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Abstract: Due to the facts that epidemic-related parameters vary significantly in different stages of
infectious diseases and are relatively stable within the same stage, infectious disease models should
be switch-type models. However, research on switch-type infectious disease models is scarce due
to the complexity and intricate design of switching rules. This scarcity has motivated the writing
of this paper. By assuming that switching instants and impulse times occur at different moments,
this paper proposes switch rules suitable for impulse control and derives synchronization criteria for
reaction–diffusion switch-type infectious disease systems under impulse control. The effectiveness
of this method is validated through numerical simulations. It is important to mention that, based
on the information available to us, this paper is currently the sole study focusing on switch-type
reaction–diffusion models for infectious diseases.

Keywords: reaction–diffusion; Lyapunov–Krasovskii functional; switched epidemic systems; impulsive
control

MSC: 34K24; 34K45

1. Introduction

As is well known, infectious diseases exhibit significant diffusion effects, and, thus,
reaction–diffusion epidemic models have been recently studied in the literature. Stability
analysis and synchronization control of infectious disease models have theoretical impli-
cations in practical epidemic management [1,2]. For instance, in reference [3], the author
explored the stability of the wavefront in a delayed monostable reaction–diffusion epidemic
system. The motivation behind the extensive focus on the dynamical stability of infectious
disease models is rooted in the inherent difficulty of completely eliminating such diseases.
Achieving stability in the interaction between susceptible and infected populations is a cru-
cial objective in the realm of infectious disease prevention and control [3–10]. Reference [4],
for example, conducted research on susceptible–infected–recovered dynamics, taking into
account the impact of the healthcare system. Their study considered a general incidence
rate function and recovery rate dependent on the number of hospital beds, establishing
the existence, uniqueness, and boundedness of the model. It extensively investigated all
possible steady-state solutions and their stability. In another case, reference [5] explored
an epidemic model incorporating an incubation period, newborns, and vaccination for
susceptible individuals. Their study demonstrated global stability through Lyapunov
functions. Reference [6] derived stability conditions for an infectious disease model with
delays by constructing appropriate Lyapunov functionals. Reference [7] delved into an SIR
epidemic model with nonlinear incidence and delay, discussing the local stability of equi-
librium states, both disease-free and endemic, through the analysis of the corresponding
characteristic equation. Moreover, synchronization control of infectious disease models
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holds theoretical significance in practical epidemic management [1,2,11–15]. Reference [11]
highlighted long-term spatiotemporal disease occurrence data indicating synchronization
in many frequently occurring epidemics, especially childhood infections, between suburbs.
The authors employed modeling techniques to elucidate the existence of synchronization
phenomena. Reference [12] proposed a synchronization-based method for identifying
parameters and estimating latent variables from real data in epidemic models. An adaptive
synchronization method, based on an observer approach, was suggested, utilizing effective
guiding parameters derived solely from real data. To validate identifiability and estima-
tion results, a numerical simulation of a tuberculosis model was conducted using actual
data from the central region of Cameroon. This study demonstrated that certain tools of
nonlinear system synchronization can aid in addressing parameter and state estimation
problems in the field of epidemiology. Reference [13] investigated synchronization be-
tween two identical susceptible–infected–recovered chaotic systems with fractional-order
time derivatives.

The inclusion of a specific incubation period in infectious diseases necessitates the
incorporation of models with delayed feedback in the mathematical modeling of these
diseases. However, research in this field is very rare, which has motivated the writing of this
article. Additionally, infectious diseases exhibit significant differences at different stages,
and switch systems provide a good representation of infectious disease models. However,
switch-type infectious disease models are seldom studied, providing another motivation for
this article. Therefore, this article aims to investigate reaction–diffusion delayed feedback
epidemic systems and intends to achieve synchronous control of infectious disease switch
models through the use of pulse control techniques.

This article introduces innovations in three aspects:

♢ For the first time, this article introduces synchronous control of switch-type infectious
disease models.

♢ For the first time, this article develops switching rules for infectious disease models.
♢ For the first time, this article successfully derives global exponential synchronization

criteria specifically for impulse reaction–diffusion infectious disease models.

2. System Description

Recently, reaction–diffusion epidemic models have been studied in the literature. For
instance, in the year 2020, reference [1] considered a reaction–diffusion epidemic model. In
the year 2022, the authors of reference [2] investigated a delayed impulse reaction–diffusion
epidemic model.

