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Abstract: Deep learning technology has made significant progress in agricultural image recognition
tasks, but the parameter adjustment of deep models usually requires a lot of manual intervention,
which is time-consuming and inefficient. To solve this challenge, this paper proposes an adaptive
parameter tuning strategy that combines sine–cosine algorithm with Tent chaotic mapping to enhance
sea horse optimization, which improves the search ability and convergence stability of standard sea
horse optimization algorithm (SHO). Through adaptive optimization, this paper determines the best
parameter configuration in ResNet-50 neural network and optimizes the model performance. The
improved ESHO algorithm shows superior optimization effects than other algorithms in various
performance indicators. The improved model achieves 96.7% accuracy in the corn disease image
recognition task, and 96.4% accuracy in the jade fungus image recognition task. These results show
that ESHO can not only effectively improve the accuracy of agricultural image recognition, but also
reduce the need for manual parameter adjustment.

Keywords: sea horse optimization algorithm; chaos mapping algorithm; sine and cosine algorithm;
parameter optimization; CNN

MSC: 68T07

1. Introduction

Since its inception, deep learning has garnered widespread attention for its unique
advantages and has been applied across various domains. However, as societal demands
continue to increase, conventional neural networks are no longer sufficient to meet people’s
needs. Consequently, a plethora of enhanced neural networks have emerged.

Wang et al. built a new down sampling attention module based on AlexNet, and introduced
the Mish activation function. The new module of the fully connected layer also reduced the
network parameters, so as to build a new model AT-AlexNet [1]. In corn disease recognition,
the accuracy of AT-AlexNet was significantly higher than other models. Fan et al. studied
and designed a corn disease recognition system VGNet based on pretrained VGG16 [2]. The
experimental results show that the performance of the proposed model is significantly better
than other models. Dai et al. proposed an accurate detection and diagnosis system for corn leaf
diseases based on multitask deep learning (MTDL-EPDCLD) [3]. The experimental results show
that MTDL-EPDCLD can accurately and effectively identify corn diseases. Zeng et al. proposed a
lightweight Dense scale network (LDSNet) [4]. The basic module of the network is the improved
Dense Dilated Convolution (IDDC) module, which is used for real-world corn leaf disease image
recognition, and the accuracy can reach 95.4%. A large number of studies have proved that the
optimization of deep learning models can effectively improve the performance of the model.

In recent years, the superior performance of swarm intelligence algorithms in the field
of optimization has gradually attracted extensive attention, especially in the field of hyperpa-
rameter optimization [5]. Bahaa et al. used the improved swarm intelligence optimization
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algorithm to optimize the convolutional neural network with hyperparameters, so as to con-
struct a new model APSO-WOA-CNN [6]. The experimental results show that the performance
of APSO-WOA-CNN is significantly better than other models. Paharia et al. improved the grey
Wolf optimization algorithm, and applied the improved grey Wolf optimization algorithm to
optimize the convolutional neural network [7], and the performance of the newly constructed
model was significantly improved. In order to solve the problem of CNN hyperparameter
configuration, Wang et al. improved the particle swarm optimization algorithm, and used the
improved particle swarm optimization algorithm to optimize the hyperparameters of CNN [8].
The experimental results show that the improved particle swarm optimization algorithm can
solve the problem of CNN hyperparameter optimization, and effectively improve the perfor-
mance of CNN. In summary, it is feasible to use the swarm intelligence optimization algorithm
to optimize the hyperparameters of the neural network model, and can effectively improve the
performance of the neural network. Based on this, this paper applied the improved sea horse
optimization algorithm to hyperparameter optimization of ResNet-50, and applied the newly
constructed model to identify corn diseases. The rest of the paper is structured as follows.

In this paper, the improved sea horse optimization algorithm is applied to find the optimal
parameter configuration of ResNet-50 adaptively, so as to improve the performance of ResNet-50.

In this paper, CEC2017 test function was used to verify the performance of the im-
proved sea horse optimization algorithm, and the model improved by ESHO was applied
to the image recognition of jade fungus and corn, respectively, in order to verify the
performance of the proposed model.

The rest of this paper is structured as follows.
Section 2 details the dataset and experimental methods. Section 3 mainly introduces

the experimental environment and experimental results. Section 4 mainly summarizes the
overall work and states the focus of future work.

2. Materials and Methods
2.1. Data Sources
2.1.1. Jade Fungus Dataset

The obtained images of dried wood ear were acquired by the FScan2000 acquisi-
tion device. As shown in the Figure 1 below, the dimensions of the device body are
570 mm × 430 mm × 280 mm. The imaging resolution is 16 million pixels (4608 × 3456),
with a camera sensor size of 1/2.3 CMOS sensor and a focal length of 8 mm for the camera
lens. The light source is a 360◦ surround light, utilizing LED white light. The maximum
shooting size is 400 mm × 300 mm, and the minimum accuracy is 0.12 mm.
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The experimental data used in this study were collected in the year 2023, from Haotian
Village in Najin Town, Tao nan City, Jilin Province. The black board in the center of the
apparatus was used to place the edible fungus. During each data collection, the same
distance and angle were maintained with respect to each camera.

