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Abstract: The berth allocation problem determining the berthing time and position for incoming
vessels in port operations has garnered increased attention within the global transportation network.
This study focuses on the berth allocation problem with a continuous quay and dynamic vessel
arrivals. With the overarching goal of enhancing service quality and optimizing berth utilization
rates, this article proposes a mathematical programming model that minimizes the total waiting time
of vessels and the overall completion time of vessel service. The formulated model is a mixed-integer
linear programming problem that deterministic optimization techniques can globally solve. For
large-scale problems, this study develops a genetic algorithm optimization approach to improve
computational efficiency in reaching a near-optimal solution. Several numerical experiments are
conducted to demonstrate the effectiveness and efficiency of the proposed approach.
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1. Introduction

With the globalization of the supply chain, many products are manufactured in multi-
ple countries and shipped to customers worldwide. As international trade increases, the
demand for transportation significantly rises, making ports crucial in logistics manage-
ment. Port authorities must enhance service quality and optimize resource utilization to
strengthen their competitiveness in the global transportation network. Berths are the most
critical resources in port terminals due to the difficulty of expanding them quickly and
their construction costs being the highest among all relevant costs for other facilities in the
terminal. Developing an efficient and effective berth allocation strategy is essential for port
authorities to manage the heavy and increasing ship traffic in the global transportation
network [1–4].

The terminal operation system comprises three subsystems: vessel planning in the
quayside area, storage and stacking in the yard, and transportation in the landside area [5,6].
The productivity and throughput of the container terminal between the seaside and the
landside depend on the efficiency of the terminal handling system; therefore, optimizing
the berth scheduling plan is critical for port authorities to increase port throughput and
improve service quality [7,8]. This article focuses on the initial operation of seaside planning
in container terminals, known as the berth allocation problem (BAP). In the survey of
berth allocation and quay crane scheduling problems in container terminals reviewed by
Bierwirth and Meisel [5], the BAP is commonly referred to as the assignment of quay space
and service time to vessels that have to be unloaded and loaded at a terminal.

The BAP has been categorized into two classes based on the berth type and vessel
arrivals [5]. According to a present partitioning of the quay into berths, the BAP can be
modeled with a discrete or a continuous quay. In the discrete case, the quay is divided
into several partitioned sections. Each single berth can be occupied by only one vessel
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simultaneously. In the continuous case, the quay is a continuous space that vessels can berth
at arbitrary positions within the boundaries of the quay. Berth planning in a continuous
layout leads to better utilization of quay space but is more computationally complicated
than in a discrete layout [5,7,9]. In terms of vessel arrivals, the BAP can be divided into
static and dynamic. The static one underlies the assumption that all vessels have arrived
at the port before berth planning starts. Hence, the arrival time of vessels does not affect
berthing assignment. The dynamic BAP allows vessels to arrive at any time during the
planning time horizon, but their arrival times are known in advance, and each vessel will be
served after its arrival. In common practice, the static assumption occurs only in a bustling
port [5,10].

Since a continuous quay results in a higher utilization than a discrete quay, and the
port authorities usually assign the berth to a vessel based on the expected arrival time
before its arrival, this study focuses on the BAP with a continuous quay and dynamic
vessel arrivals. The berth allocation aims to provide efficient and reliable services for each
arriving vessel. Many studies have discussed the BAP with several practical factors and
considered various constraints and objective functions.

Complete surveys of problem formulations, problem classification schemes, and
solution algorithms for the BAP through 2022 are provided by Bierwirth and Meisel [5,11]
and Rodrigues and Agra [3].

Rodrigues and Agra [3] categorized papers based on their objective functions and
pointed out that the time spent by vessels at ports directly affected the service level. In
the literature surveyed by Rodrigues and Agra [3], most papers incorporated minimized
waiting time, handling time, completion time, or tardiness as components of the objective
function [12,13]. The BAP can be addressed by minimizing waiting time, handling
time, completion time, or tardiness to enhance port service levels or achieve optimal
berth utilization.

