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Abstract: This article deals with the study of Hyers–Ulam stability (HU stability) and Hyers–Ulam–Rassias
stability (HUR stability) for two classes of nonlinear Volterra integral equations (VIEqs), which are
Hammerstein-type integral and Hammerstein-type functional integral equations, respectively. In this
article, both the HU stability and HUR stability are obtained for the first integral equation and the HUR
stability is obtained for the second integral equation. Among the used techniques, we present fixed
point arguments and the Gronwall lemma as a basic tool. Two supporting examples are also provided to
demonstrate the applications and effectiveness of the results.
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1. Introduction

In recent literature, an extensive amount of attention has been focused on the investiga-
tion of the existence and uniqueness of solutions, HU stability, and HUR stability of VIEqs,
Volterra integro-differential equations (VIDEqs), ordinary differential equations (ODEqs),
functional differential equations (FDEqs), etc., for both pure mathematical research and
concrete real-world applications. In particular, for some practical and realistic approaches
to nonlinear integral equations (IEqs), where researchers are paying great attention to
the effects caused by the nonlinearity of dynamical equations in nonlinear science, see,
e.g., the books of Burton[1], Corduneanu [2], Wazwaz [3] and the references of these books.
Furthermore, potential theory has contributed more than any field to give to nonlinear
IEqs. In addition, mathematical physics models, such as diffraction problems, scattering in
quantum mechanics, and water waves, also contributed to the creation of nonlinear IEqs.
Hence, it is important to investigate the qualitative properties of VIEqs.

As for a comprehensive treatment of the subject with regard to the qualitative be-
haviors of certain VIEqs, VIDEqs, IDEqs and some others, we refer the readers to the
following works: for the existence and Ulam stability of quadratic IEqs by Schauder’s
fixed point theorem, see Abbas and Benchohra [4]; the existence and asymptotic stability of
nonlinear VIEqs by a fixed point theorem, see Banaś and Rzepka [5]; the stability of FDEqs
by fixed point theory, see Burton [6]; the HU stability and HUR stability of VIEqs with
delay, Hammerstein IEqs and IDEqs, respectively, see Castro and Ramos [7] and Castro and
Simões [8,9]; the HU stability for ODEqs and partial differential equations via the Gronwall
lemma, see Ciplea et al. [10]; the HUR stability of Volterra–Hammerstein IEqs by the fixed
point method, see Ciplea et al. [11] and Tunç and Tunç [12]; the Ulam stabilities of iterative
FDEqs of the first order by the fixed point method, see Egri [13]; the HU stability and HUR
stability of VIDEqs by the fixed point method, see Tunç and Tunç [14] and Tunç et al. [15,16];
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the HU stability and HUR stability of VIEqs by the fixed point method, see Jung [17] and
Öğrekçi [18]; the HUR stability of functional equations and fractional differential equations
by the fixed point method, respectively, see Jung [19] and Khan et al. [20]; the HU stability
for operatorial equations and inclusions via nonself operators, see Petru et al. [21]; the HU
stability of ODEqs and differential operators, see Popa and Raşa [22]; the Ulam stability of
the linear mapping in Banach spaces, see Rassias [23]; Ulam stability, see Ulam [24]; the sta-
bility of IDEqs in the sense of Lyapunov, see Bohner and Tunç [25] and Tunç and Tunç [26];
the stability of mappings of the Hyers–Ulam type, see [27]; the Ulam-type stability, see [28];
and the references of these sources.

We now explain the related results in the reference paper for this work.
In 2011, Lungu [29] considered the following scalar VIEq:

u(x) = h(x) +
x∫

0

f (x, s, u(s), g(u(s)))ds. (1)

In Theorem 4.1, Theorem 4.2 for [29], the author obtained stability results of the HU and
HUR types for VIEq (1) by using the Gronwall lemma.

In the same work, Lungu [29] also considered the following scalar functional VIEq in
higher dimensions:

u(x, y) = g(x, y, h(u)(x, y)) +
x∫

0

y∫
0

K(x, y, s, t, u(s, t), f (u(s, t)))dsdt. (2)

In [29], Theorem 5.1, the author proved a stability result of the HUR type for the nonlinear
functional VIEq (2) by using the Gronwall lemma.

Throughout this paper, let (B, |.|) denote a (real or complex) Banach space with the
norm |.|.

