101 energy thresholds (including the null one). For each couple {η, Nη},
the angle of the first derivative in the origin is estimated as follows:

αη = arctan
100η
Nη

. (38)

Then, the final angle is obtained by averaging all 100 angles (38) (except for the
first one). The higher the average angle, the better the theoretical compression capacity.
Figure 4 reveals that the second JvNT, for [KR|KC] = [36|34] , is superior to the first one, for
[KR|KC] = [26|24] , in terms of theoretical compression capacity, since the corresponding
average angle is 24.76◦, compared to 13.12◦.

In Table 1, the variations in Figure 4 are sampled.

Table 1. Relative energy η[%] versus JvN coefficient number Nη for Daisy image.

[KR|KC]↓ η→ 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Angle

[26|24] Nη → 73 93 115 137 160 184 208 233 260 288 319 353 389 431 473 689 13.12◦

[36|34] Nη → 35 45 56 67 79 91 103 116 130 145 162 181 204 233 276 571 24.76◦

After the completion of the synthesis stage (through Algorithm 2), the obtained results
are depicted in Figure 5 (for [KR|KC] = [26|24] ) and Figure 6 (for [KR|KC] = [36|34] ).

In both figures, the first synthesized image is obtained in fp, which means the pixels’
normalized values must vary within a [−1, +1] interval. The outliers are saturated, as they
are produced by numerical errors. In the upper left corner, one can see the recovered 3D
images. Apparently, both images are identical to the original one in Figure 2.

Nevertheless, the recovery errors are non-null, as the windows located in the left
corner at bottom of each figure clearly reveals. Although not obvious, the first error (in
Figure 5) is slighter smaller, as proven by the performance parameters below. The same
behavior is proven by the next column in both figures. This time, the recovered images and
errors work with binary (integer) pixels. To obtain the bw image, it suffices to map back
the interval [−1, +1] to the integers set at 0.255 by using rounding.

The white and gray spots in the binary error images of figures (see the right-side
corners at the bottom) point to the affected pixels (recall that black means a null error).
Nevertheless, the recovered bw images (in the upper right corner) are visually identical to
the original image on top in Figure 2.



Mathematics 2024, 12, 767 16 of 31

Mathematics 2024, 12, x FOR PEER REVIEW 17 of 33 
 

 

Table 1. Relative energy [%]η  versus JvN coefficient number Nη  for Daisy image. 

[ | ]KR KC ↓  η →  20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Angle 

[26 | 24]  Nη →  73 93 115 137 160 184 208 233 260 288 319 353 389 431 473 689 13.12° 

[36 | 34]  Nη →  35 45 56 67 79 91 103 116 130 145 162 181 204 233 276 571 24.76° 

 

 
Figure 5. Results of JvN synthesis for Daisy image, in cases [ | ] [26 | 24]KR KC = . On top: recovered 
3D image (fp) (left side) and bw image (integer/binary) (right side). At bottom: recovery error of 3D 
image (fp) (left side) and bw image (integer/binary) (right side). 

Figure 5. Results of JvN synthesis for Daisy image, in cases [KR|KC] = [26|24] . On (top): recovered
3D image (fp) (left side) and bw image (integer/binary) (right side). At (bottom): recovery error of
3D image (fp) (left side) and bw image (integer/binary) (right side).
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The performance parameters of 2D JvNT are listed in Table 2. The relative standard
deviation (std) of the error is computed as follows:

σÃ = 100

∥∥∥A − Ã
∥∥∥

2
∥A∥2

[%], (39)
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where A is the genuine matrix before analysis, and Ã is the synthesized matrix. The fitness
(which actually evaluates the relative recovery accuracy) is computed by using definitions
(19) and (28). More specifically,

A =
100

1 +
σÃ
10

[%]. (40)

Table 2. Performance parameters of JvNT in case of Daisy image.

Image Size
NR×NC

Sampling
Rates

[KR|KC]

Relative Std of Error [%] Fitness (Accuracy) [%] Analysis
Runtime

[s]

Synthesis
Runtime

[s]
fp Saturated fp Integer fp Saturated fp Integer

658 × 566
[26|24] 0.7744 0.643 0.1624 92.81 93.96 97.75 282.74 39.79
[36|34] 0.9574 0.8642 0.2065 91.26 92.05 97.01 455.18 80.84

As one can notice, the recovery accuracy improves while passing from fp representa-
tions of pixels to binary representation. The first JvNT is slightly better than the second one
in terms of recovering accuracy. Nevertheless, the second JvNT seemingly is better than
the first one in terms of compression capacity.