∂X(x, t)
∂t

= D∆X(x, t) + A(t)X(x, t) + β(t) f (t, X(x, t)), x ∈ Ω, t ⩾ t0, t ̸= tk,

X(t+k , x)− X(t−k , x) = MkX(tk − υk, x), k ∈ N, x ∈ Ω,

∂X(x, t)
∂ν

= 0, x ∈ ∂Ω, t ⩾ 0,

(1)

where X(x, t) = (X1(x, t), X2(x, t), X3(x, t))T , and the function X1(x, t) is the fraction of the
susceptible population, X2(x, t) is the infected fraction, X3(x, t) is the recovered fraction,
and 0 < Xi < 1 for i = 1, 2, 3. In addition,

D =

 d1 0 0
0 d2 0
0 0 d3

, A(t) =

 0 0 0
0 −γ(t) 0
0 γ(t) 0

, f (t, X) =

 −X1X2
X1X2

0

, (2)

Moreover, the disease transmission rate is denoted by β(t), and the recovery rate
is denoted by γ(t). Taking into account the practical situation of delayed feedback in
epidemic models, this paper considers the following delayed feedback epidemic model:
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∂X(x, t)

∂t
= Dσ∆X(x, t) + AσX(x, t) + βσ f (t, X(x, t)) + Kσ(X(x, t)− X(t − υ(t), x)), x ∈ Ω, t ⩾ t0, t ̸= tk,

X(tk, x) = MkX(t−k , x), k ∈ N, x ∈ Ω,

X(x, t) = 0, x ∈ ∂Ω, t ⩾ 0,

(3)

where Kσ is a family of positive definite diagonal matrices, which represents the delayed
feedback parameters under the switching mode σ. Here, σ ∈ N ≜ {1, 2, · · · , N}. tk
represents the moments of pulses, satisfying 0 < t1 < t2 < · · · < tk < tk+1 < · · · with
lim
k→∞

tk = +∞. Assume that Xi(t+k ) = lim
t→t+k

Xi(t) = Xi(tk), i = 1, 2, 3.

Dσ =

 dσ1 0 0
0 dσ2 0
0 0 dσ3

, Aσ =

 0 0 0
0 −γσ 0
0 γσ 0

, f (t, X) =

 −X1X2
X1X2

0

. (4)

Here, βσ and γσ are positive scalars for σ ∈ N, and Dσ is the diffusion coefficient matrix.
System (3) is the drive system , and its response system can be considered as follows:


∂Y(x, t)

∂t
= Dσ∆Y(x, t) + AσY(x, t) + βσ f (t, Y(x, t)) + Kσ(Y(x, t)− Y(t − υ(t), x)), x ∈ Ω, t ⩾ t0, t ̸= tk,

Y(tk, x) = MkY(t−k , x), k ∈ N, x ∈ Ω,

Y(x, t) = 0, x ∈ ∂Ω, t ⩾ 0,

(5)

Then, the error system is proposed as follows:

∂e(x, t)
∂t

= Dσ∆e(x, t) + Aσe(x, t) + βσF(t, e(x, t)) + Kσ(e(x, t)− e(t − υ(t), x)), x ∈ Ω, t ⩾ t0, t ̸= tk,

e(tk, x) = Mke(t−k , x), k ∈ N, x ∈ Ω,

e(x, t) = 0, t ⩾ 0, x ∈ ∂Ω,

e(0, x) = φ(x), x ∈ Ω,

(6)

where e = X − Y, υ(t) is the time delay with υ(t) ∈ [−υ, 0] and υ > 0.

F(e(x, t)) = f (t, X(x, t))− f (t, Y(x, t)) =

 −X1X2 + Y1Y2
X1X2 − Y1Y2

0

 (7)

Additionally, Dσ, Aσ, and f are defined in (4).
Obviously, −1 < ei < 1.

Definition 1. If the error system (6) is globally exponentially stable with a convergence rate of λ
2 ,

then we say that system (5) globally exponentially synchronizes to system (3) with a synchronization
rate of λ

2 .