In particular, C([0, a), β) denotes the space of continuous operators from [0, a) in B.
We should mention that without loss of generalization, similar representations are

also used for some other operators throughout this paper.
In this article, first, instead of VIEq (1), we consider the following nonlinear scalar

VIEq:

ϑ(x) =h(x) + q(ϑ(x)) + r(x, ϑ(x))
x∫

0

f (x, s, ϑ(s), g(ϑ(s)))ds

+ p(x, ϑ(x), β(ϑ(x))) +
x∫

0

Ξ(x, s)ρ(ϑ(s)))ds, (3)

where x ∈ [0, a); ϑ ∈ C([0, a], B ), i.e., ϑ : [0, a] → B is continuous; h ∈ C([0, a), B);
q, g, β, ρ ∈ C([0, a)× C([0, a))); r ∈ C([0, a)× B, B); f ∈ C

(
[0, a) × [0, a) × B2, B

)
; p ∈

C
(
[0, a) × B2, B

)
; Ξ ∈ C([0, a) × [0, a),R); and a ∈ (0, ∞].

In this paper, we prove two new results with regard to the HU stability and HUR
stability of the scalar VIEq (3) by means of the Gronwall lemma (Lungu [29], Rus [30]).
Next, in a particular case of VIEq (3), we give a supporting example to demonstrate the
applications and effectiveness of the HU stability and HUR stability results.

Second, instead of VIEq (2), we consider the following nonlinear functional VIEq in
higher dimensions:
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ϑ(x, y) =r(ϑ)(x, y) + g(x, y, h(ϑ)(x, y))

+ q(x, y, p(ϑ)(x, y))
x∫

0

y∫
0

K(x, y, s, t, ϑ(s, t), f (ϑ(s, t)))dsdt, (4)

where x, s ∈ [0, a]; y, t ∈ [0, a]; ϑ ∈ C([0, a]× [0, a], B ), i.e., ϑ : [0, a]× [0, a] → B is con-
tinuous; ϕ ∈ C

(
[0, a]2,R+

)
; R+ = [0, ∞); r ∈ C

(
[0, a]2, B

)
; f , h, p ∈ C

(
[0, a]2 × B, B

)
;

g, q ∈ C
(
[0, a]2 × B, B

)
; and K ∈ C

(
[0, a]4 × B2, B

)
. In this article, we prove a new result

related to the HUR stability of the scalar VIEq (4) by means of the Gronwall lemma. Fi-
nally, in a particular case of VIEq (4), we establish an example to verify the relevance and
effectiveness of the HUR stability result.

As for the motivation of this study, the first essential reference paper and the results are
those of Lungu [29], Theorems 4.1, 4.2, 5.1. The next sources are the abovementioned papers
and books and the HU and HUR stability results in these works. In fact, Hammerstein-type
integral equations, Hammerstein-type integral operators, Hammerstein-type integral inclu-
sions, etc., have scientific importance and applications in the mathematical and engineering
literature (see, for example, the monograph of Janczak [31]). In addition, VIEq (1) and
VIEq (2) have simple forms and they are also not in the form of Hammerstein-type integral
equations. Hence, considering and investigating Ulam-type stabilities of the Hammerstein-
type integral Equations (1) and (2) were the motivation to do this study. We aimed to
extend and improve the results of Lungu [29],Theorems 4.1, 4.2, 5.1 and to provide new
contributions to the related works in the earlier literature. We should also note that in the
literature, most of the works related to the HU and HUR stabilities of VIEqs, VIDEqs, etc.,
were done in light of Banach’s fixed point theorem, the Bielecki metric, the Pachpatte’s
inequality and Picard operator theory. However, according to the results of Lungu [29],
Theorems 4.1, 4.2, 5.1 and this paper, we can see that the Gronwall lemma is very effective
and a suitable tool to prove the HU stability and HUR stability of nonlinear VIEqs. We
would like to attract the attention of scholars to this case.

The remaining sections of this paper are structured as follows: Section 2 includes two
new results related to the HU and HUR stabilities of VIEq (3) and an example supporting
the applications of these theorems. Section 3 includes a new theorem with regard to the
HUR stability of VIEq (4) and an example supporting the application of this theorem.
Section 4 consists of the discussion of the results. Finally, the conclusion of the paper is
presented in Section 5.

2. The HU and HUR Stabilities of VIEq (3)

We now give the HU stability result with regard to VIEq (3) in Theorem 1.

Theorem 1. Suppose that we have
(As1)

h ∈ C([0, a], B); q, g, β, ρ ∈ C([0, a]× C([0, a])); r ∈ C([0, a]× B, B);

f ∈ C
(
[0, a]× [0, a]× B2, B

)
; p ∈ C

(
[0, a]× B2, B

)
; Ξ ∈ C([0, a]× [0, a],R).