The synthesis runtime is sensibly smaller than the analysis runtime: seven times
for [KR|KC] = [26|24] and six times for [KR|KC] = [36|34] . The runtime can rapidly
increase without using the symmetry properties. Also, in all implementations, the JvN
coefficients were recorded in 3D arrays, which also speed up the run (compared to the 4D
array solution).

Figure 7 displays the results of lossy synthesis for the Daisy image. In the window
on top in the figure, fitness characteristics are drawn for the two JvNTs, depending on the
number of strongest coefficients (nsc), Nη. If the nsc increases, fitness increases, as expected.
Although in the beginning (for a small nsc), the second JvNT (for higher sampling rates)
performs better in terms of fitness (see the drawing in red), when more and more coefficients
are added, the performance of both transforms becomes approximately the same (the first
JvNT tacks the lead with very small advancement).

Regarding the fitness characteristics, two points were selected for each couple of
sampling rates. Thus, the synthesized images on the left side at the bottom of Figure 7
were obtained for η = 0.95, i.e., from the strongest [689|571] coefficients (see Table 1 again).
Both images are visibly distorted (blurred) because the number of selected coefficients is
too small (despite them storing approximately 95% of image energy). This is confirmed
either by the recovery errors with a relative std of [4.61|4.51]% or by the fitness values of
[68.45|68.93]%. When closely looking at the images, one can see that the second JvNT (at
the bottom) offered slightly better accuracy (and slightly smaller error to the right) than the
first JvNT (on top) (in fact, the resulting fitness is about 0.5% higher).

If we move now to the right on fitness characteristics, up to the points determined
by η = 0.99, this time, the nscs are [4328|4815] . In the 64-bit representation, they take
[138, 496 |154, 080] bytes, i.e., [37.19 |41.37]% of the image’s total number of bytes (372,428).
With the symmetry property, these percentages are almost halved: [19.5 |21.8]% of the
image’s total number of bytes. This yields sensibly, reducing the blurring effect in both
synthesized images on the right side at the bottom of the figure. The recovery errors
are smaller, as well, with a relative std of [1.61|1.59]%. Consequently, fitness increases to
[86.1|86.27]%. In this case, too, the second JvNT performs slightly better in terms of fitness,
but at the expense of a higher nsc employed in the synthesis.
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Figure 7. Results of lossy synthesis of Daisy image. Fitness variations in the middle. Synthesized
images and recovery errors for η = 0.95 on the left side and for η = 0.99 on the right side. On
both sides: for [KR|KC] = [26|24] at the top and for [KR|KC] = [36|34] at the bottom.

4.2. Colored Image

The data type required to operate with colored images using a computer is 3D array.
If the image is represented in a red–green–blue (RGB) system (which is one of the most
employed), then the array consists of three layers—one for each color component. On every
layer, unsigned integers determine the proportion of each color that contributes to pixel
definition, as suggested in Figure 8.
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Figure 8. Digital representation of colored images in RGB system (demonstrated on a Lena photo).

So, practically, a colored image is represented by three matrices of bytes. The image
under study in this article is depicted in Figure 9: a photo of the masterpiece painting Ship
of Dreams (also known as The Wind) by Salvador Dali (the photo was taken from a private
paintings album).
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The image sizes are NR = 540 and NC = 720 (with a total of 388,800 pixels represented
on three unsigned bytes each, i.e., 1,166,400 bytes for the whole 3D array). Apparently,
beside the colormap, the layers are not so different from each other, as all three must
follow the same pattern imposed by the painting itself. Nevertheless, the three matrices
are different, as proven by their norms: 58,883.81 for the R layer; 83,152.92 for the G layer;
89,721.65 for the B layer. Also, the norms computed on the differences between them are
quite big: 32,776.94 for R-G; 45,320.43 for R-B; 16,823.66 for G-B. Interestingly, the G and B
layers are closer to each other than to the R layer. Moreover, their norms are bigger. These
numerical results are visually confirmed by the whole image, where one can easily notice
that the blue and green colors are dominant over the red color, which only fills small areas.

