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Abstract: Self-supervised learning (SSL) is a potential deep learning (DL) technique that uses massive
volumes of unlabeled data to train neural networks. SSL techniques have evolved in response to
the poor classification performance of conventional and even modern machine learning (ML) and
DL models of enormous unlabeled data produced periodically in different disciplines. However,
the literature does not fully address SSL’s practicalities and workabilities necessary for industrial
engineering and medicine. Accordingly, this thorough review is administered to identify these
prominent possibilities for prediction, focusing on industrial and medical fields. This extensive
survey, with its pivotal outcomes, could support industrial engineers and medical personnel in effi-
ciently predicting machinery faults and patients’ ailments without referring to traditional numerical
models that require massive computational budgets, time, storage, and effort for data annotation.
Additionally, the review’s numerous addressed ideas could encourage industry and healthcare actors
to take SSL principles into an agile application to achieve precise maintenance prognostics and illness
diagnosis with remarkable levels of accuracy and feasibility, simulating functional human thinking
and cognition without compromising prediction efficacy.

Keywords: deep learning (DL); self-supervised learning (SSL); machine learning (ML); cognition;
classification; data annotation

MSC: 68T07; 68T05; 93E35

1. Introduction

Concepts of AI, convolutional neural networks (CNNs), DL, and ML considered in
the last few decades have contributed to multiple valuable impacts and core values to
different scientific disciplines and real-life areas because of their amended potency in
executing high-efficiency classification tasks of variant complex mathematical problems
and difficult-to-handle subjects. However, some of them are more rigorous than others.
More specifically, DL, CNN, and artificial neural networks (ANNs) have a more robust
capability than conventional ML and AI models in making visual, voice, or textual data
classifications [1].
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The crucial rationale for these feasible models includes their significant classification
potential in circumstances involving therapeutic diagnosis, maintenance, and production
line prognostics. As these two processes formulate a prominent activity in medicine and
engineering, the adoption of ML and DL models could contribute to numerous advantages
and productivity records [2–6].

Unfortunately, documented historical information may not provide relevant recog-
nition solutions for ML and DL, especially for new industry failure situations and recent
manufacturing and production fault conditions since the characteristics and patterns of
lately-reported problems do not approach past observed datasets. More classification
complexity, in this respect, would increase [7].

A second concern pertaining to the practical classification tasks of ML and DL is their
fundamental necessity for clear annotated data that can accelerate this procedure, offering
escalated accuracy and performance scales [8].

Thirdly, in most data annotation actions, the latter may contribute to huge retardation,
labor efforts, and expenses to be completely attained, particularly when real-life branches
of science handle big data [9].

Resultantly, a few significant classification indices and metrics may be affected, namely
accuracy, efficacy, feasibility, reliability, and robustness [10].

Relying on what had been explained, SSL was innovated with the help of extensive
research and development (R&D), aiming to overcome these three obstacles at once. Thanks
to researchers who addressed some beneficial principles in SSL to conduct flexible anal-
ysis of different data classification modes, such as categorizing nonlinear relationships,
unstructured and structured data, sequential data, and missing data.

Technically speaking, SSL is considered a practical tactic for learning deep repre-
sentations of features and crucial relationships from the existing data through efficient
augmentations. Without time-consuming annotations of previous data, SSL models can
generate a distinct training objective (considering pretext processes) that relies solely on
unannotated data. To boost performance in additional classification activities, the features
produced by SSL techniques should have a specific set of characteristics. The representa-
tions should be distinguished with respect to the downstream tasks while being sufficiently
generic to be utilized on untrained actions [11].

The emergence of the SSL concept has resulted in core practicalities and workable
profitabilities correlated with functional information prediction for diverse disciplines that
have no prior annotated documented databases, contributing to preferable outcomes in
favor of cost-effectiveness, time efficiency, computational effort flexibility, and satisfying
precision [12].

Taking into account the hourly, daily, and weekly creation of massive data in approxi-
mately each life and science domain, this aspect could pose variant arduous challenges in
carrying out proper identification of data, especially when more information is accumulated
after a long period of time [13].

Within this framework of background, the motivation for exploring essential SSL
practicalities arises from the increasing need to leverage vast amounts of unlabeled data
to improve classification performance. Accordingly, the major goal of this article is to
enable industrial engineering researchers and medical scientists to better understand
major SSL significances and realize comprehensively their pivotal workabilities to allow
active involvement of SSL in their work for conducting efficient predictions in diagnoses
and prognostics.

To provide more beneficial insights on SSL incorporation into industry and medicine,
a thorough review is carried out. It is hoped from this overview that its findings could
actually clarify some of SSL’s substantial rationale and innovatory influences to handle
appropriate maintenance checks and periodic machine prognostics to make sure production
progress and industrial processes are operating safely within accepted measures.

On the other hand, it is actually essential to emphasize the importance of this paper
in elucidating a collection of multiple practicalities of SSL to support doctors and clinical
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therapists in identifying the type of problem in visual data and, thus, following suitable
treatment. This clinical action can sometimes be challenging, even for professionals. As
a result, other approaches might be implemented, like costly consultations, which are
not feasible.

Correspondingly, the organization of this paper is arranged based on the following
sequence:

• Section 2 is prepared to outline the principal research method adopted to identify
the dominant advantages of SSL algorithms in accomplishing efficient classification
tasks without the identification of essential datasets crucial for training and testing
procedures to maximize the model’s classification effectiveness.

• Section 3 is structured to explain the extensive review’s prominent findings and influ-
ential characteristics that allow SSL paradigms to accomplish different classification
tasks, offering elevated scales of robustness and efficacy.

• Section 4 illustrates further breakthroughs and state of the art that have been lately
implemented through several research investigations and numerical simulations to
foster the SSL algorithms’ categorization productivity and feasibility.

• Section 5 provides noteworthy illustrations and discussion pertaining to the evaluation
of SSL serviceable applications and other crucial aspects for classifying and recognizing
unlabeled data.

• Section 6 expresses the main research conclusions.
• Section 7 points out the imperative areas of future work that can be considered by

other investigators to provide further modifications and enhancements to the current
SSL models.

• Section 8 expresses the critical research limitations encountered in the review imple-
mentation until it is completed.

Totally, the paper’s contribution is reflected in the following points:

1. Cutting much time, effort, and cost connected with essential data annotation for
conventional DL and ML models adopted to support medical therapists in diagnosing
the type of problem in visual databases,

2. Achieving the same relevance for industrial engineers, who wish to make machine
prognostics as necessary periodic maintenance actions robustly,

3. Performing precise predictions of different problems in medicine, industry, or other
important disciplines, where new behaviors of data do not follow previously noted
trends, helps predict new data patterns flexibly and reliably in real-life situations.

2. Materials and Methods
2.1. Data Collection Approach

This study considers specific research steps, shown in Figure 1, to accomplish the
primary research objective. The data collection process implemented in this article com-
prises secondary information collection, which relies on addressing beneficial ideas and
constructive findings from numerous peer-reviewed papers and recent academic publica-
tions, examining variant benefits and many relevances of SSL in recognizing unspecified
data, and bringing remarkable rates of workability, accuracy, reliability, and effectiveness.

2.2. The Database Selection Criteria

To upgrade the review outcomes’ robustness, this work establishes a research founda-
tion based on certain criteria, depicted in Figure 1, through which some aspects are taken
into consideration, including the following:

• The multiple research publications analyzed and surveyed are more modern than in
2016. Thus, the latest results and state-of-the-art advantages can be extracted.

• The core focus of the inspected articles in this thorough overview is linked to SSL’s sig-
nificance in industry and medicine when involved in periodic machinery prognostics
and clinical diagnosis, respectively.
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• After completing the analysis of SSL’s relevant merits from the available literature, critical
appraisal is applied, referring to some expert estimations and peer reviewer opinions to
validate and verify the reliability and robustness of the paper’s overall findings.
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3. Related Work

In this section, more explanation concerning the critical characteristics of SSL paradigms
and their corresponding benefits and applications is provided, referring to existing databases
from the global literature, which comprises recent academic publications and peer-
reviewed papers.

More illustration is offered on these aspects in the following sub-sections.

3.1. Major Characteristics and Essential Workabilities of SSL

As illustrated above, supervised learning (SL) needs annotated data to train numerical
ML models to enable an efficient classification process in various conventional ML models.
On the contrary, unsupervised learning (USL) classification procedures do not require
labeled data to accomplish a similar classification task. Rather, USL algorithms can rely
solely on identifying meaningful patterns in existing unlabeled data without necessary
training, testing, or preparation [14].

For the previously illustrated industrial and medical pragmatic practices, SSL can often
be referred to as predictive learning (or pretext learning) (PxL). Labels can be generated
automatically, transforming the unsupervised problem into a flexible, supervised one that
can be solved viably.

Another favorable solution of SSL algorithms is their efficient categorization of data
correlated with natural language processing (NLP). SSL can allow researchers to fill in
blanks in databases when they are not fully complete or have a high-quality definition.
As an illustration, with the application of ML and DL models, existing video data can
be utilized to reconstruct previous and future videos. However, without relying on the
annotation procedure, SSL takes advantage of patterns linked to the current video data
to efficiently complete the categorization procedure of a massive video database [15,16].
Correspondingly, the critical working principles of the SSL approach can be illustrated in
the workflow shown in Figure 2.
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Figure 2. The major workflow related to SSL [17].