To further ensure the accuracy and reliability of the edible fungus data, this study metic-
ulously annotated the image data of each Jade fungus sample. Following the dry Jade fungus
grading standard DB22/T 2605-2016, we recorded detailed information on the size, quantity,
shape, and color of Jade fungus slices, as well as the presence of spots and damage. These six in-
dicators were used as the basis for grading Jade fungus into four levels: first-grade, second-grade,
third-grade, and disqualified. The classification method is presented in the Table 1 below.

Table 1. Display of jade fungus dataset and classification criteria.

Data Jade Fungus

Level One Level Two Level Three Disqualified

Number 1 2 3 4

Ear color White to light yellow Beige white to light
yellow Light yellow to beige

Number of ear pieces Single Single Single or multiple Multiple

Ear size 2~3 3~4 4~5 >5

Ear shape Complete and uniform More complete and
uniform

More complete and
uniform Incomplete both

Ear condition Healthy Contains broken ears Contains broken ears Contains infestation

Image
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Blight: This category contains 1146 images of plants affected by Blight. Blight [9–11] is a 
common plant disease that causes the leaves and stems of plants to atrophy and turn yellow. 

Common-Rust: The dataset contains 1306 Common-Rust images that show the ap-
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2.1.2. Dataset on Corn Diseases

The public dataset (https://www.kaggle.com/ accessed on 2 November 2023) is used for
the experimental data in this paper. The dataset contains a large number of pictures of plant
diseases and healthy plants, which aims at the research work of plant disease classification and
recognition. The dataset uses 4187 images covering four different types of plant diseases as well
as samples of healthy plants. In the dataset, there were 1146 Blight images, 1306 Common-Rust
images, 573 gray spot images, and 1162 health images. The images were collected and annotated
by various plant disease experts and researchers and are representative and diverse.

For accurate plant disease classification and identification, each image is carefully
annotated and classified into the following categories:

Blight: This category contains 1146 images of plants affected by Blight. Blight [9–11] is a
common plant disease that causes the leaves and stems of plants to atrophy and turn yellow.

Common-Rust: The dataset contains 1306 Common-Rust images that show the ap-
pearance of Common-Rust spots on plant leaves. Common-Rust [12–14] is a plant disease
caused by fungi that causes rust-red spots and disease spots on plant leaves.

Grey leaf spot: The 573 grey leaf spot images in the dataset reveal the grey leaf spot on
the plant leaves. Grey leaf spot [15–17] is a common disease caused by fungi, which causes
dark brown spots on the surface of plant leaves.

Health: 1162 images of healthy plants are also included in the dataset, which show
healthy plants that have not been affected by any visible plant diseases.

https://www.kaggle.com/
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Figure 2 below shows the three diseases and healthy comparison images.
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Through the dataset, a wide range of representative samples of plant diseases and
healthy plants can be obtained, which provides an important basis for subsequent research
work. At the same time, in the process of constructing the dataset, we also fully consider
the accuracy of annotation and the diversity of data samples to ensure the reliability and
validity of the experimental results.

2.2. Experiment Method
2.2.1. Resnet-50 Model

This paper uses ResNet-50 [18], a subclass of deep neural networks, which contains
two basic layers: the convolutional layer and the fully connected layer. There are 49
convolutional layers and one fully connected layer. The ResNet-50 network structure is
mainly composed of five parts, of which the first part does not contain residual blocks,
mainly preprocessing the input data, including: convolution, regularization, activation
function, and maximum pooling calculation. The structure of the second, third, fourth, and
fifth parts is similar, mainly composed of two residual blocks, namely the identity residual
block and the convolutional residual block.

ResNet-50 is mainly used to solve image classification problems, and its advantage is
that it can be connected across one layer to the next, which significantly reduces the overall
computing time of network classification, and all five parts contain convolutional layers
and pooling layers.
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2.2.2. Sea Horse Algorithm

In this section, we will introduce the standard Sea horse algorithm [19] in detail. The
SHO algorithm simulates the movement, predation, and reproduction of sea horse. These
three behaviors are key components of SHO. In order to better balance the improvement of
SHO algorithm, the global and locaters strategies are applied to the motion and predation
behaviors, respectively.

Movement Behavior of the Seahorse

Seahorse locomotion behavior is divided into two situations: one is the spiral move-
ment of the hippocampus with the vortex of the ocean, and the other is the Brownian
motion of the hippocampus with the waves.

Case one: The Seahorse spirals with the whirlpool of the ocean.
The Seahorse spirals closer to its best advantage, and Lévy flight is used here to

simulate the Seahorse’s moving steps. This method will avoid the strategy of SHO falling
into the local optimal solution, and the unique spiral motion of the Seahorse can also
make it constantly change the rotation angle, and can also expand the neighborhood of the
existing local solution. This is mathematically achieved as follows:

X1
new(t + 1) = Xi(t) + Levy(λ)((Xelite(t)− Xi(t))× x × y × z + Xelite(t)) (1)

where x, y, and z represent the three-dimensional vector of coordinates (x, y, z) in the spiral
motion, respectively.

Case two the seahorse does Brownian motion with the waves.

σ =

 Γ(1 + λ)× sin
(

πλ
2

)
Γ
(

1+λ
2

)
× λ × 2(

λ−1
2 )

 (2)

To the left of the r1 cut-off point, in order to better explore the search space for SHO,
Brownian motion is used to simulate the motion step size of the sea horse, which is
expressed as follows:

X1
new(t + 1) = Xi(t) + rand × l × βt × (Xi(t)− βt × Xelite) (3)

where l is the constant coefficient (this article sets it to l = 0.05).

