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Abstract: The existence of magnetic fields in spiral galaxies is beyond doubt and is confirmed by both
observational data and theoretical models. Their generation occurs due to the dynamo mechanism
action associated with the properties of turbulence. Most studies consider magnetic fields at moderate
distances to the center of the disk, since the dynamo number is small in the marginal regions, and
the field growth should be suppressed. At the same time, the computational results demonstrate the
possibility of magnetic field penetration into the marginal regions of galaxies. In addition to the action
of the dynamo, magnetorotational instability (MRI) can serve as one of the mechanisms of the field
occurrence. This research is devoted to the investigation of MRI impact on galactic magnetic field
generation and solving the occurring eigenvalue problems. The problems are formulated assuming
that the perturbations may possibly increase. In the present work, we consider the eigenvalue
problem, picturing the main field characteristics in the case of MRI occurrence, where the eigenvalues
are firmly connected with the average vertical scale of the galaxy, to find out whether MRI takes
place in the outer regions of the galaxy. The eigenvalue problem cannot be solved exactly; thus, it is
solved using the methods of the perturbation theory for self-adjoint operators, where the eigenvalues
are found using the series with elements including parameters characterizing the properties of the
interstellar medium. We obtain linear and, as this is not enough, quadratic approximations and
compare them with the numerical results. It is shown that they give a proper precision. We have
compared the approximation results with those from numerical calculations and they were relatively
close for the biggest eigenvalue.
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1. Introduction

It is well known that a large variety of astrophysical objects, such as the Sun [1,2],
the Earth [3], other planets [4,5] and stars [6–8], accretion discs [9,10], pulsars [11] and
some galaxies [12,13], have large-scale magnetic fields. There are different methods of
observational study for such fields. For example, for the Sun, we can use the Zeeman
effect [14]. As for faraway objects (galaxies and accretion discs), this approach cannot
give any proper results, so it is necessary to study the synchrotron emission spectra [15].
Nowadays, for most cases, Faraday rotation measurements are taken [16,17]. This method
is based on the fact that the polarized radio wave (passing, for example, from pulsars)
changes its polarization plane angle while travelling through a magnetized medium. The
angle of rotation is proportional to the integral of magnetic field projection to the line
of sight. Also, it depends on the wavelength, being proportional to its square. Thus,
comparing polarization angles for different wavelengths, we can rebuild the field structure.
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Observations give the typical value of the field of order of microgauss for galaxies [18]. As
for the accretion discs, magnetic field studies are much more difficult. They are connected
with the small size of such objects, especially for ones situated near white dwarfs, neutron
stars and black holes with masses comparable to the Sun. They cannot be studied because
of the poor resolution, even for most modern instruments. The problem is slightly easier
for the accretion discs of the supermassive black holes situated in the central parts of
galaxies. However, even for this case, there is only one example of effective Faraday
rotation measurements in the nuclei of M87, but all the conclusions about the field structure
are still being discussed [19,20].

From a theoretical point of view, there are several approaches to explain the magnetic
field generation. One of the most important processes is connected with the dynamo
mechanism. It can be divided into two different scales [21]. The first one is based on
local vorticed turbulent motions and can cause the occurrence of only a random small-
scale field. The large-scale magnetic dynamo is much more important. It is based on
the differential rotation (most of the astrophysical objects rotate in non-solid mode) and
the helicity of the turbulent motions. The law for the field can be obtained by averaging
the classical magnetohydrodynamics equations. The growth of the field can be restricted
by the turbulent diffusivity destroying the large-scale structures. It leads us to the idea
that the magnetic field growth is a threshold process. Mathematically, the diffusivity is
connected with dissipation terms in the equations. If we discuss whether the field can
grow, we should solve the parabolic equation. The properties of the equation give us
an opportunity to assume that the field growth is exponential, and we can reduce the
problem to an eigenvalue problem [22,23], where the eigenvalues mean the field growth
rates and the eigenfunctions describe its spatial structure. There are several works [23,24]
where critical values of the parameters corresponding to the field growth (or its decay) are
obtained. This approach allows us to describe the magnetic field in some galactic objects
and (for some cases) in the accretion discs.