From Figure 2, during the pre-training stage (pretext task solving), feature extraction
is carried out by pseudo-labels to enable an efficient prediction process. After that, transfer
learning is implemented to initiate the SSL phase, in which a small dataset is considered to
make data annotations (of ground truth labels). Then, fine-tuning is performed to achieve
the necessary prediction task.

3.2. Main SSL Categories

Because it can be laborious to compile an extensively annotated dataset for a given
prediction task, USL strategies have been proposed as a means of learning appropriate
image identification without human guidance [18,19]. Simultaneously, SSL is an efficient
approach through which a training objective can be produced from the data. Theoretically,
a deep neural network (DNN) is trained on pretext tasks, in which labels are automatically
produced without human annotation. The learned representations can be utilized to
complete the pretext tasks. Familiar SSL sorts involve: (A) generative, (B) predictive, (C)
contrastive, and (D) non-contrastive models. The multiple contrastive and noncontrastive
tactics illustrated in this paper can be recognized as joint-embedded strategies.

However, more types of SSL are considered in some contexts. For example, a graphical
illustration in [20] was created, explaining the performance rates that can be achieved when
SSL is applied, focusing mainly on further SSL categories, as shown in Figure 3.

It can be realized from the graphical data expressed in Figure 3a that the variation in
the performance between the self-prediction, combined, generative, innate, and contrastive
SSL types fluctuates mostly between 10% and 10%. In Figure 3b, it can be noticed that
end-to-end performance corresponding to contrastive, generative, and combined SSL
algorithms varies between nearly 0.7 and 1.0, relating to an extracted feature performance
that ranges approximately between 0.7 and 1.0.

In the following sections, more explanation is provided for some of these SSL categories.
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3.2.1. Generative SSL Models

Using an autoencoder to recreate an input image following compression is a common
pretext operation. Relying on the first component of the network, called an encoder, the
model should learn to compress all pertinent data from the image into a latent space with
reduced dimensions to minimize the reconstruction loss. The image is then reconstructed
by the latent space of a second network component called a decoder.

Researchers in [18,19,21–25] reported that denoising autoencoders could also provide
reliable and stable identifications of images by learning to filter out noise. The network
cannot learn the identity function owing to extra noise. By encoding the distribution
parameters of a latent space, variational autoencoders (VAE) can advance the autoencoder
model [26–29]. Both the reconstruction of error and extra factor, the Kull-Leibler divergence
between an established latent distribution (often a unit-centered Gaussian distribution),
and the encoder output are minimized during training. The samples from the resulting
distribution can be obtained through this regularization of the latent space. To rebuild
entire patches with only 25 percent of the visible patches, scholars in [30,31] have recently
adopted vision transformers to create large masked autoencoders that work at the patch
level rather than pixel-wise. Adding a class token to a sequence of patches or performing
global mean pooling on all the patch tokens, as in this reconstruction challenge, yields
reliable image representations.

A generative adversarial network (GAN) is another fundamental generative USL
paradigm that has been extensively studied [32–34]. This architecture and its variants aim
to mimic real data’s appearance and behavior by generating new data from random noise.
To train a GAN, two networks compete in an adversarial minimax game, with one learning

to turn the rate of random noise, ΨRN ≈ RN(0, 1) into synthetic data,
∼

SD, which attempts
to mimic the distribution of the original data. These aspects can be illustrated in Figure 4.
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In the adversarial method, a second network, which can be termed discriminator
D(.) was trained to distinguish between generated and authentic images from the original
dataset. When the discriminator is certain that the input image is from the true data
distribution, it reports a score of 1, whereas for the images produced by the generator, the
score is zero. One possible estimation of this adversarial objective function, FAO, can be
accomplished by the following mathematical formula:

FAO = min
G

max
D

1
N

N

∑
i=1

log
(
1 − D

(
G
(
ΨRNi

)))
+

1
M

M

∑
i=1

log(D(xi)), (1)

where:

ΨRN ≈ RN(0, 1)—A group of random noise vectors with an overall amount of N
SD ≈ QData—A dataset comprising a set of real images having a total number of M.

3.2.2. Predictive SSL Paradigms

Models trained to estimate the impact of artificial change on the input image express
the second type of SSL technique. This strategy is inspired by understanding the semantic
items and regions inside an image, which can be essential for accurately predicting the
transformation. Scholars in [36] conducted analytical research to improve the performance
of the model against random initialization and to approach the effectiveness obtained
from the initialization with ImageNet pre-trained weights in benchmark computer vision
datasets by pre-training a paradigm to predict the relative positions of two image patches.

Some researchers have confirmed the advantages of colored images [37]. In this
method, the input image is first changed to grayscale. Next, a trained autoencoder converts
the grayscale image back to its original color form by minimizing the average squared error
between the reconstructed and original images. The encoder feature representations are
considered in the subsequent downstream processes. The numerical RotNet approach [38]
is another well-known predictive SSL approach, which represents a practical training
process for mathematical schemes to help predict the rotation that is randomly implemented
in the input image, as shown in Figure 5.
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To improve the performance of the model in a dynamic rotation prediction task, the
relevant characteristics that classify the semantic content of the image should first be
extracted. Researchers in [39] considered a jigsaw puzzle to forecast the relative positions
of the picture partitions using the shuffled SSL model. The Exemplar CNN was also
addressed and trained in [40] to predict augmentations that can be applied to images by
considering a wide variety of augmentation types. Cropping, rotation, color jittering, and
contrast adjustment are examples linked to the enhancement classes gained by the Exemplar
CNN model.

An SSL model can learn rich representations of the visual content by completing one of
these tasks. However, the network may not be able to perform effectively on all subsequent
tasks contingent on the pretext task and dataset. Because the orientation of objects is not as
rigorously practical to handle in remote sensing datasets as in object-centric datasets, the
prediction of random rotations of an image would not perform particularly well on such
a dataset [41].

3.2.3. Contrastive SSL Paradigms

Forcing the features of various perspectives in a picture to be comparable is another
strategy that can result in accurate representations. The resulting representations are
independent of the particular enhancements needed to generate various image perspectives.
However, the network can be converged to a stable representation that meets the invariance
condition but is unrelated to the input image.

One typical approach to achieving this goal via the acquisition of various representa-
tions while avoiding the collapse problem is the contrastive loss. This type of loss function
can be utilized to train the model to distinguish between views of the same image (positive)
and views of distinct images (negative). Correspondingly, it seeks to obtain homogeneous
feature representations for pairs with positive values while isolating features for negative
pairs. The triplet loss investigated by researchers in [42] is the simplest form of this family.
It requires a model to be trained such that the distance between the representations of a
given anchor and its positive rates is smaller than the distance between the representations
of the anchor and the random negative, as illustrated in Figure 6.
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In Figure 6, the triplet loss function is considered helpful in learning discriminative
representations by learning an encoder that is able to detect the difference between negative
and positive samples. Under this setting, the triplet Loss Function, FLossTriplet, can be
estimated using the following relationship:

FLossTriplet = max
(∥∥ f (x)− f

(
x+
)∥∥− ∥∥ f (x)− f

(
x−
)∥∥+ m, 0

)
, (2)

where:

x+—The positive vector value of the anchor x
x−—The negative vector value of the anchor x
f (.)—The embedding function
m —The value of the margin parameter.

In [43], the researchers examined the SimCLR method, which is one of the most
well-known SSL strategies. It formulates a type of contrastive representational learning.
Two versions of each training batch image can be generated using random-sampling
augmentation. After these modified images are fed into the representational method,
a prediction network can be utilized to map the representation onto a hypersphere of
dimension, D.

The overall mathematical algorithm is trained to elevate the cosine similarity across
the representation parameter, z, and its corresponding positive counterpart, z+ (belonging
to the same original visual data) and to minimize the similarity between z and all other
representations in the batch z−, contributing to the following expression:

LF
(
z, z+, z−

)
= − log

 exp(⟨z, z+⟩/τ)

∑z′∈z−∪{z+} exp
(
⟨z,z′⟩

τ

)′
, (3)

where:

⟨z, z+⟩—the dot product between z and z+.
τ—the temperature variable to scale the levels of similarity, distribution, and sharpness.
f (.)— the embedding function.

At the same time, the algebraic correlation connected with the evaluation process
of the complete loss function that assesses the cross-entropy of temperature, which can
be dominated as normalized temperature cross-entropy, which is denoted by NΘ-XS, is
depicted in the following relation:

L(NΘ −XS) =
1

2N ∑
z,z+,z−

LF
(
z, z+, z−

)
, (4)
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where N indicates the number of items in the dataset, such as images and textual characters.
Figure 7 shows that the NT-Xent loss [44] acts solely on the direction of the features

confined to the D-dimensional hypersphere because the representations are normalized
before calculating the function loss value.
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By maximizing the mutual data between the two perspectives, this loss ensures that
the resulting representations are both style-neutral and content-specific.