The methods employed for addressing the BAP are diverse, broadly falling into
two main categories: exact methods and heuristic methods. Exact methods typically
employ mathematical models and run them through commercial solvers. However, it
is noted that most exact methods are limited to solving small-scale instances and are
often utilized to evaluate the performance of the proposed heuristic algorithms. On the
other hand, heuristic methods constitute a significant portion of the approaches used to
tackle BAP. The survey results from Rodrigues and Agra [3] indicate that the number
of papers proposing heuristic solution methods is greater than those considering exact
methods. A wide range of solution algorithms have been utilized over time, including
genetic algorithms (GA), simulated annealing (SA), Tabu search (TS), artificial bee colony
algorithm (ABC), squeaky wheel optimization (SWO), grey wolf optimization (GWO), and
adaptive differential evolution algorithm (ADEA). Among these, genetic algorithms are
the most commonly chosen method. Heuristics are employed in approximately 55% of
the papers surveyed, with genetic algorithms being utilized in approximately 19% of the
papers. Lv et al. [14], Rodrigues and Agra [15], and Wu and Miao [16] utilize genetic
algorithms (GA) as part of the method for solving the BAP.

The following briefly reviews the literature on continuous and dynamic BAP. Lim [17],
Kim and Moon [1], Guan and Cheung [18], Wang and Lim [6], and Lee et al. [19] trans-
formed the berthing problem into a restricted form of the two-dimensional packing problem.
Lim [17] used a graph-theoretical representation to capture the problem and proposed a
heuristic method to minimize the length of quay occupied by vessels. Kim and Moon [1]
aimed to minimize additional travel costs resulting from non-optimal berthing locations
and penalty costs resulting from a delayed departure after the requested due time. A
simulated annealing algorithm was developed for finding near-optimal solutions. Guan
and Cheung [18] proposed a tree search procedure to minimize total weighted flow time,
the sum of waiting and processing time of vessels. The weights reflect the relative im-
portance of vessels. Wang and Lim [6] solved the problem by using a stochastic beam
search algorithm. The constructed mixed-integer programming model determines the
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berthing time and the position to minimize the total berthing cost consisting of unallocation
cost, berthing position cost, and delay berthing cost. Lee, Chen and Cao [19] followed the
mathematical formulation of Guan and Cheung [18] to develop two versions of the greedy
randomized adaptive search procedure (GRASP) in identifying the possible locations for
the next vessel in the time-space diagram.

This study aims to improve port throughput and efficiency by optimizing berth
utilization and enhancing service quality. Optimal berth utilization is achieved by mini-
mizing the overall completion time of vessel service, while service quality improvement is
pursued by minimizing the total waiting time for vessels. The proposed approach intro-
duces a deterministic optimization model that formulates the BAP as a restricted form of
two-dimensional packing problem solvable through existing deterministic optimization
techniques to reach the globally optimal solution. Relating to the packing problem, the
BAP has been shown to be an NP-hard problem [17]. The computational time to solve
the deterministic optimization model significantly increases as the problem size increases.
Consequently, this study also develops a genetic algorithm (GA) optimization approach to
solve large-scale problems efficiently. The contributions of this paper include

• Formulate the BAP as a mathematical programming model of a two-dimensional
packing problem solvable to reach the globally optimal solution;

• Develop a GA optimization approach to solve large-scale problems efficiently;
• Compare the performance of solving the BAP between a deterministic optimization

model and a GA optimization approach.

The rest of this article is organized as follows. Section 2 formulates the BAP as a
deterministic optimization model. Subsequently, a GA optimization approach is developed
to solve large-scale BAP problems in Section 3. Section 4 presents some numerical examples
to illustrate the proposed method. Finally, concluding remarks are made in Section 5.

2. Problem Formulation

This research considers the BAP with continuous quay and dynamic vessel arrivals.
A deterministic optimization model is constructed to transform the BAP into a two-
dimensional packing problem.

Figure 1 indicates the berth allocation time-space graph. The vertical axis represents
the quay space, and the horizontal axis represents the berthing time. The quay space
is divided into integer units. Each unit accommodates one vessel each time, and each
vessel occupies an integer number of consecutive units when it is moored. Each rectangle
represents a vessel; the height and length of the rectangle are the vessel’s length and
operation time, respectively. The x-coordinate of the bottom-left of the rectangle stands
for the starting time of the operation. The y-coordinate of the bottom-left of the rectangle
stands for the starting position of the operation. The BAP aims to decide the x-coordinate
and y-coordinate of each rectangle in the space formed by the quay space and the berthing
time. All vessels must be placed non-overlapping in the time-space graph for a feasible
berthing assignment. Other constraints, such as the draft restrictions at the assigned berths
for the vessels, must also be satisfied. The notations used throughout this study are defined
below and indicated in Figure 2.