(As2) There exist positive constants rM0 , M, qL, fL, pL, gL, βL and ρL such that

rM0 = max
x∈[0,a]

|r(x, ϑ)|, ∀ x ∈ [0, a], ∀ ϑ ∈ B,

|Ξ(x, s)| ≤ M, ∀ x, s ∈ [0, a],

|q(ϑ)− q(v)| ≤ qL|ϑ − v|, ∀ ϑ, v ∈ B,
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| f (x, s, ϑ1, v1)− f (x, s, ϑ2, v2)| ≤ fL|ϑ1 − ϑ2|+ fL|v1 − v2|,

∀ x, s ∈ [0, a], ∀ ϑ1, ϑ2, v1, v2 ∈ B,

|p(x, ϑ1, v1)− p(x, ϑ2, v2)| ≤ pL|ϑ1 − ϑ2|+ pL|v1 − v2|,

∀ x ∈ [0, a], ∀ ϑ1, ϑ2, v1, v2 ∈ B,

|g(ϑ)− g(v)| ≤ gL|ϑ − v|, ∀ ϑ, v ∈ B,

|β(ϑ)− β(v)| ≤ βL|ϑ − v|, ∀ ϑ, v ∈ B,

|ρ(ϑ)− ρ(v)| ≤ ρL|ϑ − v|, ∀ ϑ, v ∈ B.

Then,

(a) VIEq (3) has a unique solution ϑ∗ in C([0, a], B);
(b) For each ε > 0, if ϑ ∈ C([0, a], B) is a solution of the inequality

∣∣∣∣ϑ(x)− h(x)− q(ϑ(x))− r(x, ϑ(x))
x∫

0

f (x, s, ϑ(s), g(ϑ(s)))ds

− p(x, ϑ(x), β(ϑ(x)))−
x∫

0

Ξ(x, s)ρ(ϑ(s))ds
∣∣∣∣ ≤ ε, ∀ x ∈ [0, a], (5)

then
|ϑ(x)− ϑ∗(x)| ≤ C f × ε, ∀ x ∈ [0, a],

where
C f =

1
C0

exp
[(

rM0 fL(1 + gL) + ρL M
)
C−1

0 a
]

with
C0 = 1 − qL − pL − pLβL > 0.

Hence, VIEq (3) is HU stable.

Proof.

(a) The proof can be easily done as in Rus [32]. We will not give the proof of (a).
(b) According to (As1), (As2) and (5) we derive

|ϑ(x)− ϑ∗(x)| ≤

∣∣∣∣∣∣ϑ(x)− h(x)− q(ϑ(x))− r(x, ϑ(x))
x∫

0

f (x, s, ϑ(s), g(ϑ(s)))ds

−p(x, ϑ(x), β(ϑ(x)))−
x∫

0

Ξ(x, s)ρ(ϑ(s))ds

∣∣∣∣∣∣
+ |q(ϑ(x))− q(ϑ∗(x))|
+ |p(x, ϑ(x), β(ϑ(x)))− p(x, ϑ∗(x), β(ϑ∗(x)))|

+

∣∣∣∣r(x, ϑ(x))
x∫

0

f (x, s, ϑ(s), g(ϑ(s)))

− r(x, ϑ∗(x))
x∫

0

f (x, s, ϑ∗(s), g(ϑ∗(s)))
∣∣∣∣ds

+

∣∣∣∣∣∣
x∫

0

[Ξ(x, s)ρ(ϑ(s))− Ξ(x, s)ρ(ϑ∗(s))]

∣∣∣∣∣∣ds

≤ε + qL|ϑ(x)− ϑ∗(x)|+ pL|ϑ(x)− ϑ∗(x)|
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+ pL|β(ϑ(x))− β(ϑ∗(x))|

+ rM0 fL

x∫
0

|ϑ(s)− ϑ∗(s)|ds + rM0 fL

x∫
0

|g(ϑ(s))− g(ϑ∗(s))|ds

+ ρL

x∫
0

|Ξ(x, s)| |ϑ(s)− ϑ∗(s)|ds

≤ε + qL|ϑ(x)− ϑ∗(x)|+ pL|ϑ(x)− ϑ∗(x)|
+ pLβL|ϑ(x)− ϑ∗(x)|

+ rM0 fL

x∫
0

|ϑ(s)− ϑ∗(s)|ds + rM0 fLgL

x∫
0

|ϑ(s)− ϑ∗(s)|ds

+ ρL M
x∫

0

|ϑ(s)− ϑ∗(s)|ds (6)