In addition to SimCLR, they suggested the momentum contrast (MoCo) technique,
which uses a reduced number of batches to calculate the contrastive loss while maintaining
the same functional number of negative samples [45]. It employs an exponentially moving
average (EMA)-updated momentum encoder whose values are updated by the main
encoder’s weights and a sample queue to increase the number of negative samples in each
batch, as shown in Figure 8. To account for the newest positives, the oldest negatives from
the previous batch were excluded. Other techniques, such as swapping assignments across
views (SwAVs), correlate views to consistent clusters between positive pairs by clustering
representations into a shared set of prototypes [44,46–48]. The entropy-regularized optimal
transport strategy is also used in the same context to move representations between clusters
in a manner that prevents them from collapsing into one another [46,49–53]. Finally, the
cross-entropy between the optimal tasks in one branch and the anticipated distribution
in the other is minimized by the loss. To feed sufficient negative samples to the loss
function and avoid representations from collapsing, contrastive approaches often need large
batch sizes.

As shown in Figure 8, at each step of the numerical analysis, only the major encoder
amounts are updated based on the backpropagation process. The similarity aspects between
the queue and encoded batch samples were then employed for contrastive loss.

Compared with traditional prediction methods, joint-embedding approaches tend to
generate broader representations. Nonetheless, their effectiveness in downstream activities
may vary depending on the augmentation utilized. If a model consistently returns the
same representations for differently cropped versions of the same image, it can effectively
remove any spatial information about the image and will likely perform poorly in tasks
such as semantic segmentation and object detection, which rely on this spatial information.
Dense contrastive learning (DCL) has been proposed and considered by various researchers
to address this issue [54–57]. Rather than utilizing contrastive loss on the entire image,
it was applied to individual patches. This permitted the contrastive model to acquire
representations that are less prone to spatial shifts.
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3.2.4. Non-Contrastive SSL Models

To train self-supervised models, alternative methods within joint-embedded learn-
ing frameworks can prevent the loss of contrastive elements. They classified these as
approaches that do not rely on contrast. Bootstrap Your Own Latent (BYOL) is a system
based on mentor-apprentice pairing [58–60]. The student network in a teacher-student
setup is taught to mimic the teacher network’s output (or characteristics). This method
is frequently utilized in knowledge distillation when the instructor and student models
possess distinct architectures (e.g., when the student model is substantially smaller than the
teacher model) [61]. The weights of the instructor network in BYOL are defined as the EMA
of the student network weights. Two projector networks, gA and gB, are utilized after the
encoders, f A and f B, to calculate the training loss. Subsequently, to extract representations
at the image level, they retrain only the student encoder f A. Additional asymmetry is
introduced between the two branches by a predictor network superimposed on the student
projector, as shown in Figure 9.
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In Figure 9, the teacher’s values are modified and updated by the EMA technique
applied to the student amounts. The online branch is also supported by an additional
network, pA, which is known as the predictor [60].

SimSiam employs a pair of mirror-image networks and a predictor network at the
end of a node [62–64]. The loss function employs an asymmetric stop gradient to optimize
the pairwise alignments between positive pairs because the two branches have identical
weights. Relying on a student-teacher transformer design known as self-distillation, DINO
(self-distillation with no labels) defines the instructor as an EMA of the weights in the
student network [65]. Next, the teacher network’s centered and sharpened outputs are
utilized to train the student network to make exact predictions for a given positive pair.

Another non-contrastive learning model, known as the Barlow Twins, can be of-
fered according to the information bottleneck theory, which eliminates the need for indi-
vidual amounts for each branch of the teacher-student model considered in BYOL and



Mathematics 2024, 12, 758 12 of 42

SimSiam [66,67]. This technique enhances the mutual information between two perspec-
tives by boosting the cross-correlation of the matching characteristics provided by two
identical networks and eliminating superfluous information in these representations. The
Barlow twin loss function was evaluated by the following equation:

LBarlow.Twins =

N

∑
i=1

(
1 − C2

ii

)
+ λ

N

∑
i=1

∑
j ̸=i

C2
ij, (5)

where C is the cross-correlation matrix calculated by the following formula:

Cij =
∑b zA

biz
B
bj√

∑b

(
zA

bj

)2
√

∑b

(
zB

bj

)2
, (6)

where zA and zA express the corresponding outcomes related to the two identical networks
provided by the two views of a particular photograph.

Variance, invariance, and covariance regularization (VICReg) approaches have been
recently proposed to enhance this framework [68–71]. In addition to invariance, which
implicitly maximizes alignments between positive pairs, the loss terms are independent
for every branch, unlike in low twins. Using distinct regularization for each pathway, this
method allows for noncontrastive multimodal pre-training between text and photo pairs.

Most of these techniques train a linear classifier on the priority of representations
as the primary performance metric. Researchers in [70] analyzed the beneficial impacts
of ImageNet, whereas scholars in [69,72] examined CIFAR’s advantages, which help ac-
complish an active analysis of object-centric visual datasets commonly addressed for the
pre-training and linear probing phases of DL. Therefore, these techniques may not apply to
image classification.

Scholars are invited to examine devoted review articles for further contributory infor-
mation and essential fundamentals pertaining to SSL types [68,73].

3.3. Practical Applications of SSL Models

Before introducing the common applications and vital utilizations of SSL models to
handle efficacious data classification and identification processes, their critical benefits
should be identified as a whole. The commonly-addressed benefits and vital advantages of
SSL techniques can be expressed as follows [74,75]:

I. Minimizing the massive cost connected with data labeling phases is essential to
facilitating a high-quality classification/prediction process.

II. Alleviating the corresponding time needed to classify/recognize vital information
in a dataset,

III. Optimizing the data preparation lifecycle is typically a lengthy procedure in various
ML models. It relies on filtering, cleaning, reviewing, annotating, and reconstruct-
ing processes through training phases.

IV. Enhancing the effectiveness of AI models. SSL paradigms can be recognized as
functional tools that allow flexible involvement in innovative human thinking and
machine cognition.

According to these practical benefits, further workable possibilities and effective
prediction and recognition impacts can be explained in the following paragraphs, which
focus mainly on medical and engineering contexts.

3.3.1. SSL Models for Medical Predictions

Krishnan et al. (2022) [76] analyzed SSL models’ application in medical data classifica-
tion, highlighting the critical challenges of manual annotation of vast medical databases.
They addressed SSL’s potential for enhancing disease diagnosis, particularly in EHR and
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some other visual clinical datasets. Huang et al. (2023) [20] conducted a systematic review
affirming SSL’s benefits in supporting medical professionals with precise classification and
therapy identification from visual data, reducing the need for extensive manual labeling.

Figure 10 shows the number of DL, ML, and SSL research articles published between
2016 and 2021.
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It can be concluded from the statistical data explained in Figure 10 that the number
of research publications addressing ML and DL models’ importance and relevance in the
medical classification has been increasing per year. Similarly, the increasing trend was for
the overall number of academic articles investigating the SSL, ML, and DL algorithms in
conducting high-performance identification of problems in images of patients.

Besides these numeric figures, an explanation of the pre-training process of SSL and
fine-tuning can be expressed in Figure 11.

It can be inferred from the data explained in Figure 11 that the pre-training SSL
process takes into account four critical types to be accomplished, including (Figure 11a)
innate relationship, (Figure 11b) generative, (Figure 11c) contrastive, and (Figure 11d)
self-prediction. At the same time, there are two categories included in the fine-tuning
process, which comprise end-to-end and feature extraction procedures.

Before the classification process is done, SSL models are first trained. This step is
followed by the encoding of image features. It follows the adoption of the classifier, which
is important to enable precise prediction of the medical problem in the image.

In their overview [20], the scholars identified a collection of some medical disciplines
in which SSL models can be advantageous in conducting the classification process flexibly,
which can be illustrated in Figure 12.

From the data expressed in Figure 12, it can be inferred that the possible medical
classification types and dataset categories are numerous in SSL models that can be applied
reliably for efficient classification. As a result, this aspect makes SSL models more practical
and feasible for carrying out robust predictions of problems in clinical datasets.
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Various studies have explored the application of SSL models in medical data classifica-
tion, showcasing their efficacy in improving diagnostic accuracy and efficiency. Azizi et al.
(2021) [77] demonstrated the effectiveness of SSL algorithms in classifying medical disor-
ders within visual datasets, particularly highlighting advancements in dermatological and
chest X-ray recognition. Zhang et al. (2022) [78] utilized numerical simulations to classify
patient illnesses on X-rays, emphasizing the importance of understanding medical images
for clinical knowledge. Bozorgtabar et al. (2020) [79] addressed the challenges of data
annotation in medical databases by employing SSL methods for anomaly classification in
X-ray images. Tian et al. (2021) [80] identified clinical anomalies in fundus and colonoscopy
datasets using SSL models, emphasizing the benefits of unsupervised anomaly detection in
large-scale health screening programs. Ouyang et al. (2021) [81] introduced longitudinal
neighborhood embedding SSL models for classifying Alzheimer’s disease-related neuro-
logical problems, enhancing the understanding of brain disorders. Liu et al. (2021) [82]
proposed an SSMT-SiSL hybrid model for chest X-ray data classification, highlighting the



Mathematics 2024, 12, 758 15 of 42

potential of SSL techniques to expedite data annotation and improve model performance.
Li et al. (2021) [83] addressed data imbalances in medical datasets with an SSL approach,
enhancing lung cancer and brain tumor detection. Manna et al. (2021) [84] demonstrated
the practicality of SSL pre-training in improving downstream operations in medical data
classification. Zhao and Yang (2021) [85] utilized radiomics-based SSL approaches for
precise cancer diagnosis, showcasing SSL’s vital role in medical classification tasks.

