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Abstract: To adapt to the development trend of intelligent air combat, it is necessary to research the
autonomous generation of maneuvering decisions for unmanned combat aerial vehicles (UCAV).
This paper presents a maneuver decision-making method for UCAV based on a hybridization of
deep Q-network (DQN) and extended Kalman filtering (EKF). Firstly, a three-dimensional air combat
simulation environment is constructed, and a flight motion model of UCAV is designed to meet the
requirements of the simulation environment. Secondly, we evaluate the current situation of UCAV
based on their state variables in air combat, for further network learning and training to obtain the
optimal maneuver strategy. Finally, based on the DQN, the system state equation is constructed using
the uncertain parameter values of the current network, and the observation equation of the system
is constructed using the parameters of the target network. The optimal parameter estimation value
of the DQN is obtained by iteratively updating the solution through EKF. Simulation experiments
have shown that this autonomous maneuver decision-making method hybridizing DQN with EKF is
effective and reliable, as it can eliminate the opponent and preserve its side.

Keywords: maneuvering decision; DQN; EKF; intelligent air combat; UCAV

MSC: 68T01; 68T05

1. Introduction

With the rapid advances in technologies such as wireless technology, electronic cir-
cuits, and aerospace materials, unmanned combat aerial vehicles (UCAVs) are endowed
with superior performance, capable of handling complex combat tasks, and performing
excellently in military applications [1]. The emergence of UCAVs has reshaped the structure
of military weapons, expanding the battlefield from flat space to three-dimensional space.
The combat capabilities of UCAVs cover multiple combat missions with different functions
of reconnaissance, surveillance, localization, target guidance, and ground attack. UAVs
play an irreplaceable role in harsh environments and dangerous mission areas, for which
there is a need to study how to combine artificial intelligence and unmanned fighters
for application in real combat [2]. In the context of intelligent air combat, the degree of
intelligence is the primary manifestation of intelligent air combat. Intelligent air combat
involves a wide range of operational elements, and there is an urgent need to correctly
analyze and assess the development and changes in the situation under intelligent air
combat. It is necessary to fully utilize intelligent information-processing methods to plan
global elements, intelligently control the entire period of air combat airspace, constantly
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grasp the opportunity of airspace initiative, and consolidate air power [3]. The combination
of artificial intelligence and unmanned fighter aircraft can not only provide maneuvering
suggestions for human-piloted fighter aircraft but also realize the unmanned flight of
fighter aircraft [4]. Intelligent air combat requires breakthroughs in algorithms for UCAVs
to move toward intelligence and maximize their effectiveness.

At present, a large number of scholars have conducted prior research on the methods
of maneuvering decision-making for UCAVs, discussing and proposing solutions through
scientific methods under their assumptions. According to the core methods, it can be
roughly divided into two categories. One method is based on traditional mathematical
solutions, such as the influence diagram method [5], genetic optimization algorithm [6],
game theory [7,8], and so on. This type of method has a clear mathematical expression, but
it is difficult to solve and is effective only for simple air combat environments. The second
is based on data learning methods, such as Monte Carlo search [9], approximate dynamic
programming [10], neural network [11], etc. These methods are commonly used in the field
of maneuvering decision-making at present. For example, the method in the ADP article is
only used for solving two-dimensional aircraft, and the maneuver instructions only include
left turn, right turn, and hold.

However, aerial combat, with airborne artillery and air-to-air missiles as the main
attack weapons, combined with the air battlefield situation and maneuver decision-making,
is a highly complex, real-time, and high-risk game confrontation process [12]. Intelligent
algorithms represented by deep learning and reinforcement learning have shown significant
advantages in air combat, due to their strong perception ability and outstanding decision-
making ability [13,14]. In particular, the use of DQN has achieved great success in Atari
games in the past, providing a solution to the maneuvering decision-making problem of
unmanned fighter jets. However, because the parameters of the DQN are updated through
a random gradient descent method, the parameters are easily affected by the experience
pool and target network, resulting in a significant deviation between the estimated and
true values of the model parameters. This parameter uncertainty can affect the stability and
convergence of DQN training results, resulting in poor reliability of maneuvering decisions
for UCAVs.

