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Abstract: Cross-border e-commerce logistics activities increasingly use multimodal transportation
modes. In this transportation mode, the use of high-performance optimizers to provide decision
support for multimodal transportation for cross-border e-commerce needs to be given attention. This
study constructs a logistics distribution optimization model for cross-border e-commerce multimodal
transportation. The mathematical model aims to minimize distribution costs, minimize carbon
emissions during the distribution process, and maximize customer satisfaction as objective functions.
It also considers constraints from multiple dimensions, such as cargo aircraft and vehicle load
limitations. Meanwhile, corresponding improvement strategies were designed based on the Sand Cat
Swarm Optimization (SCSO) algorithm. An improved swarm intelligence algorithm was proposed to
develop an optimizer based on the improved swarm intelligence algorithm for model solving. The
effectiveness of the proposed mathematical model and improved swarm intelligence algorithm was
verified through a real-world case of cross-border e-commerce logistics transportation. The results
indicate that using the proposed solution in this study, the cost of delivery and carbon emissions can
be reduced, while customer satisfaction can be improved.

Keywords: cross-border e-commerce; multimodal transport; swarm intelligence algorithm; logistics
distribution; sand cat swarm optimization

MSC: 90-10

1. Introduction

The development of blockchain technology and internet technology has provided a
software and hardware foundation for cross-border e-commerce platforms. At the same
time, some social issues, such as an aging society, have further promoted the development
of cross-border e-commerce platforms [1]. A recent survey found that an important factor
affecting the development of cross-border e-commerce is the cost and risk of logistics
during cross-border transportation [2]. Therefore, this study focuses on the logistics and
transportation issues of cross-border e-commerce. In the process of fulfilling orders on
cross-border e-commerce platforms, logistics delivery optimizers need to optimize the
delivery routes of orders in a reasonable manner. In the optimization process, it is necessary
to consider transportation costs, carbon emissions, and consumer satisfaction, aiming to
provide good services to consumers while creating more profits for distribution enterprises,
protecting the environment, and helping cross-border e-commerce enterprises achieve
sustainable development.
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Unlike ordinary logistics distribution processes and last-mile delivery, cross-border
e-commerce is increasingly inclined to use multimodal transportation methods in the
transportation process [3,4]. There have been some studies that have used the truck-drone
collaborative distribution model in the last-mile delivery process [5], but these studies are
not applicable to the distribution problem of cross-border e-commerce. This is because cross-
border e-commerce delivery has a large geographical span, and the single delivery model
based on trucks is no longer applicable. Cross-border e-commerce logistics distribution
usually consists of two steps: (1) long-distance transportation based on airplanes and
ships, and (2) short-distance transportation based on trucks and other small transportation
vehicles (such as drones).

In [6], when conducting logistics distribution for cross-border e-commerce, the focus
was on the cost of distribution and customer satisfaction. Path cost usually consists of path
length cost or time cost. Customer satisfaction is determined by the expected arrival time
of the customer and the actual arrival time of the product. As shown in Figure 1, selecting
a product from the United States on the Amazon cross-border e-commerce platform will
generate an estimated arrival time when the consumer places an order. If the estimated
arrival time generated by the platform meets the customer’s expected arrival time, the
customer will choose to place an order. According to work [6], if the customer places an
order too early or too late, it can lead to customer dissatisfaction.
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Unlike work [6], with the proposal and development of sustainable development goals,
some research on logistics distribution issues has introduced carbon emissions during
logistics transportation into the objective function [7]. Therefore, the objective function
in this study considers three objectives: path cost, carbon emissions, and satisfaction of
the distribution process. In addition, it is worth pointing out that most of the research
on cross-border e-commerce logistics distribution has focused on only a portion of cross-
border e-commerce logistics. For example, in reference [3], long-distance transportation
was given special attention, while in work [6], short-distance transportation was given
special attention. Specifically, all studies have focused on one or several steps in the process
of multimodal transportation, rather than the entire process of cross-border e-commerce
multimodal transportation.

At present, in order to develop the potential of related research in commercial applica-
tions, some work has integrated several independent works and established corresponding
double-layer or multi-objective mathematical models, especially in the fields of robotics and
automation [8–10]. The above research provides ideas for the establishment of a more com-
prehensive integrated model for multimodal transportation in cross-border e-commerce
logistics distribution. The main contributions of this study are summarized as follows:
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1. A target function was established to address the issue of cross-border e-commerce
logistics distribution, considering three objectives: path cost, carbon emissions, and
satisfaction of the distribution process.

2. This study integrates long-distance transportation based on aviation and the last-mile
delivery problem based on vehicles and drones, making it more in line with the actual
standards of cross-border e-commerce logistics distribution.

3. In response to the problem of the sand cat swarm optimization (SCSO) algorithm
easily falling into local optima, improvement strategies including chaotic initialization,
elite retention strategy, and nonlinear weights strategy were designed to enhance the
algorithm’s ability to jump out of local optima.

4. Due to the lack of benchmark examples for this issue, similar to work [6], simula-
tion experiments were conducted on real delivery orders from four port cities and
compared with several other algorithms. The results proved the effectiveness of the
logistics distribution optimizer based on improved swarm intelligence algorithms.

The remaining parts of this study are arranged as follows, and Section 2 reviews the
work related to cross-border e-commerce logistics and distribution issues. Section 3 estab-
lishes a mathematical model for cross-border e-commerce logistics distribution. Section 4
designs a swarm intelligence optimizer. Section 5 presents the results of the simulation
experiment. Finally, Section 6 summarizes the entire text.

2. Literature Review
2.1. Cross-Border E-Commerce Logistics Services

Cross-border e-commerce services are accepted and used more and more by con-
sumers, and in reference [1], some potential benefits of cross-border e-commerce for elderly
people in European countries have been proven. The authors of reference [11] studied the
cross-border logistics transportation problems in the Shanghai, Venice, and Berlin regions,
focusing on selecting carriers for cross-border logistics activities rather than optimizing the
transportation routes. Specifically, by using auction algorithms to determine the carrier for
cross-border logistics, the shipper’s interests are maximized. Reference [12] discusses the
carbon emissions of the main transportation modes in cross-border e-commerce transporta-
tion. The two main transportation modes used in cross-border transportation are sea freight
and air freight. The carbon emission coefficient of air freight is much higher than that of sea
freight. However, air freight can save 63.9–78.7% of transportation time compared to sea
freight. On cross-border e-commerce platforms, consumers generally choose transportation
modes based on their preferences. In-depth analysis of transportation modes has also been
conducted in [13,14], aiming to select the mode with the lowest cost and lowest risk for
cross-border e-commerce enterprises based on consumer preferences.