Two approaches can be considered when applying JvNT to colored images: extend
definition (12) to 3D arrays (i.e., work with three instead of two dictionaries) or process
every layer separately by means of 2D transform. The first approach is appropriate when
the number of layers is large enough. In the case of colored images, with only three layers,
the third dictionary would be devoted to processing 1D signals with a length of three,
which is unnecessarily complex. Therefore, the second approach (process every layer as a
2D signal) is more suitable. This strategy is like the one employed for the bw Daisy image
(first, normalize the unsigned integers of the layer; then, process the resulting matrix with
the fp values; finally, come back to the unsigned integers for the recovered layer).

The 2D FT applied on each layer led to the results in Figure 10.
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of Ship of Dreams/The Wind painting. The RGB layers are stacked from top to bottom.

The spectral representation of all layers has the same main characteristics as for the
bw image: the energy/information seems to be concentrated in the main two corners of the
frequency plane, although there is energy dissipation on the remaining Fourier coefficients.
Therefore, compression of the image by using FT could perform as well.

Algorithm 1 was run for each layer in the case of the sampling rates below:

• [KR
∣∣∣KC] =

⌊√
[NR|NC] + 0.5

⌋
= [23

∣∣∣27] ;

• [KR
∣∣∣KC] =

⌊√
2[NR|NC] + 0.5

⌋
= [33

∣∣∣38] .

The total number of analysis coefficients is quite big: 4,862,430 per layer for
[KR|KC] = [23|27] and 8,226,240 per layer for [KR|KC] = [33|38] . Nevertheless, like in
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case of Daisy photo, only a few of them encode essential information about the analyzed
image. A similar analysis of compression capacity led to the results in Figures 11 and 12
and Table 3.
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Figure 11. Theoretical compression capacity of JvNT applied to Ship of Dreams/The Wind painting for
[KR|KC] = [23|27] in layers: Red on (top), Green in the (middle) and Blue at (bottom).
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Figure 12. Theoretical compression capacity of JvNT applied to Ship of Dreams/The Wind painting for
[KR|KC] = [33|38] in layers: red on (top), green in the (middle) and blue at (bottom).
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Table 3. Relative energy η[%] versus JvN coefficient number Nη for Ship of Dreams/The Wind painting layers.

[KR|KC]↓ η→ 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Angle Layer

[23|27] Nη →
54 70 87 105 125 146 169 194 221 253 292 340 410 574 1199 4082 15.28◦ R
36 47 61 75 92 111 133 160 193 236 294 390 605 1139 2623 8707 19.14◦ G
55 73 91 112 133 157 182 209 240 274 315 367 436 543 1031 4059 14.64◦ B

[33|38] Nη →
27 35 44 54 64 76 88 102 118 137 162 204 297 526 1185 4496 26.88◦ R
19 26 33 42 52 63 77 93 114 143 192 295 526 1083 2716 9328 29.80◦ G
29 38 48 58 70 82 95 109 125 145 170 203 250 362 887 4113 25.49◦ B

Ifη = 0.95, the total number of coefficients (on all three layers) is 16,848 for [KR|KC] = [23|27]
and 17,937 for [KR|KC] = [33|38] . This means that 95% of the image energy is concentrated
in [0.1155|0.0727]% of the total coefficient number. In the case of 64-bit representation,
the number of bytes that can be selected is 269,568 for [KR|KC] = [23|27] and 286,992 for
[KR|KC] = [33|38] , i.e., [23.11|24.61]% of the total number of bytes in the image (on all
three layers).

If the symmetry properties are considered, the percentages are almost twice smaller:
[12.66|13.51]%. The average on the three layers of the compression angles depicted in
Figure 11 is 16.35◦ (for [KR|KC] = [23|27] ), while this average increases to 27.39◦ for the
angles in Figure 12 (where [KR|KC] = [33|38] ). This result shows that, similarly to the
analyzed bw image, the second JvNT (for higher sampling rates) seemingly can better
compress the color image than the JvNT for smaller sampling rates.

Each layer was recovered from the corresponding JvN coefficients by using Algorithm
2. The synthesis results are displayed in Figures 13 and 14 for [KR|KC] = [23|27] and
[KR|KC] = [33|38] , respectively. In both figures, the layers are shown in rows (red on top,
green in the middle and blue at the bottom). The synthesized paintings are recomposed
from RGB layers like in Figure 15.