Berthing parameters, such as the number of berths required by the vessel, the estimated
arrival time, and the estimated operation time, are typically filled 8 to 36 h before vessel
arrival in the maritime practice (Lee and Chen [20]).

Parameters:

Y: the number of all partitioned berths in the quay;
n: the number of vessels to be scheduled;
pi: the estimated operation time of vessel i;
qi: the number of berths required by vessel i, qi ≤ Y;
ki: the estimated arrival time of vessel i;
di: the draft of vessel i;
Bsi: the starting position suitable for berthing vessel i;
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Bni: the ending position suitable for berthing vessel i;

M = max
i

{pi, qi}.

Decision variables:

T: the overall completion time of handling all vessels at the port;
xi: the starting time of handling vessel i;
yi: the starting position of handling vessel i;
uij, vij: 0–1 variables used to control the relative positions of vessels i and j.

Mathematics 2024, 12, x FOR PEER REVIEW 4 of 16 
 

 

 

Figure 1. Time-space graph for berth allocation. 

 

Figure 2. Variables used in the proposed model. 

Berthing parameters, such as the number of berths required by the vessel, the esti-

mated arrival time, and the estimated operation time, are typically filled 8 to 36 h before 

vessel arrival in the maritime practice (Lee and Chen [20]). 

Parameters: 

𝑌: the number of all partitioned berths in the quay; 

𝑛: the number of vessels to be scheduled; 

𝑝𝑖: the estimated operation time of vessel 𝑖;  

𝑞𝑖: the number of berths required by vessel 𝑖, 𝑞𝑖 ≤ 𝑌; 

𝑘𝑖: the estimated arrival time of vessel 𝑖 ; 

𝑑𝑖: the draft of vessel 𝑖; 

𝐵𝑠𝑖: the starting position suitable for berthing vessel 𝑖; 

𝐵𝑛𝑖: the ending position suitable for berthing vessel 𝑖; 

𝑀 = max
𝑖

{𝑝𝑖 , 𝑞𝑖}.  

Decision variables: 

𝑇: the overall completion time of handling all vessels at the port; 

𝑥𝑖: the starting time of handling vessel 𝑖; 

𝑦𝑖: the starting position of handling vessel 𝑖; 

𝑢𝑖𝑗, 𝑣𝑖𝑗  : 0–1 variables used to control the relative positions of vessels 𝑖 and 𝑗. 

0

10

20

30

40

0 5 10 15 20 Time

Berth

the starting time 

of the operation

the starting position

of the operation

vessel

length 

operation time

0

10

20

30

40

0 5 10 15 20 Time

Berth

Bsi

Bni

ki

waiting time (xi-ki)

xi

yi

qi

pi

T

Figure 1. Time-space graph for berth allocation.
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Figure 2. Variables used in the proposed model.

Four cases of non-overlap between two vessels i and j can be formulated by two binary
variables uij and vij as follows and indicated in Figure 3.

Condition 1: uij = 0 and vij = 0 if and only if vessel i is at the right of vessel j.
Condition 2: uij = 1 and vij = 0 if and only if vessel i is at the left of vessel j.
Condition 3: uij = 0 and vij = 1 if and only if vessel i is above vessel j.
Condition 4: uij = 1 and vij = 1 if and only if vessel i is below vessel j.
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The following assumptions are introduced for formulating the BAP:

1. Each berth serves only one vessel at a time. The length of each berth is identical. Each
vessel may occupy more than one berth according to the length of the vessel.

2. Vessels are served after arrival.
3. The operation time of each vessel is assumed deterministic and known in advance.
4. The number of berths required for each vessel is assumed deterministic and known

in advance.
5. When a vessel starts operations at any berth, it will only move once loading/unloading

is completed.
6. The draft of the vessel must be less than the water depth in the assigned berths.

The parameters Bsi and Bni are determined by di. pi is the estimated operation time
of vessel i, and qi is the number of berths required by vessel i. When the BAP is formulated
as a two-dimensional packing problem, pi and qi are the length and height of a rectangle
representing vessel i in a time-space graph. M = max

i
{pi, qi} is used in constraints to

guarantee that all rectangles will not overlap. That means all vessels cannot occupy the
same berth simultaneously.