Predatory Behavior of the Seahorse

There are two situations in which seahorses are preyed: one is success and the other
is failure. To simulate both cases, this article introduces a random number r2. In real life,
the predation success rate of the seahorse is 90%, so we set the critical value to r2 > 0.1,
when it is proved that the seahorse finally successfully captured the prey; on the contrary,
it means that the speed of the prey is faster than the speed of the seahorse when preying,
let it escape, and unsuccessfully capture the prey, expressed by a mathematical model as
follows:

X2
new(t + 1) =

{
α ×

(
Xelite − rand × X1

new(t)
)
+ (1 − α)× Xelite r2 > 0.1

(1 − α)×
(
X1

new(t)− rand × Xelite
)
+ α × X1

new(t) r2 ≤ 0.1
(4)

X1
new(t) indicates the new position of the seahorse at the time of t, r2 is the random

number [0, 1], which is used to adjust the step length of the seahorse during predation,
which decreases linearly as the iteration progresses.

Reproductive Behavior of the Seahorse

It is worth noting that male seahorse is reproduced in nature, so in the SHO algorithm,
some of the better fitness values are used as male populations for reproduction, and the
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other part is used as female populations to distinguish the next generation with better
characteristics, the mathematical expression is as follows:

f ather = X2
sort(1 : pop/2)

mother = X2
sort(pop/2 + 1 : pop)

(5)

Here, X2
sort represents the fitness value for all X2

sort’s in ascending order of predation
behavior, and father and mother represent the male and female populations, respectively.

To make the SHO algorithm easier to perform, it is assumed that only one offspring
will be produced per pair of seahorse random mating, with the following expression:

Xo f f spring
i = r3X f ather

i + (1 − r3)Xmother
i (6)

r3 represents a random number between [0, 1], i is a positive integer in the range
[1, pop/2], X f ather

i and Xmother
i represent an individual randomly produced in male and

female populations, respectively.

2.2.3. Sine–Cosine Algorithm Optimizes Chaotic Sea Horse Algorithm

The enhanced seahorse optimization algorithm proposed in this paper is improved in
two aspects: the first point introduces the chaotic mapping algorithm in the initialization
of the seahorse optimization algorithm, and the second point introduces the sine–cosine
optimization algorithm in the seahorse optimization algorithm to optimize the fitness value.

Chaos Initialization and Parameter Optimization

The traditional seahorse optimization algorithm adopts the strategy of population initial-
ization is random generation, which has the disadvantage of this method is that the randomness
is large, and the quality of the initial solution cannot be guaranteed. In order to better optimize
the problems of traditional seahorse optimization algorithms, in this paper, Tent chaos mapping
is used to generate random chaotic sequences to generate initial sea horse populations.

The advantage of chaos mapping is that it has randomness, ergo city, and strong
sensitivity to initial values, which makes the algorithm adding chaos mapping have a faster
convergence speed than the original algorithm.

Tent mapping [20] is also known as tent mapping because of the function image’s
resemblance to the tent shape. This is shown in Figure 3.
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Compared with the tent map, the initial population optimization effect in the opti-
mization algorithm is better, and the random chaotic sequence generated by the tent map
is used instead of the randomly generated parameters in the original algorithm, so that the
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initial solution generated in the search space has good diversity. The resulting high-quality
initial solution will help the algorithm with convergence speed and accuracy of the result.

The steps are as follows:

1. Determine the parameters α (This article α = 0.7)
2. Set the value range of the initial value x0 sequence according to the objective function,

and generate X values in this range.
3. X0 = x0(n), n = 1, 2 . . . X
4. x(1) = X0

x(n + 1) =

{X(n)
α x(n) ∈ [0, α)

(1−X(n))
(1−α)

x(n) ∈ [α, 1)
(7)

Sine–cosine algorithm optimizes chaotic seahorse algorithm.
The seahorse optimization algorithm has the disadvantages of slow convergence

speed, low search accuracy, and easy to fall into local optimal solution. Although the
tent mapping algorithm is introduced to improve the convergence speed, the sine and
cosine optimization algorithm is introduced because it greatly improves the speed of leader
position update, improves the optimization speed, improves the search accuracy, and
improves the local optimal solution.

Sine cosine optimization algorithm (SCA) is a global optimization algorithm proposed
in recent years [21], which is realized by using the properties of sine function and cosine
function in mathematics, and balances the global exploration ability and local development
ability of the algorithm through amplitude, which is different from the traditional swarm
intelligent optimization algorithm, the advantage structure of the algorithm is relatively
simple, robust, and easy to implement.

Assuming the population size is N and the search space dimension is d, map each
solution of the optimization target problem to the location of each population in the search
space. Then the population position of i(i = 1, 2 . . . N) populations that have undergone t
iterations in the d dimensional search space can be expressed as Xt

i =
(
Xt

i1, Xt
i2 . . . Xt

iD
)
.

First, N population locations are randomly initialized in the search space; then, the
population fitness value is calculated according to the objective function. Sort the best and
disadvantage by the fitness value of the population, and update the optimal fitness value
and its corresponding position.