3.3.2. SSL Models for Engineering Contexts

In the field of engineering, SSL models may provide contributory practicalities, es-
pecially when prediction tasks in mechanical, industrial, electrical, or other engineering
domains are necessary without the need for massive data annotations to train and test
conventional models to accomplish this task accurately and flexibly.

In this context, Esrafilian and Haghighat (2022) [86] explored the critical workabilities
of SSL models in providing sufficient control systems and intelligent monitoring frame-
works for heating, ventilation, and air-conditioning (HVAC) systems. Typically, ML and
DL models may not contribute to noteworthy advantages since complicated relationships,
patterns, and energy consumption behaviors are not directly and clearly provided. The con-
troller was created by employing a model-free reinforcement learning technique recognized
with a double-deep Q-network (DDQN). Long et al. (2023) [87] proposed an SSL-based
defect prognostics-trained DL model, SSDL, addressing the challenges of costly data anno-
tation in industrial health prognostics. SSDL dynamically updates a sparse auto-encoder
classifier with reliable pseudo-labels from unlabeled data, enhancing prediction accuracy
compared with static SSL frameworks. Yang et al. (2023) [88] developed an SSL-based
fault identification model for machine health prognostics, leveraging vibrational signals
and one-class classifiers. Their SSL model, utilizing contrastive learning for intrinsic repre-
sentation derivation, outperformed novel numerical models in fault prediction accuracy
during simulations. Wei et al. (2021) [89] utilized SSL models for rotary machine failure
diagnosis, employing 1-D SimCLR to efficiently encode patterns with a few unlabeled
samples. Their DTC-SimCLR model combined data transformation combinations with a
fixed feature encoder, demonstrating effectiveness in diagnosing cutting tooth and bearing
faults with minimal labeled data. Overall, DTC-SimCLR had improved diagnosis accuracy
and fewer samples. Figure 13 depicts a low-sample machine failure diagnosis approach.
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Simultaneously, Table 1 indicates the critical variables correlated with the 1D SimCLR.

Table 1. The major variables linked to the 1D SimCLR [89].

No. Variable Category Magnitude

1 Input Data A Length of 1024 Data Points
2 Temperature 10
3 Feature Encoder Sixteen Convolutional Layers
4 Output Size 128
5 Training Epoch 200

Above these examples, Lei et al. (2022) [90] addressed SSL models in predicting the
temperature of aluminum correlated with industrial engineering applications. Through
their numerical analysis, they examined how changing the temperature of the pot or
electrolyte could affect the overall yield of aluminum during the reduction process through
their proposed deep long short-term memory (D-LSTM).

On the other side, Xu et al. (2022) [91] identified the contributory rationale of functional
SSL models to offer alternative solutions to conventional human defect detection methods
that became insufficient. Bharti et al. (2023) [92] remarked that deep SSL (DSSL) contributed
to significant relevance in the industry owing to its potency in reducing the time and
effort required by humans for data annotation by manipulating operational procedures
carried out by robotic systems, taking into account the CIFAR-10 dataset. Hannan et al.
(2021) [93] implemented SSL prediction to estimate the state of charge (SOC) correlated with
lithium-ion (Li-ion) batteries precisely in electric vehicles (EVs) to ensure their maximum
cell lifespan.

3.3.3. Patch Localization

Regarding the critical advantages and positive gains of SSL models in conducting
active processes of patch localization, several authors confirmed the significant effectiveness
and valuable merits of innovative SSL schemes in accomplishing optimum activities of
recognition and detection related to a defined dataset of patches. For instance, Li et al.
(2021) [94] estimated the substantial contributions of SSL in identifying visual defects or
irregularities in an image without relying on abnormal training data. The patch localization
of visual defects involves grid classes, wood, screws, metal nuts, hazelnuts, and bottles.

Although SSL has made great strides in the field of image classification, there is mod-
erate effectiveness in making precise object recognition. Through their analysis, Yang et al.
(2021) [95] aimed to improve self-supervised, pre-trained models for object detection. They
proposed a novel self-supervised pretext algorithm called instance localization, proposing
an augmentation strategy for the image-bounding boxes. Their results confirmed that their
pre-trained algorithm for object detection was improved, but it became less effective in
ImageNet semantic classification and more so in image patch localization. Object detection
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considering the PASCAL VOC and MSCOCO datasets revealed that their method achieved
state-of-the-art transfer learning outcomes.

The red box in their result, expressed in Figure 15, indicates the base truth bounding
box linked to the foreground image. However, the right-hand photo shows a group of
anchor boxes positioned in the central area related to a singular spatial location. By
improving the multiple anchors using variant scales, positions, and aspect ratios, the base
truth pertaining to the blue boxes can be augmented, offering an intersection over union
(IoU) level greater than 0.5.
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To train an end-to-end model for anomaly identification and localization using only
normal training data, Schlüter et al. (2022) [96] created a flexible self-supervision patch cat-
egorization model called natural synthetic anomalies (NSA). Their NSA harnessed Poisson
photo manipulation to combine scaled patches of varying sizes from multiple photographs
into a single coherent entity. Compared with other data augmentation methods for unsu-
pervised anomaly identification, this aspect helped generate a wider variety of synthetic
anomalies that were more akin to natural sub-image inconsistencies. Natural and medical
images were employed to test their proposed technique, including the MVTec AD dataset,
indicating the efficient capability of identifying various unknown manufacturing defects in
real-world scenarios.

3.3.4. Context-Aware Pixel Prediction

Learning visual representations from unlabeled photographs has recently witnessed a
rapid evolution owing to self-supervised instance discrimination techniques. Nevertheless,
the success of instance-based objectives in medical imaging is unknown because of the large
variations in new patients’ cases compared with previous medical data. Context-aware
pixel prediction focuses on understanding the most discriminative global elements in an
image (such as the wheels of a bicycle). According to the research investigation conducted
by Taher et al. (2022) [97], instance discrimination algorithms have poor effectiveness
in downstream medical applications because the global anatomical similarity of medical
images is excessively high, resulting in complicated identification tasks. To address this
shortcoming, scholars have innovated context-aware instance discrimination (CAiD), a
lightweight but powerful self-supervised system, considering: (a) generalizability and
transferability; (b) separability in embedding space; and (c) reusability and systematic
reusability. The authors addressed the dice similarity coefficient (DSC) as a measure related
to the similarity between two datasets that are often indicated as binary arrays. Similarly,
authors in [98] proposed a teacher-student strategy for representation learning, wherein a
perturbed version of an image serves as an input for training a neural net to reconstruct a
bag-of-visual-words (BoW) representation referring to the original image. The BoW targets
are generated by the teacher network, and the student network learns representations while
simultaneously receiving online training and an updated visual word vocabulary.

Liu et al. (2018) [57] distinguished some beneficial yields of SSL models in identi-
fying information from defined datasets of context-aware pixel databases. To train the
CNN models necessary for depth evaluation from monocular endoscopic data without a
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priori modeling of the anatomy or coloring, the authors implemented the SSL technique,
considering a multiview stereo reconstruction technique.

3.3.5. Natural Language Processing

Fang et al. (2020) [15] considered SSL to classify essential information in certain
defined datasets related to natural language processing. Scholars explained that pre-
trained linguistic models, such as bidirectional encoder representations from transformers
(BERTs) and generative pre-trained transformers (GPTs), have proved their considerable
effectiveness in executing active linguistic classification tasks. Existing pretraining tech-
niques rely on auxiliary prediction tasks based on tokens, which may not be effective
for capturing sentence-level semantics. Thus, they proposed a new approach that rec-
ognizes contrastive self-supervised encoder representations using transformers (CERTs).
Baevski et al. (2023) [99] highlighted critical SSL models’ relevance to high-performance
data identification correlated with NLP. They explained that currently available techniques
of unsupervised learning tend to rely on resource-intensive and modal-specific aspects.
They added that the Data2vec model expresses a practical learning paradigm that can be
generalized and broadened across several modalities. Their study aimed to improve the
training efficiency of this model to help handle the precise classification of NLP problems.
Park and Ahn (2019) [100] inspected the vital gains of SSL to lead to efficient detection of
NLP. Researchers proposed a new approach dedicated to data augmentation that considers
the intended context of the data. They suggested a label-asked language model (LMLM),
which can effectively employ the masked language model (MLM) in data with label in-
formation by including label data for the mask tokens adopted in the MLM. Several text
classification benchmark datasets were examined in their work, including the Stanford
sentiment treebank-2 (SST2), multi-perspective question answering (MPQA), text retrieval
conference (TREC), Stanford sentiment treebank-5 (SST5), subjectivity (Subj), and movie
reviews (MRs).

3.3.6. Auto-Regressive Language Modeling

Elnaggar et al. (2022) [101] published a paper shedding light on valuable SSL roles in
handling the active classification of datasets connected to the modeling of auto-regressive
language. The scholars trained six models, four auto-encoders (BERT, Albert, Electra, and
T5), and two auto-regressive prototypes (Transformer-XL and XLNet) on up to 393 billion
amino acids from UniRef and BFD. The Summit supercomputer was utilized to train the
protein LMs (pLMs), which required 5616 GPUs and a TPU Pod with up to 1024 cores.
Lin et al. (2021) [102] performed numerical simulations, exploring the added value of
three SSL models, notably (I) autoregressive predictive coding (APC), (II) contrastive
predictive coding (CPC), and (III) wav2vec 2.0, in performing flexible classification and
reliable recognition of datasets engaged in auto-regressive language modeling. Several
any-to-any voice conversion (VC) methods have been proposed, like AUTOVC, AdaINVC,
and FragmentVC. To separate the feature material from the speaker information, AUTOVC
and AdaINVC utilize source and target encoders. They proposed a new model, known as
S2VC, which harnesses SSL by considering multiple features of the source and target linked
to the VC model. Chung et al. (2019) [103] proposed an unsupervised auto-regressive
neural model to help students learn generalized representations of speech. Their speech
representation learning approach was developed to maintain information for various
downstream applications to remove noise or speaker variability.