According to the discussions above, the mathematical formulation of the berth alloca-
tion optimization problem can be expressed as follows:

Minimize

[
n

∑
i=1

(xi − ki)

]
+ T (1)

subject to (
xi − xj

)
+ uij M + vij M ≥ pj, ∀i, j, i < j, (2)(

xj − xi
)
+

(
1 − uij

)
M + vij M ≥ pi, ∀i, j, i < j, (3)(

yi − yj
)
+ uij M + (1 − v ij

)
M ≥ qj, ∀i, j, i < j, (4)(

yj − yi
)
+ (1 − u ij

)
M + (1 − v ij

)
M ≥ qi, ∀i, j, i < j, (5)

T ≥ xi + pi, ∀i, (6)

xi ≥ ki, ∀i, (7)

Bni ≥ yi + qi, ∀i, (8)

yi ≥ Bsi, ∀i. (9)
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The objective function is to minimize the total waiting time of all vessels and the
overall completion time of vessel service. Constraints (2)–(5) guarantee that vessels cannot
occupy the same berth simultaneously. In Constraint (6), T is the overall completion time of
the service for all vessels at the port. Constraint (7) indicates that each vessel is served after
arrival. Constraints (8) and (9) ensure that each vessel must be assigned to the appropriate
position considering the draft of the vessel.

Since the model is a mixed-integer linear programming problem, it can be globally
solved by conventional mixed-integer linear programming techniques to obtain an optimal
berth assignment. Although the proposed mixed-integer linear programming model of
the BAP can be solved to derive a globally optimal solution, the solution time significantly
increases as the number of vessels increases. Consequently, this study develops a GA
optimization approach to efficiently obtain a near-optimal solution for large-scale problems.

3. Proposed GA Optimization Approach

The proposed approach combines a genetic algorithm and a berth allocation strategy.
The GA is responsible for evolving the chromosomes representing the vessels’ scheduling
sequence. The berth allocation strategy is a critical process that constructs a berth allocation
plan using the vessels’ scheduling sequence defined in the previous phase. After reaching
the terminal condition of the GA, a near-optimal berth allocation layout is obtained for all
vessels. Figure 4 indicates the flow chart of the proposed GA optimization approach.
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The following describes the processing steps in the flow chart.

Step 1: Generate an initial population

This step is to generate the chromosomes in the first generation. Each chromosome
representing a vessel’s berthing sequence is made of n genes where n is the number of
vessels. The genes of each chromosome of the initial population are randomly generated.
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Figure 5 displays a chromosome for solving a nine-vessel scheduling problem. The vessel
scheduling sequence is No. 1, No. 2, No. 4, No. 9, No. 5, No. 6, No. 8, No. 3, and No. 7.
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Figure 5. Example of a chromosome.

A large population provides a large solution search space, but GA will slow down if
there are too many chromosomes. A population size index with the size of a problem is a
good solution [21]. After conducting several experiments, the suitable population size for
this problem is two times the number of vessels.

Step 2: Decode the population with the berth allocation strategy

This step is to construct a berth allocation plan according to the chromosomes in the
population. Jakobs [22] designed the well-known bottom-left algorithm (BLA) integrated
with a GA to obtain the packing pattern for solving a packing problem. In BLA, each item
is moved as close as possible to the bottom of the object and then as close as possible to
the left. Inspired by this idea, the current study develops the berth allocation strategy
called the best-position algorithm (BPA). The BPA places each vessel at the best position
according to the scheduling sequence, i.e., each vessel selects the bottom berth of suitable
berthing positions, cannot overlap with others, and minimizes its waiting time. The detailed
algorithm is as follows (Algorithm 1).

Algorithm 1: Best-position algorithm of berth allocation.

Vi be the ith vessel to be allocated to berths
for i = 1 to n do

read data of Vi
xi = ki
found = no
repeat

if (qi continuous berths in [Bsi, Bni] are available at time xi) then
found = yes

else
xi = xi + 1

end if
until found = yes
yi = starting position of available berths

end

The following example demonstrates how to assign berthing locations for vessels. The
original data of three vessels, assigned to berths 0 to 20, are shown in Table 1. According to
the BPA, the starting positions for vessels No. 1 and No. 2 are (0, 0) and (6, 0), respectively.
These positions, (0, 0) and (6, 0), are also the best positions for vessels No. 1 and No. 2
because the waiting time of the two vessels is zero. The starting bottom-left coordinate of
vessel No. 3 is (5, 0), as indicated by 1 in Figure 6. The dotted block in Figure 6 illustrates
the quay space and service time that will be assigned to vessel No. 3. Since berths have
been allocated to vessels No. 1 and No. 2 during the 5th to 11th time units, vessel No. 3 can
only be allocated to the unoccupied berths. According to the BPA, positions (5, 14), (6, 0),
and (6, 12) are tried for vessel No. 3 sequentially, as indicated by 2, 3, and 4 in Figure 7,
respectively. The feasible bottom-left coordinate of vessel No. 3 is (6, 12). The waiting time
for vessel No. 3 is 1, calculated from xi minus ki. The final assigned berthing positions of
three vessels are listed in Table 1.