Reference [15] studied inventory optimization and demand forecasting in cross-border
e-commerce, integrating the two models and developing a deep learning method with the
aim of minimizing inventory costs while meeting consumer needs. The above research
focuses on the different stages of cross-border e-commerce logistics services, including
the study of cross-border e-commerce logistics distribution. The authors of reference [3]
proposed a multimodal transport model for cross-border e-commerce logistics services.
This model consists of two parts: domestic market transportation based on trucks and
international market transportation based on sea freight. This type of model is suitable
for larger volumes and longer transportation times. This study also focused on something
other than the complete delivery process of international express delivery. The authors
of reference [6] studied the optimization of international express delivery routes for cross-
border e-commerce. It is worth noting that it only studied the last-mile delivery problem of
international express delivery after entering port cities without considering the optimization
of the entire delivery process of international express delivery. The authors of reference [16]
also studied the cross-border e-commerce logistics activities of agricultural products, but
they only studied a single type of truck transportation mode. When facing transportation
cases with large regional spans, this model is also not applicable.
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2.2. Logistics Distribution Optimization

Vehicle-drone joint distribution is an emerging research direction in the field of logis-
tics distribution in recent years, which combines the advantages of vehicles and drones
to improve distribution efficiency and reduce distribution costs. This delivery mode is
suitable for the last-mile of short-distance deliveries. The authors of reference [17] propose
a collaborative delivery system using drones and ground vehicles. The system establishes
an objective function to minimize costs and achieves efficient distribution by optimizing
paths and scheduling schemes. The authors of reference [18] also establish a cost mini-
mization objective function, aiming to minimize the distribution cost of the truck-drone
joint distribution network facing the last mile. Meanwhile, a meta-heuristic algorithm was
developed, and the results showed that this optimization method can significantly improve
delivery efficiency. The authors of reference [19] proposed a hybrid routing method for
a drone-assisted package delivery system. After the vehicle stops at the parking point,
the drone will use the vehicle as a return platform. This method combines the fast deliv-
ery capability of drones with the large capacity advantage of ground vehicles, achieving
efficient delivery.

The authors of reference [20] studied the vehicle routing problem of drone delivery.
By establishing mathematical models and algorithms and optimizing the parking points of
vehicles and the delivery order of drones, we have focused on solving the problem of drone
delivery paths and time windows. The authors of reference [21] propose a two-level vehicle
drone routing problem to meet the personalized delivery needs of consumers. This study
also solved the collaborative delivery problem between drones and vehicles by establishing
optimization models and algorithms. The research results indicate that the joint delivery of
drones and vehicles can significantly improve delivery efficiency and reduce delivery costs.
The above studies all attempt to establish optimization models and design algorithms to
achieve efficient and low-cost distribution.

Due to the large scale, numerous parameters, and large variable dimensions of the
vehicle drone joint distribution problem, heuristic algorithms are often used in most studies
to solve the problem. Specifically, the authors of reference [22] propose an improved
variable neighborhood search meta-heuristic algorithm for solving the truck-drone joint
distribution problem. In a small-scale instance, the algorithm can obtain the optimal
solution, and in a large-scale instance, the quality of the solution solved by the algorithm
is better than that of the simulated annealing algorithm. The authors of reference [23]
combine the variable neighborhood search algorithm and taboo search algorithm to design
an improved heuristic algorithm for solving the last-mile delivery problem of drones and
trucks. This algorithm provides ideas for the algorithm improvement strategy in this article.
The authors of reference [24] improved the genetic algorithm with the aim of optimizing
the vehicle drone collaborative delivery network. The simulation results fully demonstrate
the outstanding performance of genetic algorithms in optimizing the distribution process
of perishable goods.

The above work studied the vehicle drone joint delivery problem as a variant of the
Vehicle Routing Problem (VRP) [25], which is of great significance for the last-mile delivery
problem in the cross-border e-commerce logistics distribution process. However, it is worth
noting that the above research did not further investigate the flight trajectory planning
problem of drones in the real world. Unlike vehicles driven by drivers, drones usually do
not have a single drone driver to drive them during the delivery process. Therefore, in
order for drones to successfully complete delivery tasks, the trajectory planning problem of
drones must be studied as a subproblem of cross-border e-commerce logistics distribution.

2.3. Drone Trajectory Planning

As previously mentioned, this study integrates long-distance transportation based
on aviation and the last-mile delivery problem based on vehicle drones. In order to fully
consider the entire process of cross-border e-commerce logistics distribution, this paper
studies the problem of drone trajectory planning. Drone trajectory planning is one of the
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key issues in drone logistics distribution, which involves issues such as the flight path, flight
time, and energy consumption of drones. The authors of reference [26] proposed a drone
trajectory planning model for urban distribution that considers the energy consumption
and noise of drones and designs a meta-heuristic algorithm aimed at planning drone
trajectories in a three-dimensional environment.

The authors of reference [27] conducted a comprehensive investigation on the path
planning of unmanned aerial vehicles, including methods based on graph theory, opti-
mization, and artificial intelligence. The article points out that the path planning of drones
needs to consider various factors such as flight environment, drone performance, task
requirements, etc. The authors of reference [28] also investigated the 3D path planning of
drones, including methods based on graph theory, optimization, and artificial intelligence.
The investigation found that 3D path planning is an important research direction for drone
path planning. The authors of reference [29] studied the energy-efficient path-planning
problem of unmanned aerial vehicles. By establishing an energy consumption model and
optimization algorithm, the article proposes a path-planning method that can effectively
reduce the energy consumption of unmanned aerial vehicles. The authors of reference [30]
aim to solve the path-planning problem of drone delivery in urban areas. By consider-
ing factors such as buildings, traffic rules, and wind speed, the article proposes a drone
path-planning method suitable for urban areas. The authors of reference [31] studied the
multi-objective path-planning problem of drone delivery. By establishing a multi-objective
optimization model and algorithm, the article proposes a path-planning method that can si-
multaneously consider multiple objectives such as delivery time, energy consumption, and
safety. Although there are currently many research methods, such as graph theory-based
methods, optimization-based methods, and artificial intelligence-based methods, there are
still many challenges that need further research, such as how to consider more practical
factors and how to handle multi-objective optimization problems.

Recent studies have found that swarm intelligence algorithms perform well in han-
dling multi-objective optimization problems. The authors of reference [32] use a genetic
algorithm (GA) for unmanned aerial vehicle path planning. A method that can effectively
find the optimal path was proposed by establishing a fitness function and genetic operation.
The authors of reference [33] apply Particle Swarm Optimization (PSO) algorithm for UAV
path planning. A method was proposed to quickly find the optimal path by adjusting the
speed and position of particles. The authors of reference [34] used the ant colony opti-
mization algorithm (ACO) for unmanned aerial vehicle path planning. By simulating the
behavior of ants searching for food, the article proposes a method that can effectively avoid
local optima. The authors of reference [35] proposed a hybrid meta-heuristic algorithm for
unmanned aerial vehicle path planning. This algorithm combines the advantages of the ge-
netic algorithm and the particle swarm optimization algorithm and can effectively find the
optimal path. The simulation results validate the proposed path-planning method, which
can simultaneously consider multiple objectives such as delivery time, energy consumption,
and safety.