The large-scale dynamo properly works for the main parts of the astrophysical discs
(as for the galaxies, it is limited by 8–10 kpc). However, if we consider the field for larger
distances from the center of the object, the dynamo is much weaker than in the inner parts.
Previously, it has been shown that the dynamo number characterizing the efficiency of
the main processes is generally lower than the critical one, so that the field cannot be
generated. Though the situation may be partly mitigated by assuming the non-linear effects
occurrence, the dynamo still cannot generate significant magnetic fields in the outer parts
of the galactic or accretion discs [25]. Nevertheless, there are certain physical reasons for
the fields in the outer parts to exist.

However, there are other mechanisms that can explain the occurrence of magnetic
fields in cosmic discs, especially in their outer parts. We should mention the mechanism,
which is discussed in some of the classic works. It is connected with magnetorotational
instability and explains the transition of both the magnetic field and angular momentum
in the radial direction [26–32]. The possibility of such a process in accretion discs was
described in detail in a recent work by Shakura and coauthors [33]. This research comprises
not only the investigation of physical processes but also the mathematical study of the
problem, comprising both analytical and numerical considerations of occurring problems.

This approach can also be used to describe the field generation in the outer parts of
the galaxies. Though some physical processes in galactic and accretion discs have much
in common (taking the size difference into account), it is necessary to add some changes
into the model associated with the galaxies [9]. In particular, it is especially important to
take into account some distinctions in rotational laws. The accretion discs’ rotation can be
described by Kepler law [34]. In the case of galaxies, we simply use either the flat rotational
curve or, for more accurate description, the Brandt rotational curve [35,36].

We obtain the magnetic field equation by transforming magnetohydrodynamics equa-
tions with some approximations. We shall use the model, according to which the magnetic
field and velocity components are described by the harmonic law [33]. In this case, the
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equation can be turned into an eigenvalue problem. To describe the possibility of magnetic
field generation, we have to study its eldest spatial mode. Taking the time dependence, we
are going to use the harmonic law as well. The growth of the magnetic field is connected
with the transition of its oscillation frequency from real range to imaginary. Thus, it is
possible to reconstruct the previous problem into the study of the eldest eigenvalue which
characterizes the vertical scaleheight.

Despite the apparent simplicity, calculating the eigenvalues and eigenfunctions ap-
peared to be challenging. Finding their exact meanings seems to be impossible; we can
find them approximately using the fact that linear operators are self-adjoint. This allows us
to use the perturbation theory, which has been developed for the operators in quantum
mechanics [37]. The problem specialties in some cases do not give us any opportunity to
use only the first order of the perturbation theory. For this reason, we have to consider the
second order as well. A numerical solution of such problems also appears to be challenging.

This paper is organized in the following way. Firstly, we formulate our model and
obtain the main equations. After that, we find the eigenvalues for the flat rotational curve,
taking perturbation theory methods into account. We then pass to a more difficult case,
connected with the Brandt rotational curve, where we also use perturbation theory methods.
We also describe numerical solutions for both cases. Finally, we discuss the results and
their astrophysical applications.

2. Basic Equations

Magnetic field generation in the outer parts of the galactic discs can be connected with
magnetorotational instability, which is widely known in different problems in hydrodynam-
ics. Firstly, for the equilibrium case, the rotating fluid is moving under the pressure gradient
and the centrifugal force that counterbalance each other. If the outer parts of the fluid move
with smaller angular velocity, instability can develop, and the angular momentum will
pass in the radial direction. However, it is necessary to have quite a large angular velocity
gradient: according to the Rayleigh criteria [26], it should decrease faster than 1

r2 .
The situation principally changes for magnetohydrodynamical problems, if the fluid

has a frozen-in magnetic field. In this case, instability will be developed even for small
gradients of the angular velocity. For this case, the magnetic field can pass from the inner
parts of the rotating object to its outer ones.