Mathematics 2024, 12, 753 8 of 15

Table 1. Data of three vessels in the berth allocation problem.

Original Data of Three Vessels Assigned Berthing Position

Vessel No

ki
Estimated

Arrival
Time

pi
Estimated
Operation

Time

qi
Number of

Berths
Needed

Bsi
Starting

Position of
Suitable
Berths

Bni
Ending

Position of
Suitable
Berths

xi
Starting

Time

yi
Starting
Position

Waiting
Time

1 0 6 14 0 20 0 0 0
2 6 8 12 0 20 6 0 0
3 5 6 8 0 20 6 12 1
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Step 3: Compute the fitness value of each chromosome

The fitness value is the sum of the waiting time of each vessel plus the overall comple-
tion time of vessel service. A lower fitness value indicates a better berth allocation plan.

Fitness = ∑n
i=1(xi − ki) + max{xi + pi, i = 1, . . . , n} (10)

According to the data from Table 1, the total waiting time of all vessels is 1. Observing
the berth allocation layout of Figure 7, the overall completion time limited by vessel No. 2
is 14. The fitness value is 15.

Step 4: Generate the next-generation population

This step is to adopt an evolutionary strategy that can extract the most desirable
features from parents’ genes and combine them with new genes to form the next generation.
Figure 8 illustrates that the chromosomes of the next-generation population are composed
of three parts: part 1 is comprised of the top-performing chromosomes from the previous
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generation, part 2 consists of chromosomes generated through mutation operations from
those in part 1, and part 3 is generated randomly. The following steps show how to form
the next-generation population.

Step 4.1: Sort the chromosomes in ascending order of their fitness value.
Step 4.2: Directly transfer a selected percentage (referred to as ‘noChroRes’ hereafter) of the
top-performing chromosomes to the next generation, indicated as part 1 in Figure 8. It is
called an elitist strategy [23].
Step 4.3: In the berth allocation process, the layout of front vessels affects how berths are
assigned to the rear ones. A better berth allocation plan means the front vessels form a
better layout. Therefore, sequentially retrieve each chromosome from part 1 and perform
the mutation operation to generate an increasing number of chromosomes in the next
generation, as indicated by part 2 in Figure 8. The number of chromosomes generated
through mutation option from each chromosome of part 1 is determined by ‘noGen’. The
mutation operation retains a certain percentage of genes from each chromosome of part 1
(referred to as ‘mRate’ hereafter), while other genes are randomly generated to form a new
chromosome. Figure 9 illustrates the result of the mutation operation on one chromosome
representing nine vessels. Assuming “noGen” is 1, it means one mutated chromosome is
generated from each chromosome of part 1. With mRate equal to 30% (9 × 30% = 2.7), the
mutated chromosome inherits the first and second genes from the parent, represented by
‘1’ and ‘2’ in Figure 9, while genes 3 through 9 are randomly generated. The chromosome
after the mutation operation represents a new vessel’s berthing sequence. Therefore, when
randomly generating the third gene, its value cannot be the same as the first or second
gene’s value, and similarly, when randomly generating the fourth gene, its value cannot be
the same as the first through third genes’ values.
Step 4.4: Chromosomes of part 3, indicated in Figure 8, are generated randomly.
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Lin [24] indicated that the same chromosome segments of different chromosomes do
not lead to the same rectangle deployment in assortment problems. Therefore, a genetic
algorithm with crossover operation for solving assortment problems performs poorly.
The current study transforms the BAP into a two-dimensional packing problem, similar
to the assortment optimization problem. Hence, crossover operation preserving some
chromosome segments seems unnecessary in the BAP because the final layouts of the same
chromosome segments depend on the genes before these segments. This study adopts only
mutation operation to guarantee population diversity in the genetic algorithm without any
crossover operation.