In light of the above findings, i.e., from (6) we derive

(1 − qL − pL − pLβL)|ϑ(x)− ϑ∗(x)| ≤ ε +
[
rM0 fL(1 + gL) + ρL M

] x∫
0

|ϑ(s)− ϑ∗(s)|ds. (7)

Then, (7) gives

|ϑ(x)− ϑ∗(x)| ≤ ε

1 − qL − pL − pLβL
+

[
rM0 fL(1 + gL) + ρL M

]
1 − qL − pL − pLβL

x∫
0

|ϑ(s)− ϑ∗(s)|ds. (8)

Using the Gronwall lemma (Lungu [29], Rus [30]), from (8), we obtain

|ϑ(x)− ϑ∗(x)| ≤ ε

1 − qL − pL − pLβL
exp

[(
rM0 fL(1 + gL) + ρL M

)
a

1 − qL − pL − pLβL

]

≤ ε

C0
exp

[(
rM0 fL(1 + gL) + ρL M

)
a

C0

]
. (9)

Let

C f =
1

C0
exp

[(
rM0 fL(1 + gL) + ρL M

)
a

C0

]
and

0 < qL + pL + pLβL < 1.

Hence, according to (9), we have

|ϑ(x)− ϑ∗(x)| ≤ C f × ε, ∀ x ∈ [0, a].

As a result of the above inequality, according to the conditions of Theorem 1, we conclude
that VIEq (3) is HU stable.

We now provide a supporting example to demonstrate the numerical application of
Theorem 1.
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Example 1.

ϑ(x) =
1

1000
exp(−x2) +

1
100

sin(ϑ(x)) +
1

50 + x2 + exp(ϑ2(x))

x∫
0

[
ϑ(s) + sin(ϑ(s))
1000 + x2 + s2

]
ds

+
1

500 + x6 sin(ϑ(x)) +
1

10000

x∫
0

exp[−(x − s)] sin(ϑ(s))ds. (10)

We note that VIEq (10) is in the form of VIEq (3) with the data as follows:

h(x) =
1

1000
exp(−x2),

r(x, ϑ) =
1

50 + x2 + exp(ϑ2)
,

Ξ(x, s) =
1

100
exp[− (x − s)], 0 ≤ s ≤ x ≤ a,

ρ(ϑ) =
1

100
sin(ϑ),

f (x, s, ϑ, g(ϑ)) =
ϑ + sin(ϑ)

1000 + x2 + s2 ,

p(x, ϑ, β(ϑ)) =
1

500 + x6 sin(ϑ),

g(ϑ) = sin(ϑ),

β(ϑ) = sin(ϑ), where ϑ represents ϑ(x).

Now, we check the conditions (As1) and (As2) of Theorem 1. To verify that (As1) and (As2)
hold, we let rM0 = 50−1, M = 100−1, qL = 100−1, fL = 100−1, gL = 1, pL = 500−1, βL = 1,
ρL = 100−1 and calculate:

|r(x, ϑ)| = 1
50 + x2 + exp(ϑ2)

≤ 1
50

, ∀ x ∈ [0, a], ∀ ϑ ∈ B,

|Ξ(x, s)| = 1
100

exp[−(x − s)] ≤ 1
100

, ∀ x, s ∈ [0, a], 0 ≤ s ≤ x ≤ a,

|q(ϑ)− q(v)| = 1
100

|sin(ϑ)− sin(v)|

=
1

50

∣∣∣∣cos(ϑ + v)
2

∣∣∣∣ ∣∣∣∣ sin(ϑ − v)
2

∣∣∣∣
≤ 1

100
|ϑ − v|, ∀ϑ, v ∈ B,

f (x, s, ϑ, g(ϑ)) =
ϑ + sin(ϑ)

1000 + x2 + s2 ,

g(ϑ) = sin(ϑ),

| f (x, s, ϑ1, v1)− f (x, s, ϑ2, v2)|

=
1

1000 + x2 + s2 |ϑ1 + sin(v1)− ϑ2 − sin(v2)|

≤ 1
1000

|ϑ1 − ϑ2|+
1

1000
|v1 − v2|, ∀ x, s ∈ [0, a], ∀ ϑ1, ϑ2, v1, v2 ∈ B,

|p(x, ϑ1, v1)− p(x, ϑ2, v2)| =
1

500 + x6 |sin(v1)− sin(v2)|
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≤ 1
500

|v1 − v2|, ∀ x ∈ [0, a], ∀ ϑ1, ϑ2, v1, v2 ∈ B,

|ρ(ϑ1)− ρ(ϑ2)| =
1

100
|sin(ϑ1)− sin(ϑ2)| ≤

1
100

|ϑ1 − ϑ2|, ∀ ϑ1, ϑ2 ∈ B,

0 < qL + pL + pLβL =
1

100
+

2
500

=
7

500
< 1,

C f = C−1
0 exp

[(
rM0 fL(1 + gL) + ρL M

)
aC−1

0

]
=

500
493

exp
[(

1
2500

+
1

10000

)
a
]

.