Definition 2. To establish the switching rule F:

σ(t) = arg min ξTTσξ. (8)

(F1) Choose the initial mode σ(t) = i0, if ξ(t0) ∈ Γi0 .
(F2) For each t > t0, if σ(t−) = i and ξ ∈ Γi, keep σ(t) = i. On the other hand, if σ(t−) = i

but ξ ̸∈ Γi, i.e., hitting a switching surface, choose the next mode by applying (8) and begin to
switch.
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Here, we assume that the switching moment and the impulse moment do not occur simultane-
ously and

Γi = {ξ ∈ R3, ξTTiξ < 0}, i = 1, 2, · · · , N, (9)

Tσ ≜
λmax(Θσ)

λmin(P)
P − (ς − λ)P,

and

Θσ = −λ1(PDσ + DσP) + PAσ + AT
σ P + PKσ + KσP + 5βσE + PKσ + µeλυλmax(Kσ)P,

where µ ⩾ 1 is a scalar, E is an identity matrix, P is an undetermined positive definite symmetric
matrix, and λ1 is the smallest positive eigenvalue of the following eigenvalue problem:{

−∆φ(x) =λφ(x), x ∈ Ω ⊂ Rn,

φ(x) =0, x ∈ ∂Ω.

Remark 1. Firstly, from Figure 1, we can see that the pulse moment and the switching moment do
not occur simultaneously. That is, the state transition curve does not exhibit a pulse burst shape.
The dynamic indications caused by the pulse only show significant changes around the switching
points. Secondly, the idea of state-dependent switching can be briefly described in Figure 1. The
solutions initiate from different initial points within mode 1 (Ω1). Subsequently, upon reaching
the boundary of mode 1, where it intersects exclusively with mode 2 (Ω2), the system transitions to
mode 2, as illustrated by the blue curve in Figure 1. Similarly, when reaching the boundary of mode
1 that intersects exclusively with mode 3 (Ω3), the system switches to mode 3, represented by the
red curve in Figure 1. Lastly, upon reaching the boundary of mode 1, which intersects with both
mode 2 and mode 3, the system undergoes a switch to the mode determined by the minimum of law
(8), as depicted by the black curve in Figure 1.

Figure 1. Switching behavior under impulse.

Lemma 1 ([16]). Let x ∈ Rn, y ∈ Rn, and ε > 0. Then, we have

xTy + yTx ⩽ εxTx + ε−1yTy.

Lemma 2 ([17]). Suppose V ∈ v0 and several positive scalars p, c, k1, k2, ς, λ > 0, µ ⩾ 1, and
ς − λ ⩾ c, satisfying:

(i) a1∥x∥p ⩽ V(t, x) ⩽ a2∥x∥p, for any t ∈ R+ and x ∈ Rn;
(ii) D+V(t, φ(0)) ⩽ cV(t, φ(0)), t ∈ [tk−1, tk), k ∈ N, whenever qV(t, φ(0)) ⩾ V(t +

s, φ(s)) for s ∈ [−υ, 0], where q ⩾ µeλυ is a scalar;
(iii) V(tk, φ(0) + Ik(tk, φ)) ⩽ dkV(t−k , φ(0)), where 0 < dk−1 ⩽ 1,∀ k ∈ N, are scalars;
(iv) ς ⩾ 1

dk−1
and ln dk−1 < −(ς + λ)(tk − tk−1), k ∈ N.

Then, the null solution of the delayed differential equation with impulse
ẋ(t) = f (t, xt), t ̸= tk, t ⩾ t0, k ∈ Z+;

∆x(tk) = Ik(tk, xtk
−)k ∈ Z+;

xt0 = φ.
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is globally exponentially stable with a convergent rate λ
p for any time delays υ ∈ (0, ∞).

3. Main Results

Theorem 1. System (5) globally exponentially asymptotically synchronizes with system (3), and
its synchronization rate is λ

2 , if the following conditions (a)–(c) are satisfied:
(a) There is a scalar m0 > 0 such that

0 < λmax(Mk) ⩽ m0 < 1, ∀ k = 1, 2, · · · (10)

(b) There exist scalars ς > 0 and λ > 0 such that

ς ⩾
1

m2
0

(11)

and
ln m2

0 < −(ς + λ)(tk − tk−1), k ∈ N (12)

(c) There exist scalars αi ⩾ 0 with
N
∑

i=1
αi = 1 such that

Λ ≜
N

∑
i=1

αi
λmax(Θi)

λmin(P)
P − (ς − λ)P < 0. (13)

Proof. Consider the following Lyapunov–Krasovskii functional,

V(t) =
∫

Ω
eT(x, t)Pe(x, t)dx. (14)