The possibility of magnetorotational instability existence is connected with the plasma
parameter [28], which describes the ratio between the hydrodynamic pressure and the
magnetic one:

β =
8πP
B2

0
, (1)

where P is the hydrodynamic pressure and B0 is the magnetic field induction. The process
can work if β >> 1. In the case of the outer parts of the galaxies, we can estimate the
pressure by the order of 10−12 dyn cm−2. As for the initial magnetic field (B0), which can
be connected with relatively weak dynamo action, it can be estimated as 10−7 G [25]. So,
the plasma parameter will be β ∼ 103, which is quite sufficient for magnetorotational
instability. Thus, we state that MRI can occur in galaxies.

As for the mathematical formulation of the problem, we use methods which are similar
to ones described in [33]. We assume that the field and velocity fluctuations are proportional
to the cosine cos(ωt − kzz), where ω relates to the circular frequency and kz characterizes
the inverse lengthscale in the vertical direction.

If we transform the equations for the field (induction equation) and the velocity (Euler
equation), we obtain the equation for Br. However, it is not very convenient because of the
first r-derivative which will make some of the operators become non-self-adjoint. Thus,
to simplify the problem, the function ψ(r) = Br(r)

√
r. was taken, where Br(r) is the radial

magnetic field considered in cylinder coordinates.
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The following equation can be obtained [33] from the Navier–Stokes equation and the
magnetic field evolution equation in magnetohydrodynamics:

d2ψ

dr2 +

− 3
4r2 +

ω2

k2
z

2Ω
(

2Ω + r dΩ
dr

)
(

c2
0 −

ω2

k2
z

)2 −
2Ωc2

0r dΩ
dr(

c2
0 −

ω2

k2
z

)2

ψ = k2
zψ; (2)

where c0 = B0
2
√

πρ is the Alfven velocity and Ω is the angular velocity of the disc.
We are interested in the borderline case between the oscillating solution (the frequency

is real and ω2 > 0) and the exponentially growing one. For this regime, we have the
exponential growth rate γ and the imaginary “frequency” ω = iγ and ω2 < 0. In this case,
we take ω = 0. Equation (2) transforms into:

d2ψ

dr2 +

[
− 3

4r2 − 2Ωc−2
0 r

dΩ
dr

]
ψ = k2

zψ; (3)

For the simplest case, we take the flat rotation curve. We note that in the case of galaxies,
in contradistinction to accretion discs, where the Kepler rotation curve is used [34], it is
reasonable to use constant linear velocity as the first approximation base. It is known
that for large distances from the center, the linear velocity of the galaxy is nearly constant
(V = V0). So, the angular velocity will be Ω(r) = V0

r . Equation (3) will become:

d2ψ

dr2 +

[
− 3

4r2 +
2V2

0
c2

0r2

]
ψ = k2

zψ; (4)

Measuring the distances in the radius of the main part of the galaxy, we obtain the
following eigenvalue problem:

λψ =
d2ψ

dr2 +
C
r2 ψ; (5)

with boundary conditions (here, we assume that the field becomes zero at two radiuses of
the main part):

ψ|r=rmin
= ψ|r=rmax

= 0. (6)

Here, we have introduced C =
2V2

0
c2

0
− 3

4 .

In the case of a more accurate model for the galaxy rotation, we use the Brandt rotation
law [35]:

Ω(r) =
Ω0√
1 + r2

r2
0

(7)

where Ω0 is the typical angular velocity and r0 is the lengthscale of its changing. The
Brandt rotation law is a good approximation which corresponds to observational data
and it comprises simplicity and proper accuracy, while more complicated laws are dis-
cussed in [36–38]. As for large r, the Brandt rotation law transforms into a simpler plane
rotation curve:

Ω(r) =
V0

r
+ O

(
1
r

)
; (8)

The equation will be:

d2ψ

dr2 +

[
− 3

4r2 +
2r2

0r2

c2
0

Ω2
0(

r2
0 + r2

)2

]
ψ = k2

zψ; (9)
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It corresponds to an eigenvalue problem:

λψ =
d2ψ

dr2 − 3
4r2 ψ +

Dr2(
r2

0 + r2
)2 ψ. (10)

with boundary conditions (6).