Xi
d(t + 1) =

{
Xi

d(t) + a × sin(r3)×
∣∣r4X∗ − Xi

d(t)
∣∣ r5 < 0.5

Xi
d(t) + a × cos(r3)×

∣∣r4X∗ − Xi
d(t)

∣∣ r5 ≥ 0.5
(8)

where Xi
d represents the position of the t generation of i populations in the d dimension; X∗

represents the current optimal position; The a parameter is to control the search direction of

the population, and the change mode a =
(
1 − t

T
) 2t

T , r3 is the random number in the value
range of [0, 2π] is used to control the search distance of the algorithm, r4 and r5 are random
numbers on [0, 2] and [0, 1], respectively (in this paper r3, r4, and r5 random numbers are
selected by Tent chaotic mapping), and the way to control the update position of the t + 1
generation is to use a sine function or a cosine function.

2.2.4. Enhanced Seahorse Optimization Algorithm

Because the seahorse optimization algorithm is too chaotic in the initial sequence, the
chaotic mapping algorithm is introduced in the initialization to improve, and the position
with the best fitness value is assigned to the seahorse leader at each iteration, which leads
to the algorithm being easy to fall into the local optimal region, which often leads to the
selection of the optimal fitness value by the optimization precision, and the SCA algorithm
can be randomly selected to optimize the sine and cosine cross-optimization, so that the
position update methods of the two complement each other. Pseudocode to enhance the
seahorse optimization algorithm is shown in Algorithm 1.
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Algorithm 1 Enhance sea horse optimization algorithm

Input: The population size pop, the maximum number of iterations T and the variable dimension Dim
Output: The optimal search agent Xbest and its fitness value fbest

Use Tent chaos to map the initial population X j
i and the parameters rand, λ, w, and k

While (t < T)
if (r1 > 0)

Update seahorse position using Equation (1)
else if

Update seahorse position using Equation (3)
end if
Update seahorse position using Equation (4)
Calculate the fitness values for each hippocampus
Select parents with Equation (5)
Calculate the next generation using Equation (6)
Update fitness values using SCA, Equation (8)
Update the location of the seahorses

t = t + 1
End While

2.2.5. ESHO Hyperparameter Optimization Resnet-50 Model

ResNet-50 includes a number of hyperparameters that contribute to model perfor-
mance, including training algorithm, momentum leaning, batch size, epoch, and validation
frequency. These parameters are the main performance improvement parameters.

The main steps are as follows:
Step 1: Set the number of populations, dimensions, maximum iterations of the popula-

tion, and determination of the boundary of the SHO algorithm.
Step 2: Initialization: According to the parameters of the ResNet-50 network and

ESHO, the population is created through Tent chaos mapping.
Step 3: Random numbers such as rand, λ, w, and k are uniformly generated by Tent

chaos mapping.
Step 4: Fitness value: The objective function is used to evaluate each ResNet-50 network,

and the required hyperparameter values are automatically updated by the ESHO algorithm,
and the fitness function selected from it is also the determination of the error rate.

Step 5: Based on the target value and the generated hyperparameters, create a new
network for calculation.

Step 6: Update the position of the deposited target value according to the SCA algorithm,
and introduce the greedy mechanism to determine whether it is the global optimal solution.

Step 7: Steps 3, 4, 5, and 6 are recalculated until the optimal solution with the maximum
number of iterations is reached.

This is shown in Figure 4 and Algorithm 2.
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Algorithm 2 Enhanced sea horse optimization algorithm for hyperparameter optimization of CNN

Input: dim, pop, T, K1, K2, K3, K4, Hyperparameter EvalFunction
Output: Optimized deep learning parameters w&b
Initialize enhanced sea horse optimization algorithm population (including each individual’s
position and deep learning parameters w&b, a, A, C)
Obtain a batch of training datasets
For each iteration t = 1 to T do:

For each population member i = 1 to pop do:
Calculate fitness value
Update the current individual’s position if a better position is found

End inner for loop
Update algorithm control parameters a, A, C
(K1, K2, K3, K4) = Hyperparameter EvalFunction(current optimal position Lp)

End outer for loop
Descent with Momentum (SGDM) optimization algorithm
Update w&b using SGDM with hyperparameters K1, K2, K3, K4 Return w&b
End While

2.3. Evaluation

This subsection introduces the evaluation criteria proposed in this paper as accuracy,
sensitivity, precision, recall, and other evaluation criteria for verification, and ROC analysis
is used to verify the experimental data results. The following Table 2 is the indicator
formula for the classification criteria.

Table 2. Evaluation criteria formula.

Evaluate Formula

Accuracy Accuracy = TP+TN
TP+TN+FP+FN

Sensitivity TPR = TP
TP+FN

Precision Precision = TP
TP+FP

Recall Recall = TP
TP+FN

TP (True Positives) is the sample is positive and the prediction result is positive. FP (False Positives) is the sample
is negative and the prediction result is positive. TN (True Negatives) is the sample is negative and the prediction
result is negative. FN (False Negatives) is the sample is positive and the prediction result is negative.

Accuracy was used to assess whether Blight, Common-Rust, gray spot, and health
could be completely distinguished, i.e., the proportion of samples correctly classified in the
total sample.

Sensitivity, also known as Recall, is used to assess the proportion of all Blight in the
correct classification, as well as the ability to recognize Blight. It is the proportion of all
samples correctly identified as Blight to the total number of samples that are truly Blight.