When looking at all the previous pictures, one can straightforwardly conclude that
the synthesized images are very close to the original ones. This subjective observation is
confirmed by the performance parameters in Table 4.

Table 4. Performance parameters of JvNT in case of Ship of Dreams/The Wind painting.

Image
Size

NR×NC

Sampling
Rates

[KR|KC]
Layer

Relative Std of Error [%] Accuracy [%] Analysis
Runtime

[s]

Synthesis
Runtime

[s]fp Saturated
fp Integer fp Saturated

fp Integer

540 × 720

[23|27]

R 0.8122 0.8032 0.5187 92.49 92.57 95.07 263.05 36.14
G 1.1138 1.1121 0.3266 89.98 89.99 96.84 268.28 37.24
B 0.9174 0.9024 0.3335 91.60 91.72 96.77 269.43 36.21

P 0.9478 0.9393 0.3929 91.36 91.43 96.23 800.67 109.59

[33|38]

R 0.9030 0.8953 0.5795 91.72 91.78 94.52 425.91 73.15
G 1.0567 1.0552 0.3103 90.44 90.46 96.99 436.25 80.64
B 0.8057 0.7900 0.2907 92.54 92.68 97.18 433.21 80.96

P 0.9218 0.9135 0.3935 91.57 91.64 96.23 1295.37 234.75

The notation “P” in the table above stands for the whole picture, as composed by
all three layers. On each row “P”, the averages of the errors relative the std and fitness
values are listed. Also, the runtimes are cumulated on row “P”, as if the layers were
sequentially processed. One can see that the two JvNTs are similar in terms of recovery
accuracy, although the second one runs longer (however, recall that this JvNT seems to
perform better in terms of compression capacity). The synthesis runtime is 6 to 8 times
smaller than the analysis runtime, especially thanks to the symmetry properties.

The analysis of lossy synthesis was performed like in the case of the Daisy image.
Nevertheless, for Dali’s painting, each layer was processed separately. The obtained results
are illustrated in Figure 16 (for [KR|KC] = [23|27] ) and Figure 17 (for [KR|KC] = [33|38] ).
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Figure 13. Results of JvN synthesis for Ship of Dreams/The Wind painting layers for [KR|KC] = [23|27] :
R layer on (top), G layer in the (middle), B layer at (bottom). For each layer, one can see (from (left)
to (right)) the recovered binary image, the recovery error as a digital image and the recovery fp error
as 3D surface.
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Figure 15. Synthesized images of Ship of Dreams/The Wind painting for [KR|KC] = [23|27] on the left
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Figure 16. Results of lossy synthesis of Ship of Dreams/The Wind painting for [KR|KC] = [23|27] .
Fitness variations on (top). Synthesized images and recovery errors for η = 0.95 on the (left) side and
for η = 0.99 on the (right) side.

In both figures, the synthesis results are depicted at the bottom, for η = 0.95 to the left
and for η = 0.99 to the right. In both cases, the blurring effect is obvious for the smaller
threshold. In turn, when the threshold increases, the synthesized images are clearer. Below
the images, the recovery errors are shown for each layer (red, green and blue from left to
right) after passing to integer pixels. The same representation scale was employed for both
thresholds. One can see that the magnitude of errors for η = 0.99 is smaller, as expected.
The fitness variation is drawn above recovered images for each layer. A fourth variation is
added, standing for the whole picture, by averaging the layer variations. Unlike for the
bw image, in this case, the threshold η led to different nscs, depending on each layer. In
Table 5, the number of such coefficients, together with the corresponding fitness values, are
listed for the two outlined groups of points in each figure.
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Figure 17. Results of lossy synthesis of Ship of Dreams/The Wind painting for [KR|KC] = [33|38] .
Same window disposal as in Figure 16.

Table 5. Number of strongest coefficients and fitness (accuracy) values in case of Ship of Dreams/The
Wind painting.