3. A Mathematical Model for Cross-Border E-Commerce Logistics Distribution

In this section, the cross-border e-commerce problem is defined, and a mathematical
model for cross-border e-commerce logistics distribution is established. Figure 2 shows the
complete cross-border e-commerce logistics process after consumers place orders. Firstly,
after placing an order on the cross-border e-commerce platform, consumers can declare
their port of entry through the cross-border e-commerce platform. After receiving orders
from consumer cross-border e-commerce platforms, suppliers declare to the export port and
transport the orders from the warehouse to the export port by truck. At this point, cross-
border e-commerce logistics transportation enters the next stage, and orders are transported
from the exit port to different entry ports through air transportation. Afterwards, the order
enters the final mile of delivery and is transported through a combination of trucks and
drones. The reason why air freight is chosen for cross-border (international logistics)
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transportation is because sea freight usually takes more than 15 days, while air freight
only takes 3 days [12]. The standard delivery time provided by cross-border e-commerce
platforms is 10 days, as shown in Figure 1. In this article, international express delivery
departs from Berlin, Germany, and arrives in different port cities, including Hong Kong,
Shanghai, Tianjin, and Ningbo.
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3.1. Symbol Description

Before the model was established, some symbol explanations used in this study were
provided, as shown in Table 1.

Table 1. Symbol description.

Symbol Description

Pe The set of ports of entry, Pe = {1, 2, · · · , |Pe|}
Vp The set of vehicle parking points, Vp = {1, 2, · · · , |Vp|}
Px The port of exit
Ca The transportation cost coefficient of air transportation (CNY/km)
Ch The transportation cost coefficient of highway transportation (CNY/km)

T(x, e) The time between the exit port and the entry port (h)
d(x, e) Flight distance between the exit port and the entry port (km)

vAir The average flight speed of cargo aircraft (km/h)
T(e, vp) The time between the port of entry (vehicle stop) and the vehicle stop (h)

d(e, vp) The distance traveled by vehicles between the port of entry (or vehicle stop)
and the vehicle stop (km)

Vveh The average speed of a vehicle (km/h)
Tv The set of freight vehicles, Tv = {1, 2, · · · , |Tv|}
ηi Utilization rate of freight vehicle i ∈ Tv

wmax The maximum loading weight of a freight vehicle (t)
Tsta Unloading time (h)
wvp The weight of the order required for the vehicle parking point vp ∈ Vp

α(vp, p) The orders required for the vehicle parking point vp ∈ Vp is transported by
the supplier to the port of entry p ∈ Pe, α(vp, p) ∈ {0, 1}

∂(vp, tv) The orders required for the vehicle parking point vp ∈ Vp is transported by
the freight vehicle i ∈ Tv, ∂(vp, tv) ∈ {0, 1}

λmax The maximum tilt angle of the drone (deg)
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Table 1. Cont.

Symbol Description

Tuav The maximum flight time of a drone (s)
Vuav The flying speed of drones (m/s)

COair
The greenhouse gas emissions of a cargo plane carrying one ton of cargo and
flying one kilometer, with a specific value of 531 gCO2e/(t · km).

Coh The greenhouse gas emissions of a cargo plane carrying one ton of cargo and
driving one kilometer, Coh = 106gCO2e/(t · km).

K The set of trajectory points of the UAV, K = {1, 2, · · · , |K|}.
(xk, yk, zk) The coordinates of the drone’s trajectory point k, k ∈ K.

hleg The maximum flying altitude of the drone (m).

[Tvp,exp(min),
Tvp,exp(max)]

The expected time interval for order arrival at the vehicle parking point
vp ∈ Vp

[Tvp,ac(min),
Tvp,ac(max)]

The time interval for the arrival of orders accepted by the vehicle parking
point vp ∈ Vp

3.2. International Transportation Based on Air Freight

In the cross-border transportation process based on air transportation, specific consid-
erations have been made to minimize transportation costs and carbon emissions during the
air transportation process.

The transportation cost of air transportation is usually related to the flight distance of
the aircraft, as shown in Formula (1).

A1 = ∑
Vp

∑
Pe

α(vp, p)× Ca × d(x, e), (1)

The carbon emission cost of air transportation is related to the weight of the cargo
loaded and the distance traveled by the aircraft, as shown in Formula (2).

A2 = ∑
Vp

∑
Pe

COair × α(vp, p)× d(e, vp)× wvp, (2)

3.3. Last-Mile Delivery

As mentioned earlier, the process of joint last-mile delivery between freight vehicles
and drones mainly consists of two parts. The first part is the selection of a vehicle parking
sequence, which can serve as a variant of the VRP problem. The second part is the trajectory
planning problem for unmanned aerial vehicles. In this study, the transportation costs and
carbon emissions of freight vehicles were considered. At the same time, corresponding
sub-objective functions were established with the goal of minimizing the flight time of
the drone. During drone flights, drones are limited to a course altitude of 125 m when
flying in urban areas, according to regulations under Part 135 of the Federal Aviation
Administration [26].

The transportation cost of freight vehicles is defined as follows:

L1 = ∑
Tv

∑
e

∂(e, tv)× Ch × d(e, vp),∀e ∈ Pe ∪ Vp; ∀tv ∈ Tv; e ̸= vp, (3)

The cost of carbon emissions from freight vehicles is defined as follows:

L2 = ∑
tv

∑
e

COh ×
(
∂(e, tv)× d(e, vp)× wvp

)
,∀e ∈ Pe ∪ Vp; ∀tv ∈ Tv; e ̸= vp, (4)

Customer satisfaction during order fulfillment is also related to shipping time. When
a customer places an order, the customer’s desired delivery time interval and acceptable
delivery time interval are [Tc,exp(min), Tc,exp(max)],[Tc,ac(min), Tc,ac(max)] respectively.
This study is based on fuzzy theory and applies fuzzy processing to the customer’s time
window to accurately reflect their satisfaction level. Figure 3 shows the relationship between
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customer satisfaction and order completion time. In the process of fulfilling an order, if the
order is completed within the expected delivery time interval [Tc,exp(min), Tc,exp(max)] of
the customer, the customer’s satisfaction level is 1; If the order is not completed within the
expected delivery time interval of the customer, but is completed within the acceptable
delivery time interval [Tc,ac(min), Tc,ac(max)] of the customer, the customer’s satisfaction
is calculated based on the deviation between the completion time of the order and the
expected delivery time of the customer; If an order is not delivered within an acceptable
time interval [Tc,ac(min), Tc,ac(max)] of the customer, the customer’s satisfaction level
is zero.
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According to Figure 3, the satisfaction function of consumers is shown below.