Precision, also known as the Positive Predictive Value, refers to the proportion of
samples correctly classified as Blight to the total number of samples classified as Blight. It
is used to assess the accuracy of the classification of Blight.

Recall (also known as Sensitivity) is the proportion of all samples correctly identified
as Blight to the total number of samples that are truly Blight, used to assess the ability to
recognize Blight.

3. Results

Experiment 1 compares the proposed improved ESHO algorithm with the traditional
SHO algorithm and its two enhancement strategies in terms of their search capability,
convergence speed, and accuracy. This experiment will utilize the CEC2017 test suite
to evaluate the performance of these algorithms on a set of standard test functions for
optimization problems. The primary aim of Experiment 2 is to assess the classification
performance of a neural network optimized by the ESHO algorithm (ESHO-net) when
processing the Jade fungus image dataset. The experiment utilizes the Jade fungus image
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dataset, collected using an industrial camera, as input data, with the ESHO algorithm
optimized neural network performing the classification task. To provide a comparative
analysis, ESHO-net is compared against other classical neural network models, as well as
models optimized using swarm intelligence algorithms. By comparing metrics such as
classification accuracy, recall, and precision among these different models, the strengths
and weaknesses of ESHO-net in handling the Jade fungus image dataset are evaluated.
The aim of Experiment 3 is to evaluate the performance of the neural network optimized
by the ESHO algorithm (ESHO-net) in the task of image classification using 3221 images
of corn diseases. This experiment seeks to compare the classification accuracy, multiclass
classification performance, and the ability to handle imbalanced data of the ESHO-net with
models optimized by other classical and swarm intelligence algorithms when processing
corn disease images. These performance metrics will aid in determining the superiority of
ESHO-net in the task of classifying corn disease images.

The test environment is Windows 64-bit operating system, and the MATLAB is 2023.
Hardware environment: The processor on the computer is AMD Ryzen 7 5800H with
Radeon Graphics CPU @ 3.20 GHz. The running memory is 128 GB, the graphics card is
NVIDIA Quadro RTX 3060, and the video memory (VRAM) is 16 GB.

3.1. Experiment 1 Function Test

ESHO refers to an algorithm obtained by optimizing SHO algorithm using Tent
mapping and sine cosine algorithm. Tent mapping and sine cosine algorithm are used
as improvement measures to improve the performance and convergence speed of the
optimization algorithm to better solve the problem.

For ESHO algorithm, the Tent map was used to increase the diversity of the search
space, and use the cosine algorithm with local search, further optimize the solution. These
improvements help to improve the global search ability and solution quality of ESHO algorithm.

ESHO algorithm improves the initial population in SHO algorithm and adds sine cosine
optimization algorithm for improvement. In order to verify the effectiveness of the algorithm
improvement, the effect of the two position improvements will be compared. As shown in
Table 3, the modified initial population position is denoted by “S”, and the addition of the sine
cosine optimization algorithm is denoted by “SIN”. In the table, “1” means that this location
update strategy is improved in SHO, and “0” means that it is not improved.

Table 3. Representation of the two optimizations in SHO.

Algorithm S SIN

SHO 0 0
SSHO 1 0

SINSHO 0 1
ESHO 1 1

Therefore, the ESHO algorithm may be better than the original SHO algorithm in
terms of performance, resulting in solutions that are closer to the optimal solution and
have smaller Best, Worst, Mean, and Std metrics. This means that ESHO algorithm may
be improved in the ability to find the global optimal solution, the ability to avoid poor
solutions, and the average quality and stability of the solution. ESHO algorithm is an opti-
mization algorithm that improves SHO algorithm by introducing Tent mapping and sine
cosine algorithm. These improvements help to improve the performance of the algorithm
and the quality of the solution. The algorithm pairs are shown in Table 4 for example.

As illustrated in Figure 5, in the CEC2017 function testing experiment, we selected six
distinct functions for comparison, namely F1, F2, F4, F17, F23, and F27. By comparison, it
is apparent that the addition of Tent mapping has improved the selection of initial points,
signifying the optimization algorithm’s enhanced exploration of the search space. In our
experiment, the inclusion of Tent mapping may have been observed to elevate the optimiza-
tion performance for these functions. Incorporating the cosine algorithm facilitates local
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search, enabling more precise adjustments and refinement near the current solution, thus
further optimizing the solution. In our experiment, integrating the cosine algorithm may
have rendered the algorithm more effective in the search process, thereby further enhancing
its performance. The inclusion of both enhancement strategies simultaneously has led to
a more pronounced improvement, indicating their complementary and reinforcing role
in augmenting the performance of the SHO algorithm. They can better guide the search
process, enhance the algorithm’s global search capabilities, and improve solution quality.

Table 4. Comparison of CEC2017 test function algorithms.