3. Eigenvalue Problem for Flat Rotation Curve

Firstly, we need to solve the eigenvalue problem:

λψ = Ĥψ + V̂ψ; (11)

where Ĥ = d2

dr2 and V̂ = C
r2 with boundary conditions (6). The non-perturbed eigenvalue

can be obtained by solving the problem:

λ(0)ψ = Ĥψ; (12)

Thus, non-perturbed eigenvalues can be found from the following expression:

λ
(0)
n = − π2n2

(rmax − rmin)
2 ; (13)

The eigenfunctions in the non-perturbed case can be easily obtained:

ψ
(0)
n =

√
2√

(rmax − rmin)
sin
(

πn(r − rmin)

rmax − rmin

)
; (14)

To find the perturbations for eigenvalues in the first approximation, we use the equa-
tion [39]:

δλ
(1)
n = (ψn, V̂ψn); (15)

The perturbations in our case can be found analytically by solving the integral:

δλ
(1)
n =

rmax∫
rmin

√
2√

(rmax − rmin)
sin2

(
πn(r − rmin)

rmax − rmin

)
C
r2 dr; (16)

The integral in (15) can be described using the following expression:

δλ
(1)
n = C

πn
√

2

(rmax − rmin)
3/2

(
Si
(

2πnrmax

rmax − rmin

)
cos
(

2πnrmin

rmax − rmin

)
−Ci

(
2πnrmax

rmax − rmin

)
sin
(

2πnrmin

rmax − rmin

)
− (17)

−Si
(

2πnrmin

rmax − rmin

)
cos
(

2πnrmin

rmax − rmin

)
+ Ci

(
2πnrmin

rmax − rmin

)
sin
(

2πnrmin

rmax − rmin

))
Here, Si(r) =

r∫
0

sin(t)
t dt and Ci(r) = −

∞∫
r

cos(t)
t dt are integral sine and cosine functions

and C is the constant value, introduced in Equation (5), which is determined by the main
characteristics of the field. For some certain boundary conditions (for example, rmin = 0.5
and rmax = 1.5), it can be simplified:

δλ
(1)
n = (−1)n√2Cπn(Si(3πn)− Si(πn)); (18)

The first approximation is quite enough to estimate the eigenvalues in a variety of
applied problems, connected with magnetic field generation in the outer regions of the
galaxies. Nevertheless, there are a few examples of cases where the linear approximation
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is not sufficient. It is especially significant for the eldest eigenvalue, which describes the
principle behavior of the magnetic field in galaxies.

To calculate the perturbations for the eigenvalues in the second approximation, we
use the equation [39]:

δλ
(2)
n = ∑

n ̸=m

(ψn, V̂ψm)
2

λ
(0)
n − λ

(0)
m

; (19)

which can be determined using expression (15):

δλ
(2)
n = ∑

n ̸=m

(
rmax∫
rmin

√
2√

(rmax−rmin)
sin
(

πn(r−rmin)
rmax−rmin

)
sin
(

πm(r−rmin)
rmax−rmin

)
C
r2 dr

)2

λ
(0)
n − λ

(0)
m

; (20)

Finally, we find the eigenvalues by summing the obtained approximations for the perturba-
tions and the non-perturbed eigenvalues, given in (13):

λn = λ
(0)
n + δλ

(1)
n + δλ

(2)
n + . . . ; (21)

The approximate analytical results for several pairs of rmin and rmax (here, we confine
ourselves using the first approximation) are presented in Table 1. We show linear and
quadratic terms and approximate values in Table 2.