Svp =


Tvp−Tvp,exp(min)

Tvp,ac(min)−Tvp,exp(min) , Tvp,ac(min) ≤ Tvp ≤ Tvp,exp(min)

1, Tvp,exp(min) ≤ Tvp ≤ Tvp,exp(max)

1 − Tvp−Tvp,exp(max)
Tvp,ac(max)−Tvp,exp(max) , Tvp,exp(max) ≤ Tvp ≤ Tvp,ac(max)

0, others

, (5)

L3 = ∑
Vp

Svp, (6)

Tvp = α(vp, p)× (T(x, e) + Tsta) + ∑ d(e, vp)× (T(e, vp) + Tsta) + f2, (7)

f2 = Tuav = ∑
K

lk
Vuav

, (8)

T(x, e) =
d(x, e)

vAir
, (9)

T(e, vp) =
d(e, vp)

Vveh
, (10)

Therefore, the objective function of this study is defined as follows.

min f = we1 × A1−A1min
A1max−A1min + we2 × A2−A2min

A2max−A2min + we3 × L1−L1min
L1max−L1min

+we4 × L2−L2min
L2max−L2min − we5 × L3−L3min

L3max−L3min + we6 × f2− f2min
f2max− f2min

, (11)

where we1, we2, we3, we4, we5 and we6 are the weights of the objective function compo-
nents, respectively.

The constraint conditions are defined as follows.

∑ ∑ α(vp, p) = |Vp|, (12)
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|zk − zk−1|∣∣∣∣→b k

∣∣∣∣ ≤ tan(λmax), (13)

∑
K

lk
Vuav

≤ Tuav, (14)

lk =
√
(xk+1 − xk)

2 + (yk+1 − yk)
2 + (zk+1 − zk)

2, (15)

zk ≤ hleg, ∀k ∈ K, (16)

where, Formula (12) ensures that every consumer is delivered. Formula (13) limits the

maximum tilt angle of the drone,
→
b k = (xk − xk−1, yk − yk−1). Formula (14) limits the flight

time of the drone. Formula (16) limits the maximum altitude that the drone can fly.

4. Algorithm Design

With the escalating frequency of cross-border e-commerce logistics activities, the use
of multimodal transportation modes is gaining widespread popularity. Given this trend, it
is imperative that optimizers facilitating decision support for multimodal transportation
in cross-border e-commerce exhibit efficient performance. In this study, we propose an
enhancement strategy grounded in the SCSO algorithm to devise an optimization model
for multimodal transportation in cross-border e-commerce logistics.

Before the algorithm was described, some symbol explanations used in this section
were provided, as shown in Table 2.

Table 2. Symbol description for algorithm.

Symbol Description

R Balancing parameter for SCSO
xij The value of the variable in the j-th dimension for the i-th sand cat
upj Upper bounds of the variable in the j-th dimension
lowj Lower bounds of the variable in the j-th dimension

r0 A random number between 0 and 1
n Number of the sand cat
m Number of dimensions of individual variables
rG The sensitivity of the sand cat
SM The auditory characteristics of the sand cat
Ip The current iteration number

Imax The maximum iteration number
xg(Ip) The most adapted individual in the Ip-th generation of the population
xi(Ip) The position of the individual i in the Ip-th generation

µ Logistic chaos mapping parameters

4.1. Basic SCSO Algorithm and Its Improvement

The SCSO algorithm [36] is a meta-heuristic intelligence algorithm devised by Seyyed-
abbasi et al. in 2023, drawing inspiration from the hunting behavior of sand cats in their
natural habitat. Sand cats possess the remarkable ability to detect sound frequencies
ranging from 0 to 2 kHz, utilizing this skill to perceive prey movements, track them, and
execute attacks. In the algorithmic framework, the problem to be solved is analogized
to the location of the prey, while the solution corresponds to the sand cat’s location. The
decision-making process of the sand cat, involving the choice between searching for prey
or initiating an attack, hinges on a crucial balancing parameter denoted as R. During each
iteration, the sand cat dynamically updates its position by deciding whether to search or
attack, guided by the value of R.
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4.1.1. Initialization of Population Individuals and Algorithm Parameters

Like numerous other intelligent optimization algorithms, the SCSO algorithm com-
mences with population initialization, randomly generating individuals resembling sand
cats within a predefined search area, as represented by Equation (17).

xij = lowj + r0 · (upj − lowj), (17)

Here, xij represents the value of the variable in the j-th dimension for the i-th sand cat;
upj and lowj represent the upper and lower bounds of the variable in the j-th dimension, re-
spectively; and r0 is a random number between 0 and 1. For the complexity of initialization,
if there are n individuals in the sand cat population, each individual having m-dimensional
variables, the time and space complexity of initialization are both O(n · m).

The SCSO algorithm is segmented into an exploration phase and a development phase,
with the principal parameter governing the transition between the two being denoted as R.
Assuming the sensitivity of the sand cat is represented by rG, the auditory characteristics
are captured by SM, and SM typically assumes a value of 2, the formulas for rG and R
during successive iterations are as follows:

rG = SM −
SM × Ip

Imax
, (18)

R = 2 · rG · r0 − rG, (19)

where Ip is the current iteration number and Imax is the maximum iteration number.

4.1.2. Exploration Phase

Within the exploration phase, where R possesses an absolute value greater than 1, sand
cats concentrate on locating prey. This search behavior is contingent on their adeptness in
detecting low-frequency noise, a crucial auditory trait modeled by the SCSO algorithm.
The algorithm leverages this trait by delineating the sensitivity range of each sand cat.
Throughout iterations, the sensitivity of sand cats gradually diminishes from 2 to 0 in a
linear fashion. This intentional reduction facilitates their gradual approach towards prey,
minimizing the risk of oversight or bypassing. In the exploration phase, sand cats update
their positions based on the optimal solution, their current location and the sensitivity
range, as illustrated in the subsequent update formula:

r = rG · r0, (20)

xi(Ip + 1) = r · (xg(Ip)− r0 · xi(Ip)), (21)

where xg(Ip) represents the most adapted individual in the Ip-th generation of the popula-
tion, and finding it requires a time complexity of O(n). xi(Ip) denotes the position of the
individual i in the Ip-th generation, and the parameter r represents the sensitivity range
of the sand cat. Within the exploration phase, the position update for each search agent
is stochastically determined, enabling the search agent to explore novel regions within
the search space. To prevent convergence to local optimal solutions, individual sand cats
are endowed with distinct sensitivity ranges. In this phase, the overall time complexity is
O(n · m · Imax), and the space complexity is O(n · m).