Fun SHO SSHO SINSHO ESHO

F1

Best 1.15 × 1010 1.01 × 1010 1.26 × 1010 1.01 × 1010

worst 3.08 × 1010 3.30 × 1010 3.37 × 1010 2.68 × 1010

mean 1.94 × 1010 2.07 × 1010 1.92 × 1010 1.81 × 1010

std 5.37 × 109 5.47 × 109 4.96 × 109 4.32 × 109

F2

Best 2.87 × 1027 9.74 × 1026 3.09 × 1025 4.27 × 1024

worst 9.61 × 1038 3.89 × 1038 9.78 × 1036 7.57 × 1036

mean 3.31 × 1037 2.46 × 1037 4.55 × 1035 3.92 × 1035

std 1.75 × 1038 7.81 × 1037 1.82 × 1036 1.41 × 1036

F3

Best 52,212.41 53,015.29 48,580.26 52,613.81
worst 83,056.46 82,353.02 86,771.12 78,841.13
mean 68,990.98 70,028.33 66,705.07 65,567.97

std 7876.64 7256.565 8976.78 6903.744

F4

Best 1054.55 1500.277 1268.575 836.9427
worst 6747.084 6912.596 7586.876 6463.786
mean 3259.558 4022.42 2928.848 2541.938

std 1525.745 1535.826 1579.358 1350.051

F5

Best 690.1524 706.2802 713.8169 709.8417
worst 801.9082 852.4711 804.9284 843.369
mean 756.447 759.936 750.273 750.5114

std 28.965 32.90426 25.95798 26.68688

F6

Best 6.43 × 102 6.40 × 102 6.41 × 102 6.31 × 102

worst 6.60 × 102 6.60 × 102 6.65 × 102 6.65 × 102

mean 6.53 × 102 6.52 × 102 6.53 × 102 6.51 × 102

std 4.39 × 10 5.99 × 10 5.99 × 10 6.32 × 10

F7

Best 9.18 × 102 9.66 × 102 9.55 × 102 9.37 × 102

worst 1.05 × 103 1.08 × 103 1.06 × 103 1.06 × 103

mean 1.01 × 103 9.99 × 102 9.95 × 102 9.95 × 102

std 3.09 × 101 2.56 × 101 2.30 × 101 2.67 × 101

F8

Best 9.18 × 102 9.66 × 102 9.55 × 102 9.37 × 102

worst 1.05 × 103 1.08 × 103 1.06 × 103 1.06 × 103

mean 1006.899 999.0511 995.0073 994.866
std 30.87526 25.63718 22.99354 26.69634

F9

Best 5045.912 4770.397 4051.609 4124.663
worst 7286.883 9052.588 6716.671 6892.722
mean 6038.505 6174.653 5558.307 5405.359

std 560.4052 895.5512 697.2742 695.639

F10

Best 4816.358 4234.36 5170.172 4167.356
worst 7052.398 6951.179 7235.78 6503.908
mean 5985.535 5759.261 5885.718 5673.887

std 519.5401 545.7817 499.8241 612.4502

F11

Best 1518.007 1713.981 1513.699 1561.659
worst 8127.989 7158.733 7545.37 5901.66
mean 3472.514 3218.312 3695.645 3402.712

std 1504.513 1248.817 1537.379 1151.42

F12

Best 1.09 × 108 1.32 × 108 1.69 × 108 1.28 × 108

worst 7.53 × 109 6.77 × 109 7.66 × 109 4.86 × 109

mean 2 × 109 2.36 × 109 1.93 × 109 2 × 109

std 1.82 × 109 2.03 × 109 1.89 × 109 1.13 × 109

F13

Best 1,936,199 5,324,252 4,639,137 4,718,375
worst 7.62 × 109 1.04 × 1010 7.04 × 108 5.1 × 109

mean 9.9 × 108 7.21 × 108 1.78 × 108 6 × 108

std 2.02 × 109 1.96 × 109 1.73 × 108 1.2 × 109

F14

Best 68,110.24 130,880 98,109.13 70,302.43
worst 3,129,325 2,211,560 2,555,339 1,107,680
mean 922,027.1 1,037,686 976,467.4 517,943.9

std 649,074.7 607,791.7 624,504.3 295,845.4
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Table 4. Cont.

Fun SHO SSHO SINSHO ESHO

F15

Best 14,784.28 17,108.77 11,294.54 11,057.22
worst 6,578,499 9,345,190 20,656,181 58,669,887
mean 942,711.7 1,513,059 2,608,761 4,129,592

std 1,405,698 2,038,891 4,679,572 11,314,354

F16

Best 2369.129 2429.833 2473.326 2471.599
worst 3599.571 4159.49 3831.684 4158.597
mean 3108.508 3167.448 3130.635 3188.239

std 266.2169 422.0315 318.3059 375.3002

F17

Best 1944.424 1839.123 1959.663 1828.769
worst 2834.808 2963.481 2740.47 2803.459
mean 2356.188 2293.307 2323.588 2353.132

std 251.8807 285.3271 216.0364 219.267

F18

Best 596,877.9 448,618.8 139,801.9 128,147.2
worst 24,946,311 21,730,056 13,947,137 1,966,4615
mean 3,270,441 4,479,111 2,715,288 2,996,348

std 4,749,170 5,229,032 2,816,730 3,984,972

F19

Best 32,669.16 23,875.63 9838.216 6813.085
worst 5.28 × 108 1.23 × 108 3.86 × 108 1.31 × 108

mean 31,618,101 5,287,557 17,247,149 8,906,206
std 99,909,099 22,234,090 72,483,988 26,703,308