Let ∥e(t)∥2 =
∫

Ω eT(x, t)e(x, t)dx, where P is a positive definite symmetric matrix.
Then, there are k1, k2 > 0 such that

k1∥e(t)∥2 ⩽ V(t) ⩽ k2∥e(t)∥2,

which satisfies condition (i) of Lemma 2.
Due to 0 < Xi < 1, 0 < Yi < 1, and (7), we can see this by using the differential along

the trajectory of system (6) that

D+V = 2
∫

Ω
eT(x, t)P

(
Dσ∆e(x, t) + Aσe(x, t) + βσF(t, e(x, t)) + Kσ(e(x, t)− e(t − υ(t), x))

)
dx

⩽
∫

Ω
eT(x, t)

(
− λ1(PDσ + DσP) + PAσ + AT

σ P + PKσ + KσP
)

e(x, t)dx + 2βσ

∫
Ω

eT(t)F(t, e(t))dx

− 2
∫

Ω
eT(t)PKσe(t − υ(t))dx

⩽
∫

Ω
eT(x, t)

(
− λ1(PDσ + DσP) + PAσ + AT

σ P + PKσ + KσP + 5βσE + PKσ

)
e(x, t)dx

+
∫

Ω
eT(t − υ(t))PKσe(t − υ(t))dx

⩽
∫

Ω
eT(x, t)

(
− λ1(PDσ + DσP) + PAσ + AT

σ P + PKσ + KσP + 5βσE + PKσ

)
e(x, t)dx

+
∫

Ω
eT(t − υ(t))PKσe(t − υ(t))dx

(15)

If there exists µ ⩾ 1 such that µeλυ
∫

Ω eT(x, t)Pe(x, t)dx ⩾
∫

Ω eT(t − υ(t), x)Pe(t −
υ(t), x)dx, by (15), we can obtain that
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D+V ⩽
∫

Ω
eT(x, t)

(
− λ1(PDσ + DσP) + PAσ + AT

σ P + PKσ + KσP + 5βσE + PKσ + µeλυλmax(Kσ)P
)

e(x, t)dx

⩽
∫

Ω
eT(x, t)λmax(Θσ)e(x, t)dx ⩽

λmax(Θσ)

λmin(P)

∫
Ω

eT(x, t)Pe(x, t)dx =
λmax(Θσ)

λmin(P)
V(t)

(16)

Next, we will derive the following inequlity based on the switching rule F from (16).

D+V ⩽ (ς − λ)
∫

Ω
eT(x, t)Pe(x, t)dx. (17)

Firstly, we claim that
N⋃

i=1

Γi = R3 \ {0} (18)

Indeed, since there exist scalars αi ⩾ 0 with
N
∑

i=1
αi = 1 such that Λ ≜

N
∑

i=1
αi

λmax(Θi)
λmin(P) P −

(ς − λ)P < 0. Hence, utilizing proof by contradiction, it is not difficult to deduce the
validity of equation (18). With the establishment of equation (18), we can now prove the
validity of (17).

In fact, according to the switching law F, when σ(t−) = i and e(x, t) ∈ Γi, we can
obtain, by the definition of Ti, that

0 > e(x, t)TTie(x, t) = e(x, t)T [
λmax(Θi)

λmin(P)
− (ς − λ)]e(x, t)T

D+V ⩽
λmax(Θi)

λmin(P)

∫
Ω

eT(x, t)Pe(x, t)dx ⩽ (ς − λ)
∫

Ω
eT(x, t)Pe(x, t)dx

Note that the above expression also holds when e(x, t) = 0. Therefore, overall, we
only need to consider the case where e(x, t) ̸= 0.

When σ(t−) = i and e(x, t) ̸∈ Γi, this means that the trajectory hits a switching surface.
Due to (18), the minimum law (8) deduces that there must exist a Γj such that e(x, t) ∈ Γj
and

0 > e(x, t)TTje(x, t) = e(x, t)T [
λmax(Θj)

λmin(P)
− (ς − λ)]e(x, t)T

D+V ⩽
λmax(Θj)

λmin(P)