4.1.3. Development Phase

When the absolute value of R is less than or equal to 1, the sand cat initiates an action
to attack the prey. During this process, a new random position, denoted as xrnd, is initially
generated based on the optimal position xg(Ip) and the current position xi(Ip). Visualizing
the auditory sensitivity of sand cats as distributed in a circular pattern, a random angle θ is
selected for each sand cat using the roulette method, and then Equation (23) is employed to
execute the attack on the prey. The time and space complexity of the roulette method are
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O(n). The introduction of such a randomized position aids the sand cat in approaching
the prey, while the randomized angle serves to prevent the algorithm from prematurely
converging to a local optimum solution. In the development phase, the overall time
complexity is also O(n · m · Imax), and the space complexity is O(n · m).

xrnd =
∣∣r0 · xg(Ip)− xi(Ip)

∣∣, (22)

xi(Ip + 1) = xg(Ip)− r · xrnd · cos(θ), (23)

4.1.4. Algorithm Improvement

To furnish the algorithm with a high-quality initial population, accelerate convergence,
and enhance solution quality, chaotic mapping is employed to initialize the positions of
the search agents. Despite being a deterministic mathematical model, chaotic mapping can
generate random, non-repeating sequences. Logistic mapping is the most prevalent chaotic
mapping in chaotic initialization, characterized by a simple nonlinear iterative equation.
Despite its simplicity, logistic mapping exhibits intricate behavior capable of generating
chaotic phenomena under specific conditions. The general form of the logistic mapping is
as follows:

zij
′ = µ · zij(1 − zij), (24)

where zi ∈ (0, 1), µ ∈ (0, 4], generally taken as µ = 4. To initialize the population of
individuals using logistic chaos, we commence by randomly generating values for each
dimension of the individuals within the range (0, 1). These values are subsequently input
into Equation (25) to apply the logistic mapping. Finally, the rewritten Equation (17) is
employed to map it back to the problem’s value space, resulting in the following process:

xij = lowj + zij
′ · (upj − lowj), (25)

Unlike conventional initialization methods in swarm intelligence, the chaotic initial-
ization strategy introduces a level of randomness based on chaotic dynamics, providing
a unique and nonlinear starting point for the optimization process. This would enhance
exploration capabilities, allowing the algorithm to escape local optima more effectively.
In logistics optimization, where complex and dynamic environments are common, this
feature proves advantageous in achieving more robust solutions.

Furthermore, during the optimization process of the algorithm, we incorporate the
elite retention strategy and introduce nonlinear weights to fine-tune the search and attack
capabilities of the algorithm. In the SCSO algorithm, the searching and attacking abilities
are contingent on the parameter R, with its associated parameter rG linearly decreasing as
the number of iterations progresses, ranging from 2 to 0. However, this linear decrease alone
may not effectively capture the dynamic balance of the SCSO algorithm in the searching
and attacking processes. To address this, we introduce a nonlinear adjustment mechanism
based on the dynamic factor ω, aiming to better control the search and attack behaviors of
the algorithm and ensure an enhanced balance throughout the optimization process. The
specific formula is as follows:

ω =
Imax

Ip + Imax
, (26)

rG = SM − SM · ω ·
[

ln
(

1 − 5 ·
Ip

Imax

)
− ln 2

]
, (27)

The specific form of Formula (27) was derived from a thorough review of existing lit-
erature on swarm intelligence algorithms, where similar adaptation mechanisms have been
successfully employed. Additionally, extensive experimentation and empirical analysis
were conducted to fine-tune the parameters of the formula to ensure optimal performance
across various optimization scenarios.

Deviating from conventional approaches that utilize linear or static weightings, this
strategy introduces a dynamic and nonlinear adjustment mechanism for the weights
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associated with individual agents and generations, promoting adaptability and nuanced
exploration-exploitation trade-offs. This adaptability proves beneficial in navigating the
complex and dynamic nature of logistics networks, leading to improved convergence and
solution quality.

From the above discussion, it can be derived that the improved SCSO algorithm has a
time complexity of O(n · m · Imax) and a space complexity of O(n · m).

4.2. Air Transportation and UAV Intermodal Transportation Based on an Improved SCSO Algorithm
4.2.1. Population Individual Coding and Algorithm Initialization

Air and road transportation form a mode of vehicular route planning where decision
variables typically involve integers. To represent the planning scheme, binary coding is
employed. In a specific logistics planning scenario, the task entails transporting goods
by air to a designated port of entry and subsequently distributing these goods by road
from the port to individual customers. The initial phase of the planning process involves
assigning numerical identifiers to the ports of entry, centers, and customers, which are then
converted into binary form. Subsequently, the transportation planning scheme for both
air and road transport (such as I entry holds the orders from center 4, 9, 19, and 35), along
with algorithmic parameters such as the number of populations and rounds of iteration, is
initialized and configured.

The number of populations is set at 30. If the population size is too large, it may lead
to faster convergence but slower algorithm operation. The number of iterations is set to 60.
Based on the previous number of populations, the algorithm can converge after running
60 generations. Logistic chaos mapping parameters µ takes 4 since it is in a completely
chaotic state at this time. upj and lowj for air and road transport is 1 and 0, respectively; for
last-mile delivery, upj is 4, 4 and 0.3 for x, y and z direction, lowj is 0, 0 and 0 for x, y and
z direction.

The delivery process involves the vehicle transporting goods to the centralized distri-
bution center, followed by the collaborative efforts of a joint drone to deliver the goods from
the center to the specified customer locations. Throughout this delivery task, the UAV may
encounter diverse obstacles, necessitating careful consideration in its flight path planning.
To simulate these obstacles, we employ models of cube and mountain peak-type 3D objects.
To ensure the UAV’s ability to navigate around these obstacles, we explore algorithms for
optimizing the UAV’s flight path. Typically comprised of a sequence of trajectory points,
the UAV’s flight path is represented by 3D coordinates, forming an integral part of the
optimization algorithm’s population of individuals.

Given the existence of a topological order between air and road transport, where the
air transport scheme influences road transport, and considering the collaborative planning
required for multiple port entries in road transport, we treat the transportation scheme—
comprising air, road, and UAV transport—as an individual within the population. This
integrated approach allows for synergistic optimization of the entire transport scheme.

4.2.2. Transportation Program Update

Upon completion of the coding for the transportation scheme, the population under-
goes the exploration phase, updating the transportation scheme based on the introduced
nonlinear weighting strategy Formulas (26) and (27) using Equations (20) and (21). Sub-
sequently, the population transitions to the development phase, where the transportation
scheme is further updated in accordance with Formulas (22) and (23).