3.4. Commonly-Utilized Feature Indicators of SSL Models’ Performance

Specific formulas in [104,105] were investigated to examine different SSL paradigms
in carrying out their classification task, particularly the prediction and identification of
faults and errors in machines, which can support maintenance specialists in selecting the
most appropriate repair approach. These formulas formulate practical feature indicators to
monitor signals that can be prevalently utilized by maintenance engineers to identify the
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health state of machines. Twenty-four typical feature indicators were addressed, referring
to Zhang et al. (2022) [106]. These indices can enable maintenance practitioners to locate
optimum maintenance strategies to apply to industrial machinery, helping to handle current
failure issues flexibly. Those twenty-four feature indicators are shown in Table 2.

Table 2. Prevalent signal feature indicators utilized to examine and diagnose machine and industrial
equipment health.

Feature
Indicator Type Major Formula Eq#

Mean Value MV = 1
N

N

∑
n=1

x(n) (7)

Standard Deviation
SD =

√√√√√( 1
N−1

) N

∑
n=i

[
x(n)− 1

N

N

∑
n=1

x(n)

]2
 (8)

Square Root Amplitude
SRA =

(
1
N

N

∑
n=1

√
|x(n)|2

)2
(9)

Absolute Mean Value AMV = 1
N

N

∑
n=1

|x(n)| (10)

Skewness S = 1
N

N

∑
n=1

(x(n))3 (11)

Kurtosis K = 1
N

N

∑
n=1

(x(n))4 (12)

Variance V = 1
N

N
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n=1

(x(n))2 (13)

Kurtosis Index
KI = 1

N

N
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(x(n))4
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N

N
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Peak Index
PI = max|x(n)|
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Table 2. Cont.

Feature
Indicator Type Major Formula Eq#
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Those twenty-four indices can serve as prior feature group, FG, which can be illustrated
by the following:

FG =
{

pi
1, pi

2, pi
3, . . . , pi

24

}N

i=1
(31)

The twenty-four feature indicators can be utilized relying on the data standardization
process, which can be achieved by the following mathematical expression:

pi =
pi − mean

(
pi)

STD
(

pi
) (32)

4. Statistical Figures on Critical SSL Rationale

To provide elaborating statistical facts pertaining to SSL importance in handling robust
data detection and efficient data classification crucial for industrial disciplines, two compar-
ative analyses were implemented; the first one is correlated with fault diagnostics in actual
industrial applications. In the meantime, the second comparative study is concentrated on
the essential prediction of health issues in the real medical context.

Table 3 summarizes the major findings and major limitations of SSL models involved
in real industrial scenarios.

From Table 3, the material significance of SSL models can be noticed from their
considerable practicalities in carrying out precise machine failure prediction, supporting
the maintenance team in executing the necessary repair procedures without encountering
the common problems of massive data annotation and time-consuming identification of
wide failure mode databases, which are essential for DL and ML models.

Besides these noteworthy findings, it is crucial to point out that in spite of the con-
structive prediction success of those SSL paradigms, there are a couple of issues that could
restrict their broad prediction potential, including instability, imbalance, noise, and random
variations in the data, which may cause uncertainties and a reduction in their overall
prediction performance. Correspondingly, it is hoped that these barriers can be handled
efficiently in future work.

On the other hand, Table 3 provides some concluding remarks pertaining to the imperative
outcomes and prevalent challenges of SSL paradigms utilized in real medical health diagnosis.

It is inferred from the outcomes explained in Table 4 that SSL also offered a collection
of noteworthy implications in favor of better medical treatment that can support health-
care providers in classifying swiftly and durably the sort of clinical problem in patients.
Therefore, the most appropriate therapeutic process can be successfully prescribed. Similar
to what was discussed previously pertaining to the industrial domain, performing the
prognosis of rotational machinery is not an easy task since failure modes and machinery
faults are diversified and they are not necessarily identical to past failure situations. In
the medical context, diagnosis may sometimes be complicated as different patients have
various illness conditions and disorder features that do not necessarily simulate historical
patient databases.
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Table 3. Summary of the core findings and critical limitations respecting SSL engagement in different real industrial scenarios for machine health prognostics and
fault prediction.

# Author(s)
(Year)

Industrial SSL
Application Sort Dataset Category Encountered Research Limitations Critical Contributions and Positive SSL Impacts

1 Yuan and Lin
(2020) [107]

Generative SSL
Recognition SITS-BERT Not available (N/A)

The classification accuracy of a transformer, 1D CNN, and
bidirectional long short-term memory (LSTM) network is

significantly improved by the proposed pre-training approach in
experimental data.

2 Zhao et al.
(2020) [108] Scene SSL Classification NWPU, AID, UC Merced,

and WHU-RS19

The loss function forced the primary
classifier to be invariant with respect to the
transformations. Therefore, the utilization of

additional labeling in the SSL did not
guarantee performance improvement in

fully supervised classification conditions.

Their results related to the NWPU, AID, UC Merced, and
WHU-RS19 dataset classifications revealed state-of-the-art

average accuracy levels, recording 94.21%, 96.89%, 99.11%, and
98.98%, respectively.

Their suggested strategy enhanced the accuracy of remote
sensing scene categorization, as evidenced by experimental
findings and visual representations, by learning additional

discriminative features while simultaneously encoding
orientation information.

3 Tao et al.
(2023) [109]

Remote Sensing Image
Understanding DLRSD and AID N/A

Based on their numerical simulations, it was found that utilizing
their TOV model to help facilitate the classification process of

information related to RSIU using SSL principles contributed to
enhanced levels of classification accuracy.

4
Stojnic and
Risojevic

(2018) [110]

SSL Classification of
Visual Dataset

Considering LAB and
RGB Color Spaces

AID N/A

Their simulation outcomes confirmed that near-state-of-the-art
performance was attained, registering a classification accuracy of

89.27% on the AID dataset, needing a minimal amount of
unlabeled training images.

5 Jung and Jeon
(2021) [111]

SSL Classification of
Visual Database

National Agriculture
Imagery Program (NAIP)

and CDL

The original Tile2Vec classification model
faced a degradation issue when the epoch
reached the maximum number of epochs,

which was 50. On the other hand, the
Tile2Vec classification model, which had one

randomized layer, contributed to a slight
degradation in the classification process.

The scholars found that obtaining more robust representations
was facilitated by not updating the completely connected layers.

Their proposed Tile2Vec algorithm provided more significant
performance in terms of classification accuracy compared with

random forest (RF), logistic regression (LR), and multi-layer
classifiers (MLC).
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Table 3. Cont.

# Author(s)
(Year)

Industrial SSL
Application Sort Dataset Category Encountered Research Limitations Critical Contributions and Positive SSL Impacts

6
Hahn and
Mechefske
(2021) [9]

SSL Forecasting in the
Context of Machinery

Health Monitoring
Milling and CNC Dataset

Vibrations from the table and spindle would
cause sources of error in carrying out the

necessary detection process, influencing the
final outcomes of the anomaly model. Also,
the trained models, which correlated with

the CNC data, did not generalize well across
all the unique parts in the dataset.

Furthermore, the investigated models did
not generalize well across multiple

metal-cutting variables.

The approach got the best PR-AUC score of 0.80 for
shallow-depth cuts and a score of 0.45 for all cutting parameters
on a milling dataset. The best PR-AUC score of this SSL method
attained an ultimate PR-AUC score of roughly 0.41 based on a

real-world industrial CNC dataset.

7 Jiang et al.
(2017) [112]

SSL Process Monitoring
of Chemical Processes

Finite Discrete Dataset
consisting of 100 Samples

When more variations of faults occur, RSS
models may not perform robust

identification of segments free from noise.
Comparatively, conventional models reduce
reconstruction errors, contributing to lower

sensitivity to fault variations. When
Gaussian noise is considered, the sensitivity

correlated with the RSS model could be
increased in processing drifts.

Their theoretical analysis revealed that their SSL models offered
more sensitive aspects of fault occurrence in the analytical

process.
The efficiencies of both robust autoencoders and robust principal

component analysis (PCA) monitoring provided enhanced
performance and optimum and active monitoring levels of

chemical processes.

8 Yu et al. (2023)
[113]

SSL Estimation of the
RUL C-MAPSS

The complicated operating conditions and
variant fault behaviors in industrial
environments may result in multiple
difficulties and further challenges to

achieving maximum accuracy in fault
diagnosis and identification.

Their approach could successfully enhance the model’s feature
extraction capacity. Hidden characteristics were preferable to

raw data when the clustering process was applied.
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Table 3. Cont.

# Author(s)
(Year)

Industrial SSL
Application Sort Dataset Category Encountered Research Limitations Critical Contributions and Positive SSL Impacts

9 Hu et al. (2023)
[114]

SSL Fault Diagnosis and
Defect Prediction

Open-Source and
Self-Designed Datasets

The single-task dominance problem did
exist in the multitask algorithm that

conducted necessary fault diagnosis and
failure identification in the industrial

context. (To solve this issue, an
uncertainty-correlated dynamic weighting

tactic was utilized to automatically
distribute weight for every task referring to
its uncertainty level, helping ensure better

stability in multi-task optimization.)