∫
Ω

eT(x, t)Pe(x, t)dx ⩽ (ς − λ)
∫

Ω
eT(x, t)Pe(x, t)dx

To this end, we obtain D+V ⩽ (ς − λ)
∫

Ω eT(x, t)Pe(x, t)dx if µeλυV(t) ⩾ V(t − υ(t)),
i.e.,

µeλυ
∫

Ω
eT(x, t)Pe(x, t)dx ⩾

∫
Ω

eT(t − υ(t), x)Pe(t − υ(t), x)dx

In other words, condition (ii) of Lemma 2 is satisfied.
Additionally,

V(tk) =
∫

Ω
eT(tk, x)Pe(tk, x)dx =

∫
Ω

eT(t−k , x)MT
k PMke(t−k , x)dx ⩽ m2

0V(t−k ),

which implies that condition (iii) of Lemma 2 holds.
Furthermore, based on the conditions of Theorem 1, condition (iv) of Lemma 2

is satisfied.
Therefore, according to Lemma 2, error system (6) is globally exponentially stable with

a convergence rate of λ
2 . In other words, system (5) is globally exponentially synchronized

with system (3), and its synchronization rate is λ
2 .
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Remark 2. Theorem 1 ingeniously addresses the challenges of synchronizing control that arise
from the interplay of reaction–diffusion processes, time delays, and impulsive control. Specifically,
it overcomes the mathematical difficulties induced by the diffusion term by employing Poincare
inequalities, designs an appropriate Lyapunov function, sets suitable pulse intervals and pulse
intensities, and, ultimately, achieves synchronization control through the utilization of the delayed-
impulse inequalities lemma.

Remark 3. The switching rule of Theorem 1 is different from the switching rule in reference [18].
Meanwhile, synchronization control results for epidemic models have been achieved using impulse
control. This is the first time that synchronization control has been obtained for a reaction–diffusion
epidemic model under a switching rule.

Discussion 1. In epidemic prevention and control, the impulse moment is artificially determined
and may not coincide with the switching moment. Therefore, this paper assumes that the impulse
moment and switching moment do not occur simultaneously, which is reasonable. However, if one
were to consider their simultaneous occurrence, the design of switching rules in this paper would
need further consideration and discussion. This poses an interesting question worth exploring in
more depth.

Discussion 2. Stochastic perturbations and stochastic models are widely employed in various fields,
including infectious disease models ([6,19,20]). Exploring how to control the dynamics of infectious
diseases through impulse control under stochastic perturbations is an intriguing question.

4. Numerical Example

Now, we verify the effectiveness of Theorem 1 via the following numerical example.

Example 1. Let Ω = [0, 1] × [0, 1] ⊂ R2. Then, λ1 = 2π2 = 19.7392 ([21], Remark 14).
In addition, set N = 3 and N = {1, 2, 3}. Then, σ ∈ {1, 2, 3}. Let β1 = 0.1, β2 = 0.15,
β3 = 0.2, and

D1 =

 0.4 0 0
0 0.3 0
0 0 0.3

, A1 =

 0 0 0
0 −0.1 0
0 0.1 0

, K1 =

 0.15 0 0
0 0.13 0
0 0 0.13

,

D2 =

 0.35 0 0
0 0.37 0
0 0 0.4

, A2 =

 0 0 0
0 −0.15 0
0 0.15 0

, K2 =

 0.2 0 0
0 0.15 0
0 0 0.18

,

D3 =

 0.5 0 0
0 0.4 0
0 0 0.38

, A3 =

 0 0 0
0 −0.2 0
0 0.2 0

, K3 =

 0.19 0 0
0 0.23 0
0 0 0.23

.

Set P = E, µ = 1, υ = 1, andλ = 1. Then,

Θ1 =

 −14.4336 0 0
0 −10.7458 0.1000
0 0.1000 −10.5458

, Θ2 =

 −11.9238 0 0
0 −13.1634 0.1500
0 0.1500 −13.9577

,

Θ3 =

 −17.5340 0 0
0 −13.9562 0.2000
0 0.2000 −12.7366


λmax(Θ1) = −10.5044, λmax(Θ2) = −11.9238, λmax(Θ3) = −12.7046

Θσ = −λ1(PDσ + DσP) + PAσ + AT
σ P + PKσ + KσP + 5βσE + PKσ + µeλυλmax(Kσ)P,
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Tσ ≜
λmax(Θσ)

λmin(P)
P − (ς − λ)P,

Let

Mk =

 0.9 0 0
0 0.89 0
0 0 0.88

, k = 1, 2, · · ·

Then
m0 = 0.9, m2

0 = 0.81,
1

m2
0
= 1.2346, ln m2

0 = −0.2107

Let ς = 1.3 > 1
m2

0
, tk − tk−1 ≡ 0.09. Then we obtain

0 < λmax(Mk) ⩽ m0 = 0.9 < 1, ∀ k = 1, 2, · · ·

ς = 1.3 >
1

m2
0

and
ln m2

0 = −0.2107 < −0.2070 = −(ς + λ)(tk − tk−1), k ∈ N

Finally, let αi =
1
3 ⩾ 0 with

3
∑

i=1
αi = 1. We can see it that

Λ =
3

∑
i=1

αi
λmax(Θi)

λmin(P)
P − (ς − λ)P < 0.