F20

Best 2304.26 2295.288 2300.131 2246.822
worst 3019.55 3029.424 2908.584 2795.154
mean 2593.264 2628.703 2515.603 2505.816

std 209.162 182.0024 167.7344 146.8245

F21

Best 2474.796 2463.452 2473.199 2467.6
worst 2621.73 2579.178 2639.677 2598.871
mean 2525.397 2523.414 2524.254 2525.216

std 32.47812 30.24221 36.24246 32.04138

F22

Best 3383.561 3770.807 3657.703 3822.016
worst 8627.898 8504.043 9044.294 8403.451
mean 6208.513 6220.16 5837.821 5750.331

std 1477.657 1411.245 1808.969 1427.724

F23

Best 2962.408 2945.802 2917.354 2879.052
worst 3226.973 3201.826 3093.162 3170.076
mean 3054.79 3048.868 3015.775 3008.702

std 64.01824 71.73463 45.61353 72.37846

F24

Best 3214.782 3246.572 3198.056 3184.568
worst 3447.956 3481.337 3421.383 3397.219
mean 3339.036 3353.138 3281.536 3285.132

std 56.71183 56.07424 56.82005 49.41599

F25

Best 3168.9 3161.506 3159.44 3132.425
worst 3909.32 4297.002 4290.112 3919.242
mean 3436.999 3521.027 3410.432 3406.443

std 195.7024 272.8187 264.2817 213.8743

F26

Best 6052.081 5424.125 6308.89 5125.343
worst 8937.705 9404.311 8614.525 8872.829
mean 7553.396 7795.786 7448.687 7287.09

std 771.6484 919.546 603.431 882.8359

F27

Best 3399.312 3357.454 3319.294 3370.905
worst 3734.859 3834.588 4053.098 3770.368
mean 3545.823 3572.432 3489.797 3492.418

std 91.95908 115.2077 137.8223 85.95479

F28

Best 3985.444 3698.788 3804.833 3699.801
worst 5267.373 5215.807 5433.59 4982.299
mean 4517.781 4390.196 4430.446 4288.284

std 380.2863 387.744 479.7648 382.0062

F29

Best 3854.939 3837.67 3877.058 4156.992
worst 5259.497 5131.16 5073.191 5077.449
mean 4505.4 4477.765 4533.303 4523.774

std 364.2282 277.1826 282.0671 250.438

F30

Best 3,313,653 2,518,304 1,023,277 2,937,596
worst 8.65 × 108 44,619,145 8.6 × 108 1.08 × 108

mean 48,992,562 18,326,447 43,953,905 18,719,231
std 1.55 × 108 13,137,887 1.55 × 108 21,574,223
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In summary, the experimental results demonstrate a remarkable improvement in the
SHO algorithm resulting from the addition of Tent mapping and the cosine algorithm. This
strongly underscores the significance of these two enhancement strategies in optimizing
the SHO algorithm, particularly when dealing with functions such as F1, F2, F4, F17,
F23, and F27. This bears important guiding implications for further enhancing algorithm
performance and improving solution quality.

3.2. Experiment 2 Jade Fungus Classification

The aim of this study is to compare the performance of 7 different pretrained networks
(Resnet 18 [22], Google net [23], Inception v3 [24], Alexnet, Densenet 201 [25], ResNet50,
VGG16) in classifying images of Jade fungus, incorporating optimization algorithms (SHO,
SSHO, SINSHO, WOA, GA, PSO, GWO) for fine-tuning ResNet50. Additionally, the results
will be compared to ESHO-net model. Evaluation metrics include accuracy, sensitivity,
precision, and recall. Figure 6 and Table 5 present the optimal parameters and confusion
matrices obtained through the optimization of ESHO-net model.
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Parameter SGDM
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Validation frequency 33

3.2.1. Compared with Pretrained Neural Network

In Figure 7, a selection of 7 different pretrained networks were chosen to assess their
performance in the classification of Jew’s Ear mushroom images, and these networks were
compared with the ESHO-net model. To evaluate the performance of these networks,
four key indicators were utilized, namely accuracy, recall, sensitivity, and precision. The
ESHO-net model demonstrated improvements across all performance metrics. Specifically,
the ESHO-net model showed an increase in accuracy ranging from 1.5% to 16.1%, improve-
ments in recall and sensitivity ranging from −2.1% to 10.9%, −1.2% to 20.8%, 10.3% to
35.1%, and 1.9% to 9.8%, respectively. The precision also experienced enhancements within
the ranges from −1.1% to 7.3%, 6.5% to 21.3%, 1.1% to 15.9%, and −0.9% to 9.3%.
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3.2.2. Optimize Resnet-50 Network with Other Optimization Algorithms

The proposed evaluation methods (accuracy, sensitivity, accuracy, recall) were com-
pared with other optimization algorithms (SHO, SSHO, SINSHO, WOA [26], GA [27],
PSO [28], GWO [29]) to optimize the network.