Table 1. Perturbations for the first three eigenvalues in the first approximation for eigenvalue
problem (11).

rmin = 0.5
rmax = 1.5

rmin = 1
rmax = 2

δλ
(1)
1

1.1131 × C 0.4650 × C

δλ
(1)
2

1.2551 × C 0.4896 × C

δλ
(1)
3

1.2946 × C 0.4953 × C

Table 2. Perturbations for the eldest eigenvalues and approximate meanings for eigenvalue
problem (11).

rmin = 0.5
rmax = 1.5

rmin = 1
rmax = 2

δλ
(1)
1

1.1131 × C 0.4650 × C

δλ
(2)
1

0.0063 × C2 0.0004 × C2

λ1(C = 600) 2955.56 431.456

The same problem can also be solved numerically [40]. Here, we have to solve the
eigenvalue problem:

λψ = L̂1ψ; (22)

where L̂1 = d2

dr2 + C
r2 . We will consider the function ϕ(r, t) =

∞
∑

n=1
ψn(r)eλnt. Thus, the

problem can be formulated in another way:

L̂1ϕ =
∂ϕ

∂t
(23)

Taking into account that λ1 > λ2 > λn>2 for large values of the variable t, we conclude that:

ϕ = ψ1(r)eλ1t(1 + O(e−(λ1−λ2)t)) (24)
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For the derivative, we obtain:

∂ϕ

∂t
= λ1ψ1(r)eλ1t(1 + O(e−(λ1−λ2)t)) (25)

This assumption gives us an opportunity to use the expression [23]:

λ1ϕ ∼=
∂ϕ

∂t
; (26)

which will lead us to the Cauchy problem:

∂2ϕ

∂r2 +
C
r2 ϕ =

∂ϕ

∂t
; (27)

ϕ|r=rmin
= ϕ|r=rmax

= 0; (28)

ϕ|t=0 = 0. (29)

The first eigenfunction is presented in Figure 1. Using the dependence (22), we can
find the first eigenvalue:

λ1 =
∂ϕ

∂t
· 1

ϕ
; (30)

The results compared to analytical values, given in Table 1, are presented in Table 3 for
rmin = 0.5, rmax = 1.5.
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Table 3. Analytical and numerical results comparison for eigenvalue problem (11).

C Analytical Result for kz
Numerical

Result for kz
∆kz

600 20.772 19.458 1.314
400 15.756 15.338 0.418
200 10.058 10.059 0.001
100 6.414 6.415 0.001
50 3.809 3.795 0.014

4. Eigenvalue Problem for the Brandt Rotation Curve

We will then consider the problem:

λψ = Ĥψ + L̂ψ; (31)



Mathematics 2024, 12, 760 8 of 11

where L̂ = − 3
4 · 1

r2 +
Dr2

(r2
0−r2)

2 , which corresponds to the Brandt rotational curve case.

We can find the perturbations in the first approximation using Equation (15). In this
case, we have to solve the integral:

δλ
(1)
n =

rmax∫
rmin

√
2√

(rmax − rmin)
sin2

(
πn(r − rmin)

rmax − rmin

)(
−3

4
· 1

r2 +
Dr2(

r2
0 − r2

)2

)
dr (32)

To simplify the expression for Equation (28), we will use the function τ(r):

τ(r) =
1
8
(−1)n[Ci(2πn(r0 − r))− Ci(2πn(r0 + r)) + 2πnSi(2πn(r0 − r))− 2πnSi(2πn(r0 − r))]− (33)

− (−1)nr cos(2πnr)
4(r2 − r2

0)
− r

2(r2
0 − r2)

− 1

2r0tanh
(

r
r0

) ;

and expression (17), obtained in the previous paragraph, which we set as ξ(rmin, rmax):

ξ(rmin, rmax) =
πn

√
2

(rmax − rmin)
3/2

(
Si
(

2πnrmax

rmax − rmin

)
cos
(

2πnrmin

rmax − rmin

)
−Ci

(
2πnrmax

rmax − rmin

)
sin
(

2πnrmin

rmax − rmin

)
− (34)

−Si
(

2πnrmin

rmax − rmin

)
cos
(

2πnrmin

rmax − rmin

)
+ Ci

(
2πnrmin

rmax − rmin

)
sin
(

2πnrmin

rmax − rmin

))
;

The calculations lead us to the expression:

δλ
(1)
n = D

√
2(τ(rmax)− τ(rmin))−

3
4

ξ(rmin, rmax) (35)

The results for the perturbations in the first approximation are presented in Table 4.