Thus far, all conditions of Theorem 1 have been satisfied. Therefore, according to Theorem 1,
error system (6) is globally exponentially stable with a convergence rate of 1

2 . In other words, system
(5) is globally exponentially asymptotically synchronized with system (3), and its synchronization
rate is 1

2 (see Figures 2–4).

Figure 2. Numerical result of X1 in (3) and Y1 in (5).
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Figure 3. Numerical result of X2 in (3) and Y2 in (5).

Figure 4. Numerical result of X3 in (3) and Y3 in (5).

Remark 4. Numerical simulation results indicate that, despite the relatively small impulse strength,
significant effectiveness in synchronizing control of the epidemic model can be achieved as long as
an appropriate pulse interval is set. This validates the effectiveness of Theorem 1.

Example 2. In Example 1, let

Mk =

 0.5 0 0
0 0.5 0
0 0 0.49

, k = 1, 2, · · ·

Then
m0 = 0.5, m2

0 = 0.25,
1

m2
0
= 4, ln m2

0 = −1.3863

Let ς = 5, tk − tk−1 ≡ 0.2, and other data of Example 1 hold unchanged. Then, we obtain
λ = 1 and

0 < λmax(Mk) ⩽ m0 = 0.5 < 1, ∀ k = 1, 2, · · ·

ς = 5 > 4 =
1

m2
0
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and
ln m2

0 = −1.38637 < −1.2 = −(ς + λ)(tk − tk−1), k ∈ N

Finally, let αi =
1
3 ⩾ 0 with

3
∑

i=1
αi = 1. We can see it that

Λ =
3

∑
i=1

αi
λmax(Θi)

λmin(P)
P − (ς − λ)P < 0.

Thus far, all conditions of Theorem 1 have been satisfied. Therefore, according to Theorem 1,
error system (6) is globally exponentially stable with a convergence rate of 1

2 . In other words, system
(5) is globally exponentially asymptotically synchronized with system (3), and its synchronization
rate is 1

2 (see Figures 5–7).

Figure 5. Numerical result of X1 in (3) and Y1 in (5).

Figure 6. Numerical result of X2 in (3) and Y2 in (5).
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Figure 7. Numerical result of X3 in (3) and Y3 in (5).

Remark 5. The numerical results indicate that, despite the enlargement of the impulse interval, as
the impulse intensity increases, the convergence speed of synchronization still remains, which can
be listed as Table 1:

Table 1. Comparisons of Example 1 and Example 2.

Impulse Interval Impulse Frequency Impulse Intensity Intensity Degree Convergent Rate

Example 1 0.09 ↑ 0.9 ↓ 1/2

Example 2 0.2 ↓ 0.5 ↑ 1/2

5. Conclusions

Synchronized control flow epidemic models have significant theoretical guidance,
especially when there are substantial differences in the development stages of the epidemic.
For instance, in the recent COVID-19 pandemic, various parameters, such as the number
of infections and susceptible individuals, differ significantly across stages. The truth is
that parameters related to different stages have notable distinctions. Impulse control, in
essence, involves the momentary input intensity of artificial prevention measures and drug
deployment treatment in different stages. Synchronized control under impulse measures
allows for the gradual synchronization of heavily affected areas, where artificial measures
are input in batches, in response to the evolving and fluctuating nature of the epidemic.
This helps reduce the severity of the epidemic in heavily affected areas and gradually
synchronize them with regions where the situation is improving. The synchronized control
epidemic model offers significant theoretical guidance, especially when there are substan-
tial differences in the development stages of the epidemic. Therefore, this paper considers
a switching-type epidemic model. By establishing appropriate switching rules and utiliz-
ing impulse control techniques, global exponential synchronization criteria are obtained.
Numerical examples demonstrate the effectiveness of the proposed methods. It is worth
noting that this paper improves upon some existing methods in the literature and applies
them for the first time to epidemic models, providing insights for a future series of related
improvements.
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