In this study, the operation of the genetic algorithm (GA) is determined by the fol-
lowing three factors. Considering the preservation of highly fit gene combinations with
moderate proportions and the introduction of new genes through mutation operations to
increase population diversity, the recommended values for these three factors are as follows:

1. The percentage of highly fit chromosomes to retain, denoted as ‘noChroRes’ in Table 2.
Method 1 retains only the best chromosome, while methods 2 through 5 retain 12.5%
of highly fit chromosomes.

2. The number of offspring each highly fit chromosome should generate, denoted as
‘noGen’ in Table 2. Method 1 does not generate offspring from each highly fit chromo-
some, while methods 2 and 3 generate 2 offspring from each highly fit chromosome,
and methods 4 and 5 generate 1 offspring from each highly fit chromosome.

3. The number of genes inherited from the parent chromosome through the mutation
operation, denoted as ‘mRate’ in Table 2. In method 1, no genes are inherited from
highly fit chromosomes, while in methods 2 and 4, 50% of genes are inherited, and in
methods 3 and 5, 30% of genes are inherited.

Table 2. Data of five methods.

Method
Combination of Parameters Fitness Value of Fifty Trials of 3000 Evaluations

noChroRes noGen mRate Mean Std. Deviation Minimum Maximum

1 The best one 0 0 563.82 11.48 526 582
2 12.5% 2 50% 550.86 18.33 515 581
3 12.5% 2 30% 542.16 16.67 509 565
4 12.5% 1 50% 551.78 17.18 504 580
5 12.5% 1 30% 539.32 16.57 502 573

Proper settings of these factors directly impact the performance and convergence
speed of the algorithm and should be determined based on specific problem characteristics
and algorithm performance. Methods 1 to 5 in Table 2 consider the combinations of
different parameters for these three factors. By conducting experiments and analyses on
these five methods listed in Table 2, the most appropriate parameter settings for this study
are identified.

One-way ANOVA was conducted to test the significance of the difference among the
five methods. However, Levene’s test showed that variances of the five methods were
unequal (Leven statistics = 3.609, df1 = 4, df2 = 245, significance = 0.007), indicating that
the assumption of ANOVA is invalid. Instead, Brown–Forsythe [25] was employed as the
robust test of equality of the means. The results showed significant (BF = 17.561, df1 = 4,
df2 = 229.155, significance = 0.000), implying at least one mean distinct from others. Because
the sample size was over 50, the Games–Howell test was performed for post hoc multiple
comparisons. Conclusively, the fitness value of method 1 is the worst. Also, the mean of
fitness values in method 3 (mean = 542.16) and method 5 (mean = 539.32) are better than
the other three methods.

The results show that preserving the genes from highly fit chromosomes to generate the
next generation helps obtain better solutions. The results of fifty trials of 3000 evaluations
suggest that noChroRes = 12.5%, noGen = 1 or 2, and mRate = 30% appear to be better
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combinations than others. According to the results in Table 2, this research adopts the
combination of parameters in method 5, which produces a lower mean of fitness value than
other methods for the experiments in Section 4. If 81 vessels need to be scheduled, then the
population size is 162. Part 1 consists of 20 chromosomes (162 × 12.5%). Part 2 comprises
20 chromosomes generated through mutation operations from those in part 1 (noGen = 1),
with each mutated chromosome inheriting 24 genes (81 × 30%) from the parent generation.
Part 3 consists of 122 chromosomes (162–20–20).

4. Numerical Examples

Due to the strong heterogeneity of BAP models, making a fair comparison among them
seems impossible. Because of the lack of benchmarks involving different types of BAPs [11],
this study uses a set of real-world simulated instances to demonstrate the effectiveness
and efficiency of the proposed method. First, Examples 1 and 2 are used to evaluate the
performance of the GA optimization approach. Then, Example 3 is presented to examine
the practicability of the GA optimization approach. Finally, a convergence diagram shows
that the GA optimization approach is an effective tool for solving the BAP problem. All the
examples were solved on a personal computer with Intel Core i5 M460 @2.53 GHz CPU.
The GA optimization approach was implemented with Java programming language, while
the deterministic optimization model was solved with LINGO 20.0 (2009).

Example 1 is to assign berthing locations for 27 vessels in four types of quays. The
data of quays and vessels are shown in Tables 3 and 4, respectively. Table 3 lists four types
of quay that provide specific terminal facilities for loading/unloading in a port. Every quay
has limitations on its berths and water depth. Table 4 lists the data of 27 vessels scheduled
to arrive within twenty-four hours.