Hence, the conditions (As1) and (As2) of Theorem 1 hold. This result shows that VIEq (10) is HU
stable. Thus, the application of Theorem 1 is provided by the given example.

In the next Theorem 2, we give the stability result in the sense of HUR for VIEq (3).

Theorem 2. We assume that (As1) and (As2) of Theorem 1 hold and let ϕ ∈ C([0, a],R+),
R+ = [0, ∞) and ϕ be an increasing function. Then, we have the following results:

(a) VIEq (3) has a unique solution ϑ∗ in C([0, a], B);
(b) If ϑ ∈ C([0, a], B) is a solution of the inequality∣∣∣∣∣ϑ(x)− h(x)− q(ϑ(x))− r(x, ϑ(x))

x∫
0

f (x, s, ϑ(s), g(ϑ(s)))ds

− p(x, ϑ(x), β(ϑ(x)))−
x∫

0

Ξ(x, s)ρ(ϑ(s)))ds

∣∣∣∣∣ ≤ ϕ(x), ∀ x ∈ [0, a], (11)

then
|ϑ(x)− ϑ∗(x)| ≤ C f × ϕ(x),

∀ x ∈ [0, a],

where

C f =
1

1 − qL − pL − pLβL
exp

[(
rM0 fL(1 + gL) + ρL M

)
a

1 − qL − pL − pLβL

]
and

qL + pL + pLβL < 1.

Hence, VIEq (3) is HUR stable.

Proof. In light of (As1), (As2) and (11), the proof of Theorem 2 can be done analogously to
Theorem 1. Hence, we will not give the proof of this theorem.

Remark 1. Example 1 can be updated to show that VIEq (10) is also HUR stable. We will not give
the details of this discussion for the sake of brevity and to avoid repeating Example 1.

3. The HUR Stability of the Functional VIEq (4)

In this section, we give the HUR stability result with regard to VIEq (4) in the
following theorem.

Theorem 3. Suppose that we have

(C1) r ∈ C
(
[0, a]2, B

)
; f , h, p ∈ C

(
[0, a]2 × B, B

)
; g, q ∈ C

(
[0, a]2 × B, B

)
;

K ∈ C
(
[0, a]4 × B2, B

)
; ϕ ∈ C

(
[0, a]2,R+

)
; and increasing.
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(C2) There exists positive constants qM, rL, gL, hL, KL and fL such that

qM = max
x∈[0,a]

|q(x, y, ϑ)|, ∀ x, y ∈ [0, a], ∀ ϑ ∈ B,

|r(ϑ)− r(v)| ≤ rL|ϑ − v|, ∀ ϑ, v ∈ B,

|g(x, y, ϑ)− g(x, y, v)| ≤ gL|ϑ − v|, ∀ x, y ∈ [0, a], ∀ ϑ, v ∈ B,

|h(ϑ)− h(v)| ≤ hL|ϑ − v|, ∀ ϑ, v ∈ B,

|K(x, y, s, t, ϑ1, v1)− K(x, y, s, t, ϑ2, v2)| ≤ KL|ϑ1 − ϑ2|+ KL|v1 − v2|,

∀ x, s ∈ [0, a], ∀ y, t ∈ [0, a], ∀ ϑ1, ϑ2, v1, v2 ∈ B,

| f (ϑ)− f (v)| ≤ fL|ϑ − v|, ∀ ϑ, v ∈ B .

Then, we have the following results:

(a) VIEq (4) has a unique solution ϑ∗ in C([0, a]× [0, a], B);
(b) If ϑ ∈ C([0, a]× [0, a], B) is a solution of the inequality∣∣∣∣∣ϑ(x, y)− r(ϑ)(x, y)− g(x, y, h(ϑ)(x, y))

− q(x, y, p(ϑ)(x, y))
x∫

0

y∫
0

K(x, y, s, t, ϑ(s, t), f (ϑ(s, t)))dsdt

∣∣∣∣∣ ≤ ϕ(x, y), (12)

∀ x, y, s, t ∈ [0, a],

then
|ϑ(x, y)− ϑ∗(x, y)| ≤ CKL ,L f ,gL ,gM ,rL × ϕ(x, y), ∀ x, y ∈ [0, a],

where

CKL , fL ,gL ,hL ,qM ,rL =
1

1 − rL − gLhL
exp

[
qMKL(1 + fL)a2

1 − rL − gLhL

]
and

0 < rL + gLhL < 1.