Their proposed SSL model provided more superiority in
performing crucial machine fault prognostics, which could help
handle efficient fault maintenance more flexibly with upgraded

levels of accuracy and performance compared with other
semi-supervised and supervised models.

10 Huang et al.
(2022) [115]

SSL Distilling Process
for Recommender

Systems from
Ubiquitous, Sparse,

And Noisy Data

N/A N/A

SSL models in recommender systems could support engineers in
minimizing the rates of noisy data and ineffective information

that lower the performance and reliability of
recommender systems.

11 Wang et al.
(2020) [116]

SSL Fault Detection in
Prognostics and Health

Management (PHM)

The LAM 9600 Metal
Etcher

Their suggested method, which formulated
an SS algorithm and relied on the Kernel
PCA (KPCA), was only trained utilizing
normal samples. At the same time, fault
detection was merely accomplished by

KPCA rather than a combination of various
ML models.

SSL offered relevant fault detection findings, outperforming
existing fault detection methods with enhanced efficacy.

12 Nair et al.
(2017) [117]

SSL Manipulation of
Deformable Objects

(Self-Collected Datasetby
Robotic System) Raw

Images of a Rope

When the changes in rope orientation are
not very sharp, the robot might perform

better. Furthermore, because the researchers
did not have a comparable number of

additional randomly collected databases,
they were not capable of identifying the

levels of improvement. This issue is
correlated with the higher quality and

quantity of the collected databases.

Robots could successfully manipulate a rope into a broad range
of goal shapes with only a sequence of photographs offered by a

person by merging the high- and low-level plans.
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13 Ren et al.
(2022) [118]

SSL Monitoring and
Prediction of

Production Status

Real-World Froth
Flotation Dataset

Due to their recursive nature or deep
network structure, SSFAN and LSTM have
relatively higher computational costs. In
addition, since GSTAE adopts ‘tanh’ and

‘sigmoid’ activation functions to control the
information flow, it has the most
considerable computational cost.

Considering the real-world mining dataset, their proposed
LSTM-DeepFM technique achieved state-of-the-art performance
contributions compared with other stacked autoencoder-based

models, semisupervised parallel DeepFM, and variational
autoencoder-based models.

14
Senanayaka
et al. (2020)

[119]

SSL Defect
Categorization and

Fault Diagnosis

Balanced and
Training Dataset

Statistical tests have not been adopted for
the comparison since there is no established

guideline to select a proper test in this
powertrain application. Further,

constructing a proper statistical test requires
a performance analysis on multiple datasets.
Also, the effect of unbalanced datasets is out

of scope in their study.

Their SSL principles, applied to the proposed CNN algorithm,
allowed an improved online diagnosis scheme to learn features
according to the latest data. The effectiveness of their paradigm

was validated via comparative analysis, explaining the
significant practicality of the trained CNN model

in detecting defects.

15 Berscheid et al.
(2020) [120]

Better Decision-Making
Process for Robots
Regarding Flexible

Pick-and-Place

Self-Defined Visual
Dataset: (A)

RGBD-Images Handling
Screws on Around 3500
Pick-and-Place Actions)
and (B) Depth-Images of

25,000 Pick-and-Place
Actions.

Due to reliability problems with the
RealSense camera, their model utilized only
depth images from the Ensenso N-10. It was
trained on wooden primitive shapes having

side lengths of 4 cm. Additionally, the
prediction process for the displacement of

the cross shape during clamping was
difficult to accomplish.

Based on the SSL enhancements on the CNN model, it was
determined that their robot could infer several pick-and-place

operations from a single objective state, learn to select the correct
thing when presented with multiple object kinds, accurately

insert objects within a peg game, and pick screws
out of dense clutter.

16 Akrim et al.
(2023) [6]

SSL Detection of
Fatigue Damage

Prognostic Problems

Synthetic Datasets of
Strain Data

More neurons or layers in DNNs might
encounter lengthy training processes

connected with significant convergence
scales. Unfortunately, pre-training might not

offer remarkable practicalities since the
evaluation of the ramining useful life (RUL)
could vary. If more unlabeled data is offered,
classification findings would be enhanced
when limited annotated data is available.

SSL pre-trained models were capable of significantly
outperforming the non-pre-trained models in the downstream
RUL prediction challenge with lower computational expenses.
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17 Zhang et al.
(2022) [106]

Active and Intelligent
SSL Diagnosis to Mine
the Health Information

of Machines

Self-Collected Faulty
Monitoring Dataset N/A

Their proposed SSL framework has successfully extracted more
detailed monitoring information. Two experiments that

simulated mechanical faults confirmed the remarkable efficacy of
their suggested model. Their new approach gave workable
inspections necessary for indsutrial fault issues by cognitive

diagnosis of machines.
Their model proved its practicality, especially for imbalanced

data, where imbalance and instability would exist between
normal data and faulty data in realistic industrial scenarios.

18 Geng et al.
(2021) [121]

Wafer Failure Pattern
Detection to Prevent
Yield Loss Excursion

Events Linked to
Semiconductor
Manufacturing

N/A N/A

Their SSL model, which considered few-shot learning principles
with the help of intrinsic relationships in unlabeled wafer maps,

achieved significant enhancements.
Their suggested approach outperformed various state-of-the-art

tactics for wafer defect classification. SSL could alleviate the
imbalance problem of data distribution in real industrial failure

patterns since it utilizes the comprehensive advantage of the
massive unlabeled wafer failure data.

19 Yoa et al.
(2021) [122]

SSL Anomaly Detection
of Visual Databases

with the Help of
Dynamic Local
Augmentation

MVTec Anomaly
Detection Dataset

Dynamic local augmentation was helpful,
but conventional local augmentation

interferes with the performance.

Competitive performance was achieved for pixel-wise anomaly
segmentation. A variety of combinations of four losses affected

the performance.

20 Li, et al. (2022)
[123]

SSL Domain
Adaptation-Based Fault

Diagnosis
A Gearbox Dataset N/A

SSL could help achieve significant rates of effectiveness, accuracy,
and reliability in detecting faults related to industrial

engineering activities.

21 Lu et al. (2022)
[124]

Intelligent SSL Fault
Diagnosis via Feature

Clustering

Industrial Training and
Testing Datasets N/A SSL offered elevated performance and efficacy to detect faults

related to industrial applications.
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22 Ding et al.
(2022) [125]

Practical Fault
Prediction of Incipient

Failure in Bearings
FEMTO-ST Datasets

Hyperparameter manual modifications of
the SSPCL model are needed. Integrating

SSL could improve its practicality for further
machine-prognostic tasks. A minimal data
annotation rate could alleviate the model’s

machine prognostic performance.

Superior effectiveness was realized in SSL contrast learning
(SSLCL). SSL pre-training was helpful for achieving better

identification. Momentum contrast learning (MCL) was
addressed to distinguish beneficial data from unlabeled datasets,
overcoming time-consuming and expensive labeling processes.

23 Yan, and Liu
(2022) [126]

Practical Fault
Diagnosis of Bearnings

Related to Aerspace
Industry under Limited

Databases

Two Independent Bearing
Datasets from Paderborn

University and the
Polytechnic University of

Turin for Experimental
Verification

MixMatch could offer lower prediction
performance compared with FFT + SVM.

More noise levels do exist because of the gap
between the unannotated dataset and its

corresponding data distribution. This gap
might broaden in a gradual manner if the
noise escalates, contributing to the worse

capability of MixMatch to benefit from the
unlabeled data necessary for diagnostic

precision enhancement.

SMoCo performed feature extraction of vibration signals,
considering frequency and time scales. SMoCo could learn
potent and efficient feature extraction by pre-training using

artificially injected fault-bearing data, improving data diagnosis
accuracy regardless of the types of equipment, failure modes,
noise magnitude, or working circumstances, and achieving

prediction in a considerably shorter interval.
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Table 4. Crucial outcomes and major obstacles related to SSL involvement in medical diagnosis.

# Author(s) (Year) Medical SSL
Application Dataset Category Encountered Research Limitations Critical Contributions and Preferable SSL Impacts

1 Chen et al.
(2019) [127]

SSL Medical Image
Categorization via Image

Context Restoration

Fetal 2D Ultrasound
Images Linked to

Abdominal Organs in CT
Images and Brain Tumors

in Multi-Modal MR
Images

Not available (N/A)

The created SSL context restoration model strategy learned
semantic image features, which are beneficial for various
categories of corresponding visual dataset analysis. Their

SSL algorithm was flexible to implement. Its applicability in
three situations of data recognition—(1) segmentation,
(2) localization, and (3) classification was competitive.

2 Nguyen et al.
(2020) [128]

SSL Medical Image
Recognition Utilizing

Spatial Awareness

Struct-
Seg-2019 Dataset

The overall SSL models achieved escalated
performance outcomes because of abundant

information for the pretext task.
Nonetheless, the margin of enhancement is
not considerably satisfying. (They showed
that if more unannotated data is utilized,
then the performance would enhance.)

Organ segmentation and cerebral bleeding detection via SSL
models tested in their work demonstrated remarkable

efficacy compared with other ML methods.