Table 3. Data of four types of quays in the berth allocation problem.

Type of Quay Passenger and Cargo General Cargo Container Cement Carrier

Serial number of berths 1~20 21~80 81~120 121~150 151~220 221~240
Depth (Meter) 7 6 10 8 13 11

Table 4. Data of 27 vessels in the berth allocation problem.

No Type of Ship
ki

Estimated
Arrival Time

pi
Estimated
Operation

Time

qi
Number of

Berths
Needed

di
Draft

Bsi
Starting Position

of Suitable
Berths

Bni
Ending Position

of Suitable
Berths

1 Container 0 8 55 8 121 220
2 Container 2 6 50 6 121 220
3 Container 15 3 40 8 121 220
4 Container 4 5 62 9 151 220
5 Container 7 10 45 12 151 220
6 Container 11 12 48 7 121 220
7 Container 16 4 24 10 151 220
8 Container 12 11 30 12 151 220
9 Container 4 7 43 10 151 220

10 General Cargo 8 6 17 6 21 120
11 General Cargo 20 3 8 7 81 120
12 General Cargo 9 15 9 4 21 120
13 General Cargo 12 8 16 6 21 120
14 General Cargo 22 8 15 9 81 120
15 General Cargo 19 10 13 9 81 120
16 General Cargo 2 7 5 6 21 120
17 General Cargo 6 13 14 6 21 120
18 General Cargo 3 3 9 7 81 120
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Table 4. Cont.

No Type of Ship
ki

Estimated
Arrival Time

pi
Estimated
Operation

Time

qi
Number of

Berths
Needed

di
Draft

Bsi
Starting Position

of Suitable
Berths

Bni
Ending Position

of Suitable
Berths

19 General Cargo 13 5 20 7 81 120
20 General Cargo 12 4 16 8 81 120
21 General Cargo 3 7 12 9 81 120
22 General Cargo 8 4 6 6 21 120
23 Cement Carrier 15 9 18 9 221 240
24 Cement Carrier 5 7 12 10 221 240

25 Passenger and
Cargo 12 4 15 7 1 20

26 Passenger and
Cargo 16 3 11 4 1 20

27 Passenger and
Cargo 10 2 10 6 1 20

Example 2 is to assign berthing locations for 54 vessels in four types of quays. The
data set in Table 4 is duplicated for Example 2 so that the number of vessels increases from
27 to 54. In Example 2, the estimated operation time (pi) and the number of berths needed
(qi) are divided by two for all vessels. The estimated arrival time (ki) of vessels No. 28 to
No. 54 is increased by five units.

In order to evaluate the performance of the GA optimization approach, Examples 1
and 2 were solved using the deterministic optimization model and the GA optimization
approach, respectively. Table 5 compares the results of the two methods. Solving the
deterministic optimization models on LINGO 20.0, the obtained globally optimal values of
Examples 1 and 2 are 98 and 36, respectively. Fifty trials of 3000 evaluations were ran by GA
optimization approach with noChroRes = 12.5%, noGen = 1 and mRate = 30%. Observing
the computational results in Table 5, the best solution of the GA optimization approach
is identical to the globally optimal solution obtained from the deterministic optimization
model. In addition, the objective values of the global optimal solution and the average
solution of the GA optimization approach are very close. Therefore, the results demonstrate
that the GA optimization approach provides competitive results in terms of solution quality.

Table 5. Experimental results of Examples 1 and 2.

Example No of Vessels
Deterministic Optimization Model GA Optimization Approach

Globally Optimal
Solution

CPU Time
(mm:ss) Best Solution Average Solution Average CPU

Time (mm:ss)

1 27 98 00:51 98 98 00:02

2 54 36 07:36 36 36.3 00:12

Example 3 verifies that the GA optimization approach yields near-optimal solutions
efficiently for more complicated problems. Example 3 contains 81 vessels that are increased
threefold from Table 4. Data of vessels No. 1 to No. 27 are the same as in Table 4. Data of
vessels No. 28 to No. 54 and vessels No. 55 to No. 81 are generated from Table 4 where
the estimated arrival time (ki) of each vessel is shifted backward by increasing five and
eight units, respectively. Table 6 lists the experimental results of the two methods. The
deterministic optimization model involving 81 vessels cannot be solved within two hours
by LINGO 20.0. The developed GA optimization approach takes about three minutes to
obtain a near-optimal solution with the best objective value of 1324. The GA optimization
approach provides a near-optimal solution for allocating berths to vessels if the determin-
istic optimization model cannot globally solve the BAP within a reasonable amount of
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computational time. Therefore, the results demonstrate that the GA optimization approach
is a more practical method for large-scale problems.