Hence, VIEq (4) is HUR stable.

Proof.

(a) The proof of this theorem can be easily done (see, Lungu [29]). Therefore, we will not
give the proof of this theorem.

(b) According to the conditions (C1), (C2) and (12), we derive

∣∣∣∣∣ϑ(x, y)− ϑ∗(x, y)

∣∣∣∣∣ ≤
∣∣∣∣∣ϑ(x, y)− r(ϑ)(x, y)− g(x, y, h(ϑ)(x, y))

− q(x, y, p(ϑ)(x, y))
x∫

0

y∫
0

K(x, y, s, t, ϑ(s, t), f (ϑ(s, t)))dsdt

∣∣∣∣∣
+

∣∣∣∣∣r(ϑ)(x, y)− r(ϑ∗)(x, y)

∣∣∣∣∣+
∣∣∣∣∣g(x, y, h(ϑ)(x, y))− g(x, y, h(ϑ∗)(x, y))

∣∣∣∣∣
+

∣∣∣∣∣q(x, y, p(ϑ)(x, y))
x∫

0

y∫
0

K(x, y, s, t, ϑ(s, t), f (ϑ(s, t)))dsdt
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− q(x, y, p(ϑ∗)(x, y))
x∫

0

y∫
0

K(x, y, s, t, ϑ∗(s, t), f (ϑ∗(s, t)))dsdt

∣∣∣∣∣
≤ϕ(x, y) + rL|ϑ(x, y)− ϑ∗(x, y)|+ gL|h(ϑ(x, y))− h(ϑ∗(x, y))|

+ qMKL

x∫
0

y∫
0

|ϑ(s, t)− ϑ∗(s, t)|dsdt

+ qMKL

x∫
0

y∫
0

| f (ϑ(s, t))− f (ϑ∗(s, t))|dsdt

≤ϕ(x, y) + rL|ϑ(x, y)− ϑ∗(x, y)|
+ gLhL|ϑ(x, y)− ϑ∗(x, y)|

+ qMKL

x∫
0

y∫
0

|ϑ(s, t)− ϑ∗(s, t)|dsdt

+ qMKL fL

x∫
0

y∫
0

|ϑ(s, t)− ϑ∗(s, t)|dsdt. (13)

Hence, it follows from (13) that

|ϑ(x, y)− ϑ∗(x, y)| ≤ϕ(x, y) + (rL + gLhL)|ϑ(x, y)− ϑ∗(x, y)|

+ qMKL(1 + fL)

x∫
0

y∫
0

|ϑ(s, t)− ϑ∗(s, t)|dsdt. (14)

Then, from (14), it is clear that

(1 − gLhL − rL)|ϑ(x, y)− ϑ∗(x, y)| ≤ ϕ(x, y)

+ qMKL(1 + fL)

x∫
0

y∫
0

|ϑ(s, t)− ϑ∗(s, t)|dsdt.

Thus, we derive

|ϑ(x, y)− ϑ∗(x, y)| ≤ 1
1 − rL − gLhL

ϕ(x, y)

+
qMKL(1 + fL)

1 − rL − gLhL

x∫
0

y∫
0

|ϑ(s, t)− ϑ∗(s, t)|dsdt. (15)

Using the Gronwall lemma (Lungu [29], Rus [30]), from (15), we obtain that

|ϑ(x, y)− ϑ∗(x, y)| ≤ 1
1 − rL − gLhL

exp

 qMKL

(
1 + L f

)
a2

1 − rL − gLhL

ϕ(x, y). (16)

Let

CKL , fL ,gL ,hL ,qM ,rL =
1

1 − rL − gLhL
exp

[
qMKL(1 + fL)a2

1 − rL − gLhL

]
.

Hence, it follows from (16) that

|ϑ(x, y)− ϑ∗(x, y)| ≤ CKL , fL ,gL ,hL ,qM ,rL × ϕ(x, y). (17)
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According to the above data, (C1) and (C2) of Theorem 3 hold. The above outcomes and
(17) imply that VIEq (4) is HUR stable. Thus, the proof of Theorem 3 is completed.

We now provide the second supporting example to demonstrate the numerical appli-
cation of Theorem 3.