3 Jamaludin et al.
(2017) [129] Longitudinal Spinal MRI

A Dataset of 1016 subjects,
423 Possessing Follow-Up

Scans.

The SSL model needed a few more labeled
training samples to attain an equivalent
efficiency to that linked to the network

trained from scratch.

Relying on the SSL involvement in longitudinal spinal MRI
categorization, it was found that the effectiveness of the

pre-trained SSL CNN model outperformed the performance
of other models that were trained from scratch.

4 Zhu et al. (2020)
[130]

3D Medical Image
Classification;

Task-Related Contrastive
Prediction Coding

(TCPC)

Brain Hemorrhage
Dataset: 1,486 Brain CT

Volumes
N/A

Their experimental analysis confirmed remarkable
effectiveness correlated with lesion-related embedding before

knowledge into NNs for 3D medical image classification.

5 Xie et al. (2020)
[131]

Extensive Evaluation on
Four Public

Computerized
Tomography (CT)

Datasets of 11 Kinds of
Major Human Organs

and Two Tumors.

Pretext
Task Dataset, including
1808 CT Scans from 5

Public Datasets

N/A

The results indicated that utilizing a pre-trained SSL PGL
model could help initialize the downstream network,

contributing to a preferable effectiveness compared with
random initialization and the initialization by global

consistency-based models.
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# Author(s) (Year) Medical SSL
Application Dataset Category Encountered Research Limitations Critical Contributions and Preferable SSL Impacts

6 Li et al.
(2020) [132]

Diagnosis of Retinal
Diseases from

Fundus Images

Two Public Benchmark
Datasets for Retinal
Disease Diagnosis

N/A
The experimental results revealed that the SSL model had

clearly outperformed other SSL feature learning mechanisms
and was comparable to the supervised level.

7 Sowrirajan et al.
(2021) [133]

Utilizing a proposed SSL
Model (MoCo-CXR) to
Classify Problems in

Patients’ Chest

Visual Chest X-ray
Datasets

There were fewer unlabeled chest X-ray
images than natural images. This aspect

could limit the applicability of contrastive
SSL to the necessary classification

of chest X-rays.

The SSL models operated by MoCo-CXR-pre-training
outperformed other non-MoCo-CXR-pre-training models.

The MoCo-CXR pre-training provided the most benefit with
a few labeled training datasets. Simultaneously, similar
high-performance outputs were attained on the target

Tuberculosis dataset, confirming that
MoCo-CXR-pre-training endowed other superior models for

chest X-ray classification.

8 Vu et al. (2021)
[134]

Selecting
positive pairs coming
from views of possibly
different images by the

patient
metadata

Visual Chest X-ray
Datasets

Their approach was not practical for datasets
that lack patient meta-data altogether. In
addition, their strategies for negative pair

selection did not enhance pre-trained
representations. Their SSL models leveraged

data on image laterality. However, future
work is needed to determine whether

negative pair selection strategies utilize
other meta-data, notably image view

(anteroposterior or posteroanterior), patient
age, or patient gender.

Their contrastive SSL model achieved a performance
upgrade of 14.4% in mean AUC from the ImageNet

pre-trained baseline. Also, their controlled experiments
showed that the ways to improve downstream performance
on patient disease classification include (a) utilizing patient

meta-data to properly create positive pairs from variant
images with the same underlying pathologies and

(b) maximizing the number of various images utilized in
query pairing.

9 Sriram et al.
(2021) [135]

Classification of Clinical
Diseases Correlated with
Large Mortality Rate Due
to COVID-19 and Chest

X-ray

Dataset of Chest X-ray
Linked to COVID-19 and

non-COVID-19 Risks

It was found that the inversion of the trend
for oxygen requirement prediction (ORP)

could not be illustrated by label scarcity. It
could be that there were image features that
became readily apparent for the ORP task

closer to the actual moment of raised
oxygen needs.

Their SSL model utilization showed that an improved AUC
of 0.786 could be attained for predicting an adverse event at
96 h and an AUC of 0.848 for predicting mortalities at 96 h.
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# Author(s) (Year) Medical SSL
Application Dataset Category Encountered Research Limitations Critical Contributions and Preferable SSL Impacts

10 Chen et al.
(2021) [136]

Classification of Chest CT
Images Linked to the

COVID-19

Dataset of Chest CT
images Correlated with

COVID-19 Problems

The resizing operation done in their
classification process slightly affected the

overall identification performance.

Their SSL model classification results affirmed superior
performance of accuracy in classifying COVID-19 problems

related to chest CT images.

11 Chaitanya et al.
(2020) [137]

To leverage structural
similarity across

volumetric medical
images (domain-specific

cue) and to learn
distinctive

representations of local
regions that are practical

for per-pixel
segmentation

(problem-specific cue).

Three Magnetic
Resonance Imaging (MRI)

datasets
N/A

The created SSL model yielded substantial improvement
compared with other SSL and semi-supervised learning

(SiSL) techniques. When combined with simple data
augmentation, the created model reached within 8% of

benchmark performance utilizing solely two annotated MRI
data for training.
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5. Discussion

Supportive information and elaborative details on modern technologies and the latest
innovations are integrated into SSL classification models to improve their potential and
efficacy in monitoring various data recognition, forecasting, or distinguishing with per-
fect levels of precision and reliability. The discussion includes a critical explanation and
evaluation of the following SSL-supportive technologies:

1. Generative Adversarial Networks (GAN);
2. Deep InfoMax (DIM);
3. Pre-trained Language Models (PTM);
4. Contrastive Predictive Coding (CPC);
5. Autoencoder and its associated extensions.

5.1. Generative Adversarial Networks (GAN)

One category of DL architecture is the GAN. A GAN is commonly adopted to create
new data based on the training process carried out by two neural networks, which compete
with each other to generate the necessary authentic data. Images, movies, and text are
examples of databases that can be handled and analyzed flexibly using the output of
a GAN.

The concept of GANs was first addressed and investigated in an article published
by [138]. An alternative paradigm for USL was created in their study, in which two neural
networks were trained to compete with one another. Since then, GANs have emerged
as powerful tools for generative modeling. Recently, GANs have proved essential in
generative modeling, showcasing impressive skills.

GANs have a significant influence on various activities, including improving data
augmentation strategies, enhancing reinforcement learning algorithms, and strengthening
SSL methodologies. GANs are a fundamental concept in modern ML, enabling progress
in different fields due to their adaptability. Simultaneous training is conducted for GANs
considering the update of the distinctive distribution, which can be expressed as a dashed
blue line, D, in Figure 16. Thus, this blue dashed line can distinguish between data samples
related to the generative distribution, G, pg, which is characterized by a solid green line.
The horizontal line down the photo expresses the domain and a source of z that can be
uniformly sampled. At the same time, the horizontal line located in the upper area of the
image indicates a part of the x domain. The mapping of x that equals G(z), can impose
the non-uniform distribution, G, on transformed samples. In areas with higher density,
G could contract and enlarge in zones with lower density levels that are correlated with
pg [138].
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Figure 16. Configurations of (a) D expresses a partial precise classifier and pdata is identical to pg,
(b) D was converged to D∗(x), (c) when G was updated, the D gradient helped G(z) to transfer to
areas, which are approximately considered as data, and (d) when various training processes have
been conducted, if both D and G have sufficient potential, they would attain a position in which they
could not enhance since pdata is identical to pg [138].



Mathematics 2024, 12, 758 31 of 42

From Figure 16, D*(x) can be expressed by the following formula:

D∗(x) =
pdata(x)

pdata(x) + pg(x)
(33)

5.2. Deep InfoMax (DIM)

This new concept was first introduced by [139], who conducted a numerical analysis
to examine novel means of unsupervised learning of representations. Researchers have
optimized encoding by decoding mutual information. They confirmed the importance
of structure by showing how including information about the input locality in an aim
can significantly enhance the fitness of a representation for subsequent tasks. Adversarial
matching to a prior distribution allows researchers to control representational features.

DIM outperforms numerous well-known unsupervised learning approaches and
is competitive with fully supervised learning in typical architectures across a variety
of classification problems. Furthermore, according to the numerical analysis of these
researchers, DIM paved the way for more creative formulations of representation learning
objectives to address specific end goals, and it also provided new opportunities for the
unsupervised learning of representations, particularly in addition to other vital DL models
involving SSL and semi-supervised learning procedures [140,141]. The researcher has
implemented a higher-level DIM concept to enhance information representation [142].

5.3. Pre-Trained Language Models (PTM)

Regarding the beneficial merits of PTM for SSL models, Han et al. (2021) [143] ex-
plained that large-scale pre-trained language models (PTMs), such as BERT and generative
pre-trained transformers (GPT), have become a benchmark in developing AI. Knowledge
from large amounts of labeled and unlabeled data can be efficiently captured by large-scale
PTMs owing to their advanced pretraining objectives and large model parameters. The rich
knowledge implicitly contained in numerous parameters can help in a range of downstream
activities, as has been thoroughly established through experimental verification and empir-
ical analysis. This is achieved by storing knowledge in large parameters and fine-tuning
the individual tasks. The AI community agrees that PTMs, rather than developing models
from scratch, should serve as the foundation for subsequent tasks. In this study, they
extensively examined the background of pre-training, focusing on its unique relationship
with transfer learning and self-supervised learning, to show how pivotal PTMs are in the
evolution of AI. In addition, the authors examined PTMs’ most recent developments in
PTMs in depth. Advances in these four key areas—effective architecture design, context use,
computing efficiency, interpretation, and theoretical analysis—have been made possible by
the explosion in processing power and the growing availability of data. Figure 17 illustrates
the time profile of the emergence of various language-understanding benchmarks linked to
the PTM [143].