Table 6. Experimental results of Example 3.

Example No of Vessels
Deterministic Optimization Model GA Optimization Approach

Global Optimal
Solution

CPU Time
(mm:ss) Best Solution Average Solution Average CPU

Time (mm:ss)

3 81 N/A >120:00 1324 1397.74 02:51

The optimal berth allocation layout of Example 3 is presented as a time-space diagram
indicated in Figure 10. Herein, 81 vessels are assigned to the corresponding type of quay
and do not overlap with each other.

Mathematics 2024, 12, x FOR PEER REVIEW 14 of 16 
 

 

The optimal berth allocation layout of Example 3 is presented as a time-space dia-

gram indicated in Figure 10. Herein, 81 vessels are assigned to the corresponding type of 

quay and do not overlap with each other. 

 

Figure 10. Optimal berth allocation layout for 81 vessels. 

Figure 11 illustrates the convergence of the GA optimization approach in 100, 500, 

1500, and 3000 evaluations for Example 2. The best solutions to 100, 500, 1500, and 3000 

evaluations are identical to the globally optimal value of Example 2, 36. The objective 

value stabilizes toward the globally optimal solution as the number of evaluations in-

creases. The convergence diagram indicates that the GA optimization approach is an ef-

fective tool for solving the BAP. 

 

Figure 11. Convergence diagram of the GA optimization approach. 

5. Conclusions 

This research offers a twofold solution for the port authorities to enhance their com-

petitiveness in the global transportation network. This study focuses on the continuous 

and dynamic berth allocation problems. The proposed method models the berth allocation 

problem as a mixed-integer linear programming problem that minimizes the total waiting 

time of vessels and the overall completion time of vessel service to improve the berth uti-

lization rate. The formulated model can be globally solved by conventional mixed-integer 

linear programming techniques. For practical scenarios involving a significant number of 

vessels and complex conditions, a GA optimization approach is developed to provide a 

near-optimal solution within a reasonable amount of computational time. The experi-

mental results indicate the effectiveness and efficiency of the proposed method. Finally, 

the results of berth assignment are presented as time-space diagrams, aiding port author-

ities in making more informed and timely decisions regarding berth allocation. 
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Figure 11 illustrates the convergence of the GA optimization approach in 100, 500,
1500, and 3000 evaluations for Example 2. The best solutions to 100, 500, 1500, and 3000
evaluations are identical to the globally optimal value of Example 2, 36. The objective value
stabilizes toward the globally optimal solution as the number of evaluations increases. The
convergence diagram indicates that the GA optimization approach is an effective tool for
solving the BAP.
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5. Conclusions

This research offers a twofold solution for the port authorities to enhance their com-
petitiveness in the global transportation network. This study focuses on the continuous
and dynamic berth allocation problems. The proposed method models the berth allocation
problem as a mixed-integer linear programming problem that minimizes the total waiting
time of vessels and the overall completion time of vessel service to improve the berth uti-
lization rate. The formulated model can be globally solved by conventional mixed-integer
linear programming techniques. For practical scenarios involving a significant number of
vessels and complex conditions, a GA optimization approach is developed to provide a
near-optimal solution within a reasonable amount of computational time. The experimen-
tal results indicate the effectiveness and efficiency of the proposed method. Finally, the
results of berth assignment are presented as time-space diagrams, aiding port authorities
in making more informed and timely decisions regarding berth allocation.

The nature of seaside operations, encompassing berth allocation problems (BAP),
quay crane assignment problems (QCAP), and quay crane scheduling problems (QCSP),
is comprehensive. While this study emphasizes time-related factors in berth allocation,
port authorities and carriers are also concerned with several related issues, including cost
factors and berthing priority. Consequently, more factors should be considered in future
research. Additionally, the GA optimization approach can reach a near-optimal solution of
the BAP, but it still cannot guarantee the global optimality of the solution. Developing an
efficient deterministic method to obtain a globally optimal solution for practical cases with
heavy vessel traffic is also worth investigating in the future.
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