Example 2. Consider the following VIEq:

ϑ(x, y) =
1

1000
sin(ϑ(x, y)) +

sin(ϑ(x, y))
2000 + x4 + y4

+
sin(u(x, y))

1000(1 + exp(x2 + y2))

x∫
0

y∫
0

u(s, t) + sin(u(s, t))
500 + x4 + y4 + s2 + t2 dsdt, (18)

where 0 ≤ s ≤ x ≤ a and 0 ≤ t ≤ y ≤ a.
We note that VIEq (18) is in the form of VIEq (4) with the data as follows:

r(ϑ)(x, y) =
1

1000
sin(ϑ(x, y)),

g(x, y, h(ϑ)(x, y)) =
sin(ϑ(x, y))

2000 + x4 + y4 ,

h(ϑ)(x, y) = sin(ϑ(x, y)),

q(x, y, p(ϑ)(x, y)) =
sin(ϑ(x, y))

1000(1 + exp(x2 + y2))
,

p(ϑ)(x, y) = sin(ϑ(x, y)),

K(.) = K(x, y, s, t, ϑ(s, t), f (ϑ(s, t))) =
ϑ(s, t) + sin(ϑ(s, t))

500 + x4 + y4 + s2 + t2 ,

f (ϑ(s, t) = sin(ϑ(s, t)).

We now check the conditions (C1) and (C2) of Theorem 3. To show that (C1) and (C2) hold, we
let qM = 1000−1, rL = 1000−1, gL = 2000−1, hL = 1, KL = 500−1, fL = 1 and calculate:

|q(x, y, p(ϑ)(x, y))| = |sin(ϑ(x, y))|
1000(1 + exp(x2 + y2))

≤ 1
1000

, ∀ x, y ∈ [0, a], ∀ ϑ ∈ B,

|r(ϑ(x, y))− r(v(x, y))| = 1
1000

|sin(ϑ(x, y))− sin(v(x, y))|

≤ 1
1000

|ϑ(x, y)− v(x, y)|, ∀ x, y ∈ [0, a], ∀ ϑ, v ∈ B,

|g(x, y, h(ϑ)(x, y))− g(x, y, h(v)(x, y))| = |sin(ϑ(x, y))− sin(v(x, y))|
2000 + x4 + y4

≤ 1
2000

|sin(ϑ(x, y))− sin(v(x, y))|

≤ 1
2000

|ϑ(x, y)− v(x, y)|, ∀ x, y ∈ [0, a] ∈ B,

|K(.)− K(.)| ≤ 1
500

|ϑ(s, t)− v(s, t)|+ 1
500

|sin(ϑ(s, t))− sin(v(s, t))|

≤ 1
250

|ϑ(s, t)− v(s, t)|, ∀ x, y, s, t ∈ [0, a], ∀ ϑ, v ∈ B,

rL + gLhL =
1

500
+

1
2000

=
1

400
, 0 < rL + gLhL =

1
400

< 1,
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CKL , fL ,gL ,hL ,qM ,rL =
1

1 − rL − gLhL
exp

[
qMKL(1 + fL)a2

1 − rL − gLhL

]
=

400
399

exp
(

400
399

× a2

250000

)
=

400
399

exp
(

a2

249375

)
,

|ϑ(x, y)− ϑ∗(x, y)| ≤ CKL ,L f ,gL ,gM ,rL × ϕ(x, y)

=
400
399

exp
(

a2

249375

)
× ϕ(x, y), ∀ x, y ∈ [0, a].

Hence, (C1) and (C2) hold. Thus, VIEq (4) is HUR stable. Therefore, the application of Theorem 3
is valid.

4. Discussion

We now provide some discussion to compare the results of this paper with the related
ones that can be found in the literature.

(1) It should be noted that VIEq (3) and VIEq (4) are new mathematical models given
as a Hammerstein-type integral equation and Hammerstein-type functional integral
equation, respectively. According to data from the relevant literature and in the
references of this paper, there is no result with regard to the HU stability and HUR
stability of VIEq (3) and VIEq (4). The results of this work are novel regarding the HU
stability and HUR stability of nonlinear VIEqs.

(2) To the best of our knowledge, in the relevant literature, nearly all of the results
with regard to the HU stability, HUR stability, etc., of various VIEqs and VIDEqs
were obtained with the help of Banach’s fixed point theorem, the Bielecki metric,
the Pachpatte’s inequality and the Picard operator theory. However, we found the
paper of Lungu [29], where the Gronwall lemma was used as a basic tool to prove the
HU stability and HUR stability of nonlinear VIEqs. It can be seen that the Gronwall
lemma plays a very effective role when investigating the HU stability and HUR
stability of nonlinear VIEqs. In this article, we benefit from the advantages of the
Gronwall lemma to prove our main results. Furthermore, the Gronwall lemma can
lead to less restrictive conditions with regard to the HU stability and HUR stability of
nonlinear VIEqs.