Table 4. Perturbations for the eldest eigenvalues in the first approximation for eigenvalue
problem (31).

rmin = 0.5
rmax = 1.5

rmin = 1
rmax = 2

δλ
(1)
1

1.2408 × D − 0.8349 0.4840 × D − 0.3487

δλ
(1)
2

1.4417 × D − 0.9414 0.5121 × D − 0.3673

δλ
(1)
3

1.5051 × D − 0.9710 0.5187 × D − 0.3714

To calculate the perturbations in the second approximation, we use Equation (19),
which in this case can be expressed as:

δλ
(2)
n = ∑

n ̸=m

(
rmax∫
rmin

√
2√

(rmax−rmin)
sin
(

πn(r−rmin)
rmax−rmin

)
sin
(

πm(r−rmin)
rmax−rmin

)(
− 3

4r2 +
Dr2

(r2
0−r2)

2

)
dr

)2

λ
(0)
n − λ

(0)
m

; (36)

The results including the second approximations for the perturbations of the eldest eigen-
values in the case of several pairs of rmin and rmax are presented in Table 5.
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Table 5. Perturbations for the eldest eigenvalues and approximate meanings for eigenvalue
problem (31).

rmin = 0.5
rmax = 1.5

rmin = 1
rmax = 2

δλ
(1)
1 (D = 100) 123.246 48.054

δλ
(2)
1 (D = 100) 98.150 5.225

λ1(D = 100) 211.526 43.410

Finally, to calculate the eigenvalues numerically, we use the same approach as in the
previous paragraph. Using the assumption (25), we come across the Cauchy problem:

∂2ϕ

∂r2 +

(
−3

4
· 1

r2 +
Dr2(

r2
0 − r2

)2

)
ϕ =

∂ϕ

∂t
; (37)

ϕ|r=rmin
= ϕ|r=rmax

= 0; (38)

ϕ|t=0 = 0. (39)

The eigenvalues obtained due to this approach are presented in Table 6 and the eldest
eigenfunctions corresponding to several values of the D coefficient are pictured in Figure 2.

Table 6. Analytical and numerical results comparison for eigenvalue problem (31).

D Numerical
Result for kz

Analytical
Result for kz

∆kz

600 20.145 21.691 0.546
400 15.863 16.367 0.504
200 10.379 10.375 0.004
100 6.595 6.589 0.006
50 3.895 3.907 0.012
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5. Conclusions

We studied the possibility of magnetic field generation in the outer parts of galaxies
due to magnetorotational instability. This process is associated with an eigenvalue problem
which can be solved using perturbation theory methods. We used the approaches that are
widely known in quantum mechanics. As for the linear term, the results can be obtained
purely analytically, while in the case of the quadratic one, it is necessary to calculate the
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integrals numerically. It would be interesting to also study further approximations, but the
comparison with numerical studies shows that they are not likely to make any significant
changes. After comparing the numerical results and the analytical approximations, we note
that the difference is more significant for large values of C. This may be due to the fact that
the approximation results are based on perturbation theory methods, which assume that
the perturbations proportional to C are relatively small. The larger C is, the less accurate
this approach is.

Two different models for the rotation law were used. It is necessary to emphasize
that the Brandt rotational curve is closer to real objects, but the calculations for it are more
complex. However, the results do not have substantial differences (see Figures 1 and 2,
Tables 3 and 6), so we can use the simpler model.

From a physical point of view, the parameter kz is of primary importance. It can be
shown that 1/kz is the vertical lengthscale for the generated magnetic field, which has the
same order as the thickness of the object (in dimensionless units). So, the possibility of such
magnetic fields generation seems to be quite real and its lengthscales are comparable with
the galaxy thickness. Nevertheless, we do not deny the possibility of other mechanisms
producing magnetic fields, such as dynamo [25] or battery mechanisms [41].

Author Contributions: Conceptualization, E.M.; methodology, E.M.; investigation, T.K.; numerical
results, T.K.; writing—original draft preparation, E.M. and T.K.; writing—review and editing, E.M.
and T.K. All authors have read and agreed to the published version of the manuscript.
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Foundation «BASIS», project number #22-2-2-55-1.
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