The algorithm flowchart is illustrated in Figure 4.
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5. Discussion

To assess the practical applicability of the proposed model and algorithms in this study,
we established a real-world transportation scenario. Specifically, a supplier based in Berlin,
Germany, engaged in international trade with China, has a shipment of high-value goods
destined for four entry ports in China: Hong Kong, Shanghai, Tianjin, and Ningbo. Table 3
provides the latitude and longitude coordinates of these ports, along with information about
the maximum carrying capacity for the goods. Upon goods reception, trucks with 4 tons of
load capacity are employed to transport the goods by road based on the order quantity of
surrounding centers so that their order quantities are also taken into account. Table 4 outlines
details for 42 centers with demands for the goods, including latitude/longitude coordinates,
order demand, desired delivery time interval [Tvp,exp(min), Tvp,exp(max)] and acceptable
delivery time interval [Tvp,ac(min), Tvp,ac(max)]. We conducted extensive simulation studies
to evaluate the performance of our proposed algorithm in various scenarios. The data collected
involved assumptions and simulated parameters to model real-world international parcel
delivery issues, and is referenced on the website: https://neo.lcc.uma.es/vrp/vrp-instances/
(accessed on 27 August 2023).

https://neo.lcc.uma.es/vrp/vrp-instances/
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Table 3. The details of entry ports in the simulations.

Entry ID Entry Name Longitude (E)/◦ Latitude (N)/◦ Maximum Carrying
Capacity/t

I Hong Kong 114.17 22.28 12
II Shanghai 121.47 31.23 10
III Tianjin 117.20 39.08 12
IV Ningbo 121.54 29.87 9

Table 4. The details of Amazon operations centers in the simulations.

Center ID Demand/t Tvp,ac(min)/h Tvp,ac(max)/h Tvp,exp(min)/h Tvp,exp(max) Longitude (E)/◦ Latitude (N)/◦

1 0.39 12.05 34.53 15.57 29.56 115.51 39.30
2 1.19 10.56 33.92 13.39 22.87 113.26 23.13
3 0.62 25.66 61.13 31.98 53.60 104.07 30.57
4 0.72 20.77 72.33 23.01 48.12 120.16 27.27
5 0.67 27.09 73.17 34.41 51.85 106.91 29.43
6 1.13 24.98 52.58 33.04 47.61 114.31 30.59
7 0.76 25.96 73.04 32.79 53.90 108.94 34.34
8 0.52 23.16 71.83 27.03 36.49 118.79 32.06
9 1.28 24.74 71.94 31.54 47.49 113.63 33.75
10 0.53 28.42 72.13 33.23 49.50 115.94 32.73
11 0.48 17.17 70.82 35.37 46.86 121.61 38.91
12 0.88 19.10 64.13 23.14 38.99 119.31 32.82
13 1.20 15.25 42.01 19.59 32.98 119.30 30.07
14 0.59 22.04 73.03 32.87 50.15 118.59 28.30
15 1.13 23.11 70.72 31.82 49.55 111.29 30.69
16 0.37 19.51 50.39 31.51 43.48 111.94 28.23
17 0.53 21.29 71.86 31.56 46.87 115.89 28.70
18 0.20 22.79 71.62 30.24 49.80 106.63 26.65
19 0.46 21.82 73.79 31.36 48.79 114.51 38.04
20 0.95 21.40 72.91 30.43 48.01 108.37 22.82
21 0.78 22.73 72.81 31.27 50.87 102.72 25.04
22 0.53 18.17 39.83 22.23 36.26 120.89 31.98
23 0.69 28.03 70.55 32.35 48.31 112.55 37.87
24 0.85 21.03 72.30 31.57 46.48 120.38 36.07
25 0.32 29.45 71.48 31.69 47.64 116.28 35.20
26 0.85 12.88 33.94 19.07 27.58 119.97 31.81
27 0.82 19.64 74.01 32.92 49.79 111.58 25.27
28 0.51 22.14 71.13 34.56 48.82 117.23 31.82
29 0.80 16.80 43.31 19.24 36.10 112.39 24.52
30 1.25 17.17 54.09 21.43 48.30 116.68 23.35
31 0.59 24.48 52.48 33.20 37.28 114.94 25.83
32 1.16 24.86 74.44 31.51 48.12 112.12 32.01
33 0.67 25.90 73.59 28.44 48.43 118.68 24.88
34 1.07 19.62 72.32 27.31 45.20 113.08 27.21
35 0.50 22.25 73.32 28.57 48.36 111.28 23.93
36 0.48 18.51 72.29 31.53 49.86 111.00 27.70
37 0.93 22.65 71.38 30.76 47.78 117.99 36.65
38 0.75 26.85 72.54 30.56 51.14 118.47 26.23
39 0.98 26.15 72.05 32.08 49.12 118.54 38.94
40 0.59 27.86 71.45 30.68 47.16 114.56 34.94
41 0.75 24.50 74.66 30.74 57.69 105.81 36.35
42 1.14 17.53 72.33 33.22 58.45 108.32 33.54

The spatial distribution of the centers and entry ports is illustrated in Figure 5a.
Subsequent to goods reaching the centralized distribution center, UAVs are utilized for
customer deliveries, and a 3D map depicting the route from the center to the customer is
created using MATLAB R2022b, as illustrated in Figure 5b for scenario #1 and Figure 5c for
scenario #2. To facilitate comparison with the improved SCSO algorithm employed in this
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study, we utilized the Bat Algorithm (BA) [37] and Cuckoo Search Algorithm (CSA) [38,39]
to optimize the model presented in this paper.
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Initially, the improved SCSO algorithm is applied to optimize the road transport
scheme, as depicted in Figure 6 and detailed in Table 5. Notably, Table 5 reveals that the
Full Load Ratio for each planned transport route exceeds 76%, effectively utilizing the
loading capacity of trucks.
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Table 5. Delivery details from 4 entries to 42 centers.

Entry ID Path Load/t Full Load Ratio/%

I
2→29→27→35 3.31 82.75

20→21→18→36→16→34 3.85 96.25
30→33→38→31 3.26 81.50

II
22→26→12→8→28→10 3.82 95.50

6→15→32 3.42 85.50

III
39→37→24→11 3.24 81.00

1→19→23→40→9→25 3.73 93.25
41→7→42→3→5 3.94 98.50

IV 13→17→14→4 3.04 76.00

The results of obstacle avoidance route optimization in the 3D scenario from center
to customer are presented in Figures 7 and 8. Both the top view in Figure 7 and the 3D
view in Figure 8 illustrate that all three algorithms effectively navigate around obstacles.
However, the SCSO algorithm achieves a notably shorter route length. To provide a more
detailed comparison of the advantages and disadvantages of the three algorithms in UAV
route optimization, we calculated the route distance and detour rate, as summarized in
Tables 6 and 7. The detour rate is defined as the ratio of the detour distance to the straight-
line distance between two points. In Table 6 for scenario #1, the SCSO, BA, and CSA
algorithms optimize routes with distances of 5.62, 6.57, and 7.05 km and detour rates of
16.78%, 36.47%, and 46.41%, respectively. And in Table 7 for scenario #2, the SCSO, BA, and
CSA algorithms optimize routes with distances of 5.66, 6.07, and 6.54 km and detour rates
of 17.51%, 26.02%, and 35.78%, respectively. It is evident that the SCSO algorithm yields
the shortest routes and the lowest detour rates.
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Table 6. The optimized flight distance and detour rate of the UAV using SCSO, BA, and CSA
algorithms for scenario #1.