The confusion matrix in Figure 8 reveals that the ESHO-net model has exhibited
improvements in the following aspects: an increase in accuracy ranging from 1.0% to 2.8%,
and in recall and sensitivity from −2.1% to 1%, −1.2% to 3.8%, 6.1% to 12.8%, and 0% to
2.8%. Furthermore, the precision has seen enhancements from −1.1% to 2.1%, 2.5% to 7.4%,
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−3.2% to 9.5%, and −0.9% to 3.7%. ESHO-net demonstrates performance enhancements
across multiple evaluation metrics, indicating its potential as a promising model.
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3.3. Experiment 3 Classification of CORN Diseases

The optimal momentum, initial learning rate, maximum epoch, and validation fre-
quency were selected through the ESHO-net model as presented in Table 6. The confusion
matrix for the classification of Blight, Common Rust, Gray Spot, and Healthy Corn is shown
in Figure 9. This includes metrics such as accuracy, sensitivity, precision, and recall, with
an accuracy of 96.7% and a loss rate of 3.3%. The sensitivity is 94.7%, 99.0%, 89.1%, and
99.7%, while the precision is 94.5%, 98.5%, 90.1%, and 100%. The recall and sensitivity are
94.7%, 99.0%, 89.1%, and 99.7%, respectively.

Table 6. Optimal parameters for maize disease dataset.

Parameter SGDM

Momentum 0.5
Initial learning rate 0.03943
Maximum epoch 32

Validation frequency 33
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3.3.1. Compared with Pretrained Neural Network

The proposed evaluation methods (accuracy, sensitivity, accuracy, recall) were com-
pared with unoptimized pretrained networks (Resnet 18, Google net, Inception v3, Alexnet,
Densenet 201). The confusion matrix pair is shown in Figure 10 below:
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Through comparative analysis of confusion matrix, we evaluate five kinds of popular
neural networks with strong classification ability. The results show that the accuracy index
of these neural networks has been improved in different degrees, the improvement range
is between 0.7% and 3.5%, among which DenseNet network has the best performance,
reaching 96.0%, while the network with low accuracy is Inception V3, which is 93.2%.
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Further comparing sensitivity, accuracy, and recall rates, we found that in the classifica-
tion of blight, rust, gray spot, and health, sensitivity and recall rates increased by 1.4%
to 8.5% and 0.3% to 3.3%, respectively, and the relatively improved ESHO-net model im-
proved sensitivity and recall rates to varying degrees. In addition, the improvement of
comparison accuracy ranges from 1.2% to 7%, −0.7% to 2.1%, 3.5% to 15.7%, and 0 to 0.3%.
Based on the above comparison results, it can be concluded that the ESHO-net model has
excellent performance.

3.3.2. Optimize Resnet-50 Network with Other Optimization Algorithms

The proposed evaluation methods (accuracy, sensitivity, accuracy, recall) were com-
pared with other optimization algorithms (SHO, SSHO, SINSHO, WOA, GA, PSO, GWO)
to optimize the network. The confusion matrix pair is shown in Figure 11 below:
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The comparison SHO, SSHO, SINSHO, and four optimization algorithms with strong
optimization ability WOA, GA, PSO, and GWO are optimized for ResNet-50 at the same
time to obtain the confusion matrix in Figure 6. Specifically, the ESHO algorithm improves
the accuracy by 0.3% to 2.9%. In the classification of four diseases (Blight, Common-Rust,
Gray spot, and Health), ESHO algorithm has improved sensitivity, accuracy, and recall
rate compared with other optimization algorithms. Among them, the sensitivity of Blight,
Gray-Leaf-Spot, and Health was increased by −0.7–2.6%. The accuracy is increased by
−0.5% to 0.5%. The increase in recall is −0.6% to 7.3%. For the classification of Common-
Rust, the sensitivity was increased by −0.3% to 0.6%. The accuracy is increased by 0.3%
to 1.9%. The increase in recall is −2.3% to 6.4%. Considering the performance of various
indicators and confusion matrix, it can be concluded that compared with other optimization
algorithms, ESHO-net network has better classification effect and optimization performance
for ResNet-50 network.

4. Conclusions

This study successfully demonstrated the strong potential of enhanced sea horse opti-
mization algorithm (ESHO) and its optimized ResNet50 model (ESHO-NET) in agricultural
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image recognition, especially in maize leaf disease and jade fungus image classification.
The SHO algorithm is enhanced by chaotic map and sine cosine algorithm to achieve a
balance of search behavior and solve the problem of excessive randomness and imbalance
between exploration and exploitation in the original algorithm. The biggest advantage of
the ESHO algorithm is reflected in the adaptive adjustment of ResNet50 parameters, which
significantly reduces the burden of manual parameter tuning.

Specifically, Experiment I verifies that the ESHO algorithm outperforms the original
and its optimization strategy optimized SHO algorithm in several performance metrics.
In the second experiment, ESHO-net shows superior classification accuracy on the jade
auricularia image dataset, which surgoes multiple comparison neural network models
optimized by classical and swarm intelligence algorithms. In addition, the results of
Experiment 3 prove that ESHO-net is significantly superior to other state-of-the-art models
in terms of accuracy, sensitivity, and recall in the classification task of 3221 corn disease
images dataset, which has a significant accuracy of 96.7% and a loss rate as low as 3.3%.

Although the above findings confirm the practical value of ESHO-net for image recog-
nition tasks, the limitations of this study should also be noted, such as the range of disease
types and the diversity of data sources. Future work will focus on these limitations and
strengthen the generalization ability and practical application of the model by expanding
the collection of disease types and multisource data. The conclusion of this study provides
a solid foundation for further using sea horse optimization algorithm to promote intelligent
image recognition in the agricultural field, and indicates a broad application prospect in
the field of intelligent agriculture and precision agriculture.
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