(3) If q(ϑ(x)) = 0, r(x, ϑ(x)) = 0, p(x, ϑ(x), β(ϑ(x))) = 0 and
x∫

0
Ξ(x, s)ρ(ϑ(s)))ds = 0,

then VIEq (3) is reduced to the VIEq (1) investigated by Lungu [29]. Hence, VIEq (3)
extends and improves VIEq (1) from Lungu [29].

(4) If r(ϑ)(x, y) = 0 and q(x, y, p(ϑ)(x, y)) = 1, then VIEq (4) is reduced to the VIEq (2)
investigated by Lungu [29]. Hence, VIEq (4) extends and improves VIEq (2) from
Lungu [29].

(5) In light of (3) and (4), Theorems 1 , 2 and Theorem 3 generalize and improve the re-
sults of Lungu [29], Theorems 4.1, 4.2 and Lungu [29], Theorem 5.1, respectively.
Furthermore, for the above choices, the conditions of our main results, namely,
Theorems 1–3, reduce to those of Lungu [29], Theorems 4.1, 4.2 and Lungu [29],
Theorem 5.1, respectively.

(6) In this paper, two supporting examples are given to demonstrate the relevance
and effectiveness of the HU stability and HUR stability results of Theorems 1, 2
and the HUR stability result of Theorem 3, respectively. However, in Lungu [29],
Theorems 4.1, 4.2 and Lungu [29], Theorem 5.1, respectively, there is no example
for the applications and illustrations of these results. Example 1 and Example 2 are
considered as additional and effective contributions provided by this paper.
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5. Conclusions

In this study, we investigated the HU stability and HUR stability of a nonlinear VIEq
and nonlinear functional VIEq in higher dimensions. We proved three new results, which
have sufficient conditions with regard to these qualitative concepts, and the technique of the
proofs is based on the use of the Gronwall lemma. As numerical applications of these results,
two supporting examples are provided to demonstrate the applications and effectiveness of
the results. Comparisons between our results and those found in the literature are provided.
As future suggestions, the HU stability and HUR stability of nonlinear Caputo fractional
VIDEqs, Caputo–Hadamard fractional VIDEqs, Riemann–Liouville fractional VIDEqs, etc.,
can be considered as open problems.
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Abbreviations

IEq Integral equation
VIEq Volterra integral equation
IDEq Integro-differential equation
VIDEq Volterra integro-differential equation
HU Hyers–Ulam
HUR Hyers–Ulam–Rassias
ODEq Ordinary differential equation
FDEq Functional differential equation

References
1. Burton, T.A. Volterra Integral and Differential Equations, 2nd ed.; Mathematics in Science and Engineering 202; Elsevier B.V.:

Amsterdam, The Netherlands, 2005.
2. Corduneanu, C. Integral Equations and Applications; Cambridge University Press: Cambridge, UK, 1991.
3. Wazwaz, A.-M. Linear and Nonlinear Integral Equations. In Methods and Applications; Higher Education Press: Beijing, China;

Springer: Berlin/Heidelberg, Germany, 2011.
4. Abbas, S.; Benchohra, M. Existence and Ulam stability results for quadratic integral equations. Lib. Math. 2015, 35, 83–93.
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16. Tunç, O.; Tunç, C.; Petruşel, G.; Yao, J.-C. On the Ulam stabilities of nonlinear integral equations and integro-differential equations.
Math. Meth. Appl. Sci. 2024, 1–15. [CrossRef]

17. Jung, S.-M. A fixed point approach to the stability of a Volterra integral equation. Fixed Point Theory Appl. 2007, 2007, 57064.
[CrossRef]
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32. Rus, I.A. Ecuaţii diferenţiale, ecuaţii integrale şi sisteme dinamice. Differential Equations, Integral Equations and Dynamical Systems;
Transilvania Press: Cluj-Napoca, Romania, 1996. (In Romanian)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s13398-023-01450-6
http://dx.doi.org/10.1002/mma.9800
http://dx.doi.org/10.1155/2007/57064
http://dx.doi.org/10.1002/mma.8988
http://dx.doi.org/10.11650/twjm/1500406430
http://dx.doi.org/10.1090/S0002-9939-1978-0507327-1
http://dx.doi.org/10.3934/dcdsb.2021059
http://dx.doi.org/10.1080/16583655.2018.1451117

	Introduction
	The HU and HUR Stabilities of VIEq (3)
	The HUR Stability of the Functional VIEq (4)
	Discussion
	Conclusions
	References