Algorithm Distance/km Detour Rate/%

SCSO 5.62 16.78
BA 6.57 36.47

CSA 7.05 46.41
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Table 7. The optimized flight distance and detour rate of the UAV using SCSO, BA, and CSA
algorithms for scenario #2.

Algorithm Distance/km Detour Rate/%

SCSO 5.66 17.51
BA 6.07 26.02

CSA 6.54 35.78
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Figure 8. A three-dimensional view of the UAV flight route optimized using SCSO, BA, and CSA
algorithms for (a) scenario #1 and (b) scenario #2.

Concerning the final objective function, the normalized iterative profiles of the three
algorithms are depicted in Figure 9. Notably, SCSO showcases superior global convergence,
consistently yielding the smallest objective function values.
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To assess the stability of the algorithms, we conducted 30 runs for each, and the average
iteration curves per generation are presented in Figure 10. Once again, the SCSO algorithm
demonstrates its ability to converge to lower objective function values, highlighting the
robust stability of all algorithms.
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6. Conclusions

In conclusion, this study addresses the increasing prominence of multimodal trans-
portation modes in cross-border e-commerce logistics activities by constructing a logistics
distribution optimization model. The formulated mathematical model, with its objec-
tive functions focused on minimizing distribution costs, reducing carbon emissions, and
maximizing customer satisfaction, encapsulates the diverse considerations inherent in
this dynamic field. Constraints from various dimensions, including cargo aircraft and
vehicle load limitations, were comprehensively integrated into the model. To enhance
the optimization process, improvement strategies were devised based on the SCSO algo-
rithm. The resulting improved swarm intelligence algorithm proved effective in solving
the proposed model.

The practical applicability of the mathematical model and the improved swarm in-
telligence algorithm was demonstrated through a real-world case study of cross-border
e-commerce logistics transportation. The outcomes underscored the efficacy of the proposed
solution. Specifically, the utilization of the proposed solution demonstrated a remarkable
full load ratio exceeding 76%, indicating highly efficient utilization of transport routes.
Moreover, the detour rates obtained through the SCSO algorithm, BA algorithm, and CSA
algorithm revealed that the SCSO algorithm outperformed, yielding the shortest routes
and the lowest detour rates. Finally, the aggregated objective function results indicate
that the SCSO algorithm is effective in reducing the cost of delivery and carbon emissions,
concurrently improving customer satisfaction comprehensively.

These results collectively reinforce the comprehensive benefits of the proposed ap-
proach to optimizing multimodal transportation in cross-border e-commerce, offering
a robust solution that addresses logistics efficiency, environmental considerations, and
customer satisfaction simultaneously.
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8. Beck, Y.; Ljubić, I.; Schmidt, M. A survey on bilevel optimization under uncertainty. Eur. J. Oper. Res. 2023, 311, 401–426.

[CrossRef]
9. Yuen, M.; Ng, S.; Leung, M. A Competitive Mechanism Multi-Objective Particle Swarm Optimization Algorithm and Its

Application to Signalized Traffic Problem. Cybern. Syst. 2021, 52, 73–104. [CrossRef]
10. Wang, Z.; Li, Q.; Li, G.; Zhang, Q. Multi-objective decomposition evolutionary algorithm with objective modification-based

dominance and external archive. Appl. Soft Comput. 2024, 149, 111006. [CrossRef]
11. Sun, J.; Li, G.; Xu, S.X.; Dai, W. Intermodal transportation service procurement with transaction costs under belt and road

initiative. Transp. Res. Part E Logist. Transp. Rev. 2019, 127, 31–48. [CrossRef]
12. Cheah, L.; Huang, Q. Comparative Carbon Footprint Assessment of Cross-Border E-Commerce Shipping Options. Transp. Res.

Rec. 2021, 2676, 584–595. [CrossRef]
13. Giuffrida, M.; Mangiaracina, R.; Perego, A.; Tumino, A. Cross-border B2C e-commerce to China. Int. J. Phys. Distrib. Logist.

Manag. 2020, 50, 355–378. [CrossRef]
14. Yang, Y. Selection Method of Cross-Border e-Commerce Export Logistics Mode Based on Collaborative Filtering Algorithm. J.

Math. 2022, 2022, 6885432. [CrossRef]
15. Ren, S.; Choi, T.-M.; Lee, K.-M.; Lin, L. Intelligent service capacity allocation for cross-border-E-commerce related third-party-

forwarding logistics operations: A deep learning approach. Transp. Res. Part E Logist. Transp. Rev. 2020, 134, 101834. [CrossRef]
16. Teng, S. Route planning method for cross-border e-commerce logistics of agricultural products based on recurrent neural network.

Soft Comput. 2021, 25, 12107–12116. [CrossRef]
17. Dorling, K.; Heinrichs, J.; Messier, G.G.; Magierowski, S. Vehicle Routing Problems for Drone Delivery. IEEE Trans. Syst. Man

Cybern. Syst. 2017, 47, 70–85. [CrossRef]
18. Cho, Y.H.; Baek, D.; Chen, Y.; Jung, M.J.; Vinco, S.; Macii, E.; Poncino, M. Multi-Criteria Coordinated Electric Vehicle-Drone

Hybrid Delivery Service Planning. IEEE Trans. Veh. Technol. 2023, 72, 5892–5905. [CrossRef]
19. Goodchild, A.; Toy, J. Delivery by drone: An evaluation of unmanned aerial vehicle technology in reducing CO2 emissions in the

delivery service industry. Transp. Res. Part D Transp. Environ. 2018, 61, 58–67. [CrossRef]
20. Zhang, S.; Liu, S.; Xu, W.; Wang, W. A novel multi-objective optimization model for the vehicle routing problem with drone

delivery and dynamic flight endurance. Comput. Ind. Eng. 2022, 173, 108679. [CrossRef]
21. Karak, A.; Abdelghany, K. The hybrid vehicle-drone routing problem for pick-up and delivery services. Transp. Res. Part C Emerg.

Technol. 2019, 102, 427–449. [CrossRef]
22. Morim, A.; Campuzano, G.; Amorim, P.; Mes, M.; Lalla-Ruiz, E. The drone-assisted vehicle routing problem with robot stations.

Expert Syst. Appl. 2024, 238, 121741. [CrossRef]
23. Schermer, D.; Moeini, M.; Wendt, O. A hybrid VNS/Tabu search algorithm for solving the vehicle routing problem with drones

and en route operations. Comput. Oper. Res. 2019, 109, 134–158. [CrossRef]
24. Zhang, J.; Li, Y. Collaborative vehicle-drone distribution network optimization for perishable products in the epidemic situation.