Sampling
Rates

[KR|KC]
Layer

η=0.95 η=0.99

N0.95 Accuracy [%] N0.99 Accuracy [%]

[23|27]

R 4082 73.48 30,814 85.67
G 8707 84.43 47,479 91.16
B 4059 80.98 32,046 90.86
P 16,848 79.63 110,339 89.23

[33|38]

R 4496 71.58 35,823 83.98
G 9328 84.57 53,582 91.56
B 4113 81.24 34,458 91.18
P 17,937 79.13 123,863 88.91
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The Green layer seems to be the most accurately recovered, but at the expense of a
greater number of employed coefficients (almost twice bigger than for the other layers).
This means the Green layer is less auto-correlated than the other two layers. For the whole
picture, the nscs were cumulated, while the accuracy was averaged. Although the nsc is
quite small for η = 0.95 (as analyzed above), the synthesized images have modest visual
quality. In the case of η = 0.99, the visual quality is improved. This time, though, the
nscs are 6–7 times bigger. More specifically, the nscs are [110, 339|123, 863] . They take
[0.7564|0.5019]% of the total coefficient number. In 64-bit representation, the numbers
of bytes that correspond to [110, 339|123, 863] are [1, 765, 424|1, 981, 808] , respectively (re-
call that JvN coefficients are complex-valued). Obviously, both numbers are bigger than
the number of bytes of the whole image (1,166,400). Employing the symmetry property
becomes crucial for reducing the total number of bytes. In this case, the image can be
recovered with good visual quality from approximately [80.68|89.95]% of the total number
of bytes in the image (on all three layers).

The explanation for the last result compared to the previous one, coming from the
Daisy image (where the theoretical compression rate was much better), very likely resides
in the fact that Dali’s painting reveals a much more complex fractal structure. JvNT is a
smooth transform with limitations in analyzing and/or the compression of highly fractal
images. Normally, the analysis instrument should have the same nature as the analyzed
object. In this case, fractal transform (for example, built by using Daubechies’ wavelets [34])
could perform better. Dali’s painting was selected on purpose to outline, on one hand, that
symmetry becomes crucial for transform effectiveness and, on the other hand, that, like any
other transform, JvNT has limitations, too, in this case, imposed by its non-fractal nature.

The analysis of lossy synthesis is just the starting point for achieving a sounder analysis
concerning the lossy compression of images. When computing the compression ratio, the
side information must be accounted for, as well. This means either encoding and sending
the positions of the strongest coefficients or sending all coefficients, after setting to null (or
even to smaller values) the weakest coefficients. In both cases, the compression performance
is reduced, as the total number of bytes necessary to recover the image increases. Usually,
after some orthogonal transform is applied to the image, a series of compression algorithms
are employed to encode the resulting coefficients. This is a sophisticated endeavor, beyond
the goal of the current article.

5. Concluding Remarks

The extension of John von Neumann’s orthogonal transform from time-varying (1D)
signals to space-varying (2D) signals was the main goal of this article. The requirement
to meet was to preserve both the orthogonality and the invertibility properties of resulted
2D transform. Two approaches were investigated in this study: a rotational one and a
cartesian one. Because, in the first approach, the orthogonality is very difficult to preserve,
the second approach was adopted. Thus, the natural link with 1D transform was exploited,
on one hand, to keep intact the orthogonality property and, on the other hand, to design
efficient analysis–synthesis algorithms for image processing. Moreover, it has been shown
that using a couple of 1D transforms for 2D signals is equivalent to the analysis and
synthesis of such signals with 2D transform, thanks to a fortunate factorization of the
cardinal sinus. After running the corresponding numerical algorithms on black and white
as well as on colored images, the results were analyzed in two main respects: the theoretical
compression capacity and the quality of the reconstructed image. According to the obtained
results, one can conclude that John von Neumann’s 2D transform is a promising instrument
to be applied to images prior to other compression methods. Beside compression, 2D
transform can be employed in the analysis of any 2D signal (not necessarily an image) and,
furthermore, the extension of its definition to multi-dimension signals is straightforward,
as, for each new dimension, one new 1D transform can be defined and employed.
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Acronyms

{1,2,3,4}D {one,two,three,four} dimension(s) bw black and white (image)
DFT(s) Discrete Fourier Transform(s) dB decibels (logarithmic scale)
FT(s) Fourier Transform(s) deg degrees (for angles)
JvN John von Neumann fp floating point (representation)
JvNT(s) John von Neumann Transform(s) frFT fractional Fourier Transform(s)
LPF Low-Pass Filter mw mother waveform/window
RGB Red-green-blue (image digital system) nsc(s) number(s) of strongest coefficients
SP Signal Processing sfa(s) space-frequency atom(s)
TDR Theorem of Division with Remainder std standard deviation
WFT(s) Windowed Fourier Transform(s) tfa(s) time-frequency atom(s)
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