5.4. Contrastive Predictive Coding (CPC)

The CPC can be described as an approach implemented for SSL models to support
them in understanding and learning representations in latent embedding spaces using
autoregressive models. The CPC seeks to learn from a global, abstract representation of the
signal rather than a high-dimensional, low-level representation [144].

Through further investigations on CPC, some scholars, such as [144], explored modi-
fied versions of CPC, which was CPCv2 to replace the auto-regressive aspects in the RNN
model of CPC, taking into consideration CNN, helping promote the quality of the learned
representations for image classification tasks [43,45,145,146].

Ye and Zhao employed CPC for the SSL-based intrusion detection system [147], as
illustrated in Figure 18.
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under Creative Commons CC-BY license.

On the other hand, Henaff (2020) [145] elucidated some prominent merits of CPC in
recognizing certain visual data more efficiently compared with SSL models that are trained
by raw pixels, which can be explained in Figure 19. In this figure, when a low volume of
labeled data is offered, trained SSL models based on raw pixels may fail to generalize, which
is indicated by the red line. By training SSL models with the unsupervised representations
that are learned by CPC, those models could retain considerable levels of precision within
this lower data domain. Those trained SSL models can be expressed as a blue line in
the same figure. The precision of SSL models could be attained with a remarkably lower
number of labels, which are expressed with horizontal arrows.
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5.5. Autoencoder and Its Associated Extensions

Autoencoders (AEs) and their corresponding extensions are other examples of modern
techniques that enable the active implementation of SSL models. Some researchers, includ-
ing Wang et al. (2020) [148], examined the beneficial impacts of autoencoder integration
into the SSL classification task. They reported that by utilizing SSL models, single-channel
speech could be enhanced by feeding the network with a noisy mixture and training it to
output data closer to the ideal target.

According to Jiang et al. (2017) [112], the AE seeks to learn the function, expressed by
the following formula:

r(x) = x (34)

where x is the input vector.
The AE learning action is correlated with two major phases: (a) encodering and

(b) decoding. In the first phase, the encoder can map the vector, which expresses the data
input, into a code vector. The latter can express the input. After this action, the decoder
will try to utilize this code vector of the information input to restructure the input vector,
providing a lower level of error. In their working principles, the decoder and encoder rely
on ANN to complete their tasks. As a result, the output target pertaining to the AE would
express the AE itself. The major configurations of the encoder and decoder in the AE could
be expressed, respectively, as follows:

ti = f (Wixi + bi) (35)

r(xi) = g(W2ti + b2) (36)

where i = 1, 2, 3, . . . , L. I expresses the sample number of the raw data. xi ∈ RJ×1,
where i is ith sample vector. zi ∈ RK×1, and it expresses the pattern or code taken from xi.
W1 ∈ RK×J . b1 ∈ RK×1. b1 expresses the weight matrix and bias level between the hidden
layer (layer No. 2) and the input layer (layer No. 1). b2 ∈ RJ×1 and W2 ∈ RJ×K. b2 indicates
the bias existing between layers two and three. W2 is the weight matrix between those two
layers as well.

From Figure 20, L(x,r) is the squared error, θ(t) is the reconstruction function. φ(x + ε)
is the projection function that can map the input to the feature space. ε expresses a vector
through which each index is independent and behaves similarly to the Gaussian distribution
that has a variance, σ2

ε .
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6. Conclusions

This study was carried out in response to the poor classification robustness and
weak categorization efficiency of conventional DL and ML models and even modern DL
algorithms that have been involved recently in medicine and industry to conduct practical
prediction processes. However, because of the huge cost, effort, and time corresponding to
data annotation in those two domains, the ML and DL prediction procedures would be
considerably challenging. Remarkable R&D revealed a noteworthy SSL that was evolved
to enable flexible and efficient classification without referring to arduous data annotation.
In addition, SSL was created to overcome another problem reflected in the variating trends
and behavior of new data that do not necessarily simulate past documented data. Therefore,
when data annotation is fully applied, ML and DL models may not provide important
prediction outcomes or classification capabilities.

To shed light on the constructive benefits and substantial contributions of SSL models
in facilitating prediction tasks, this paper adopted a comprehensive overview through
which variant efficacious applications of two necessary scientific fields were explored,
including (a) industry and manufacturing and (b) medicine. Within those two domains,
industrial engineers and healthcare providers encounter repetitive obstacles in predicting
certain types of faults in machines and ailment situations in patients, respectively. As
illustrated here, even if historical databases of machine fault behavior and patient disorders
are fully annotated, most ML and DL models fail to perform precise data identification.
Relying on the thorough overview implemented in this article, the imperative research
findings can be summarized in the following aspects:

I. Involving SSL algorithms in industrial engineering and clinical contexts could sup-
port manufacturing engineers and therapists in carrying out efficient classification
procedures and predictions of the current machine fault and patient problems with
remarkable levels of performance, accuracy, and feasibility.

II. Profitable savings in the computational budget, time, storage, and effort needed
in the annotation and training of unlabeled data can be eliminated when SSL is
utilized, maintaining approximately optimum prediction efficacy.

III. Functional human thinking, learning approaches, and cognition are utilized in SSL
models, contributing to upgraded machine classification and computer prediction
outcomes correlated with different fields.

7. Future Work

Based on the statistical numerical outcomes and noteworthy ideas obtained from the
extensive overview in this paper, the current work proposes some crucial future work
perspectives and essential ideas that can help promote SSL prediction potential. The
remarkable suggestions that can be taken into consideration are as follows:

• To review the importance of SSL in carrying out accurate predictions pertaining to
other scientific domains.
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• To overcome some problems not addressed carefully in the literature encountering
most SSL models, reflected in SSL trials, analyze and take into consideration solely
semantic characteristics linked to the investigated dataset. They do not benefit from
critical features existing in visual medical databases.

• To classify other crucial applications of SSL, including either recognition or categoriza-
tion, not correlated with the relevance of the predictions addressed in this paper.

• To identify other remarkable profitabilities and workable practicalities of SSL other
than their contributions to cutting much computational time, budget, and effort for
necessary data annotation in the same prediction context.

• To expand this overview with a few case studies in which contributory SSL predictions
are carefully explained.

8. Research Limitations

In spite of the successful achievement of the meta-analysis and thorough review of
various robust SSL applications in industrial and medical contexts, the study encountered
a few research constraints that restricted the broad implementation of the extensive review.
Those limitations are translated into the following aspects:

a. Some newly published academic papers (more than 2022) have no direct access to
download the overall document. Additionally, some web journals do not have full
access to researchers, even for oldly published papers. For this reason, the only
extracted data from those articles were the abstract.

b. There is a lack of abundant databases correlated with the direct applications involved
in SSL in machinery prognostics and medical diagnosis.

c. There were no direct explanations or abundant classifications of major SSL limitations
that needed to be addressed and handled.
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Nomenclature

AI Artificial Intelligence
AE Autoencoder
AP Average Precision
APC Autoregressive Predictive Coding
AUCs Area under the Curve
AUROC Area Under the Receiver Operating Characteristic
BERT Bidirectional Encoder Representations from Transformers
BoW Bag-of-Visual-Words
BYOL Bootstrap Your Own Latent
CaiD Context-Aware instance Discrimination
CERT Contrastive self-supervised Encoder Representations through Transformers
CNNs Convolutional Neural Networks
CPC Contrastive Predictive Coding
CT Computed Tomography
DCL Dense Contrastive Learning
DIM Deep InfoMax
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DL Deep Learning
DNN Deep Neural Network
DSC Dice Similarity Coefficient
EHRs Electronic Health Records
EMA Exponentially Moving Average
EVs Electric Vehicles
GAN Generative Adversarial Network
GPT Generative Pre-trained Transformer
HVAC Heating, Ventilation, And Air-Conditioning
IoU Intersection over Union
Li-ion Lithium-ion
LMLM Label-Masked Language Model
LMs Language Models
LR Logistic Regression
LSTM Long Short-Term Memory
MAE Mean-Absolute-Error
ML Machine Learning
MLC Multi-Layer Classifiers
MLM Masked Language Model
MoCo Momentum Contrast
MPC Model Predictive Control
MPQA Multi-Perspective Question Answering
MRs Movie Reviews
MSAs Multiple Sequence Alignments
NAIP National Agricul-ture Imagery Pro-gram
NLP Natural Language Processing
NSA Natural Synthetic Anomalies
PdL Predictive Learning
pLMs protein LMs
PPG Phoneme Posteriororgram
PTM Pre-trained Language Models
PxL Pretext Learning
RF Random Forest
RMSE Root-Mean-Square-Error
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
RUL Remaining Useful Life
SL Supervised Learning
SOC State of Charge
SSEDD Self-Supervised Efficient Defect Detector
SSL Self-Supervised Learning
SST2 Stanford Sentiment Treebank-2
SwAV Swapping Assignments across Views
TREC Text Retrieval Conference
USL Unsupervised Learning
VAE Variational Auto-Encoders
VC Voice Conversion
VICReg Variance, Invariance, and Covariance Regularization
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