Comput. Oper. Res. 2023, 149, 106039. [CrossRef]
25. Ma, S.; Liu, H.; Pan, N.; Wang, S. Study on an autonomous distribution system for smart parks based on parallel system theory

against the background of Industry 5.0. J. King Saud Univ. Comput. Inf. Sci. 2023, 35, 101608. [CrossRef]
26. Liu, H.; Tsang, Y.P.; Lee, C.K.M. A cyber-physical social system for autonomous drone trajectory planning in last-mile superchilling

delivery. Transp. Res. Part C Emerg. Technol. 2024, 158, 104448. [CrossRef]
27. Quan, L.; Han, L.; Zhou, B.; Shen, S.; Gao, F. Survey of UAV motion planning. IET Cyber-Syst. Robot. 2020, 2, 14–21. [CrossRef]
28. Zhao, Y.; Zheng, Z.; Liu, Y. Survey on computational-intelligence-based UAV path planning. Knowl.-Based Syst. 2018, 158, 54–64.

[CrossRef]
29. Zhu, B.; Bedeer, E.; Nguyen, H.H.; Barton, R.; Gao, Z. UAV Trajectory Planning for AoI-Minimal Data Collection in UAV-Aided

IoT Networks by Transformer. IEEE Trans. Wirel. Commun. 2023, 22, 1343–1358. [CrossRef]

https://doi.org/10.1016/j.techsoc.2022.102066
https://doi.org/10.3390/jtaer17010004
https://doi.org/10.1016/j.tre.2019.10.011
https://doi.org/10.1016/j.tra.2023.103782
https://doi.org/10.1016/j.tre.2023.103266
https://doi.org/10.1016/j.compind.2023.103960
https://doi.org/10.3390/math11122734
https://doi.org/10.1016/j.ejor.2023.01.008
https://doi.org/10.1080/01969722.2020.1827795
https://doi.org/10.1016/j.asoc.2023.111006
https://doi.org/10.1016/j.tre.2019.04.013
https://doi.org/10.1177/03611981211037249
https://doi.org/10.1108/IJPDLM-08-2018-0311
https://doi.org/10.1155/2022/6885432
https://doi.org/10.1016/j.tre.2019.101834
https://doi.org/10.1007/s00500-021-05861-8
https://doi.org/10.1109/TSMC.2016.2582745
https://doi.org/10.1109/TVT.2022.3232799
https://doi.org/10.1016/j.trd.2017.02.017
https://doi.org/10.1016/j.cie.2022.108679
https://doi.org/10.1016/j.trc.2019.03.021
https://doi.org/10.1016/j.eswa.2023.121741
https://doi.org/10.1016/j.cor.2019.04.021
https://doi.org/10.1016/j.cor.2022.106039
https://doi.org/10.1016/j.jksuci.2023.101608
https://doi.org/10.1016/j.trc.2023.104448
https://doi.org/10.1049/iet-csr.2020.0004
https://doi.org/10.1016/j.knosys.2018.05.033
https://doi.org/10.1109/TWC.2022.3204438


Mathematics 2024, 12, 763 20 of 20

30. Liu, K.; Zheng, J. UAV Trajectory Planning with Interference Awareness in UAV-Enabled Time-Constrained Data Collection
Systems. IEEE Trans. Veh. Technol. 2023, 73, 2799–2815. [CrossRef]

31. Sonny, A.; Yeduri, S.R.; Cenkeramaddi, L.R. Autonomous UAV Path Planning Using Modified PSO for UAV-Assisted Wireless
Networks. IEEE Access 2023, 11, 70353–70367. [CrossRef]

32. Liu, H.; Sun, Y.; Cao, J.; Chen, S.; Pan, N.; Dai, Y.; Pan, D. Study on UAV Parallel Planning System for Transmission Line Project
Acceptance Under the Background of Industry 5.0. IEEE Trans. Ind. Inform. 2022, 18, 5537–5546. [CrossRef]

33. Wang, C.; Zhang, L.; Gao, Y.; Zheng, X.; Wang, Q. A Cooperative Game Hybrid Optimization Algorithm Applied to UAV
Inspection Path Planning in Urban Pipe Corridors. Mathematics 2023, 11, 3620. [CrossRef]

34. Aljalaud, F.; Kurdi, H.; Youcef-Toumi, K. Autonomous Multi-UAV Path Planning in Pipe Inspection Missions Based on Booby
Behavior. Mathematics 2023, 11, 2092. [CrossRef]

35. Kong, F.; Wang, Q.; Gao, S.; Yu, H. B-APFDQN: A UAV Path Planning Algorithm Based on Deep Q-Network and Artificial
Potential Field. IEEE Access 2023, 11, 44051–44064. [CrossRef]

36. Seyyedabbasi, A.; Kiani, F. Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems.
Eng. Comput. 2023, 39, 2627–2651. [CrossRef]

37. Yang, X.S. A New Metaheuristic Bat-Inspired Algorithm. Stud. Comput. Intell. 2010, 284, 65–74. [CrossRef]
38. Caselli, N.; Soto, R.; Crawford, B.; Valdivia, S.; Olivares, R. A Self-Adaptive Cuckoo Search Algorithm Using a Machine Learning

Technique. Mathematics 2021, 9, 1840. [CrossRef]
39. Liu, H.; Sun, Y.; Pan, N.; Chen, Q.; Guo, X.; Pan, N. Multi-UAV Cooperative Task Planning for Border Patrol based on Hierarchical

Optimization. J. Imaging Sci. Technol. 2021, 65, jist1082. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TVT.2023.3320676
https://doi.org/10.1109/ACCESS.2023.3293203
https://doi.org/10.1109/TII.2022.3142723
https://doi.org/10.3390/math11163620
https://doi.org/10.3390/math11092092
https://doi.org/10.1109/ACCESS.2023.3273164
https://doi.org/10.1007/s00366-022-01604-x
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.3390/math9161840
https://doi.org/10.2352/J.ImagingSci.Technol.2021.65.4.040402

	Introduction 
	Literature Review 
	Cross-Border E-Commerce Logistics Services 
	Logistics Distribution Optimization 
	Drone Trajectory Planning 

	A Mathematical Model for Cross-Border E-Commerce Logistics Distribution 
	Symbol Description 
	International Transportation Based on Air Freight 
	Last-Mile Delivery 

	Algorithm Design 
	Basic SCSO Algorithm and Its Improvement 
	Initialization of Population Individuals and Algorithm Parameters 
	Exploration Phase 
	Development Phase 
	Algorithm Improvement 

	Air Transportation and UAV Intermodal Transportation Based on an Improved SCSO Algorithm 
	Population Individual Coding and Algorithm Initialization 
	Transportation Program Update 


	Discussion 
	Conclusions 
	References