Therefore, to address the above problems, this paper proposes a maneuvering decision
method for UCAVs based on a DQN hybridization with EKF. Based on the deep Q-network,
the uncertain parameter values of the policy network are used to construct the system
state equations, the parameters of the target network are used to construct the observation
equations of the system, and the optimal parameter estimates of the DQN are obtained
through the iterative update solution of the extended Kalman filter.

2. Description of Air Combat Confrontation
2.1. Motion Model and Maneuver Instructions for UCAV

Establishing a model of UCAVs is the foundation for achieving air combat confronta-
tion. The angle of UCAV is usually described by Euler angles, which are pitch angle θ, yaw
angle ψ, and roll angle γ. Based on the ground coordinate system and the airframe coordi-
nate system, we provide the kinematic equation of the UCAV’s center of mass, as shown
in (1). Equation (1) describes the relationship between the UCAV’s space position and the
speed of its center-of-mass movement, which can be used to study flight trajectories.

.
xg = v cos θ cos γ
.
yg = v sin θ
.
zg = −v cos θ sin γ

(1)

where
.
xg,

.
yg,

.
zg is the rate of change of the position of the UCAV in the x, y, z directions

on the ground coordinate system. The variable v represents the flight speed of the aircraft.
The subscript letter g represents the ground coordinate system.
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To facilitate the study, assuming that the unmanned fighter has no sideslip motion,
the angle of approach is zero, and the aircraft motion does not account for wind speed, a
simplified equation for the center-of-mass dynamics of UCAV is obtained as (2), which
describes the relationship between the center-of-mass motion of UCAV and the external
forces and is the basis for solving the dynamics.

m
.
v = P − D − mg sin θ

mv
.
θ = L cos γ − mg cos θ

mv cos θ ·
.
ψ = −L sin γ

(2)

where P denotes the thrust of the aircraft engine, D denotes the drag force on the aircraft,
and L is the lift of the aircraft. The first sub-equation represents the change in the magnitude
of the aircraft’s velocity, and the second and third sub-equation represent the change in the
direction of the aircraft’s velocity in the vertical and horizontal planes, respectively.

To simulate the characteristics of pilots driving aircraft, the description of overload
is introduced to make the maneuvering actions of UCAVs more visual and actual in air
combat. The ratio of the combined force of aerodynamic force and engine thrust acting on
an aircraft to the aircraft’s gravity is called aircraft overload. The projection expression of
overload on the track coordinate system is shown in (3).

nx = P−D
mg

ny = L cos γ
mg

nz =
L sin γ

mg

n f =
√

ny2 + nz2 = L
mg

(3)

where nx is the tangential overload of the aircraft, along the direction of velocity; ny and
nz are perpendicular to the UCAV’s velocity direction, and both constitute the normal
overload n f .

According to the definition of overload, we rewrite the center of mass dynamics
equation of UCAVs, as shown in (4).

.
v = g(nx − sin θ)
.
θ = g

v (n f cos γ − cos θ)
.
ψ = g

v cos θ n f sin γ

(4)

Tangential overload nx determines the ability of an aircraft to change its straight-line
flight speed. The normal overload nf and roll angle γ determine the rate of change in pitch
and yaw angles of UCAVs, which is the ability of the aircraft to change direction. Therefore,
the maneuver command will take the tangential overload, normal overload and roll angle
as inputs, and then numerically integrate the overload-based dynamics equations of the
center of mass for UCAV to find the laws of flight speed v, pitch angle θ, and yaw angle ψ
with time. At last, based on this, the spatial position variation law of the aircraft can be
solved to obtain the motion trajectory of UCAV during maneuvers.

According to nx, n f and γ, these three variables obtain a set of maneuvering actions,
which involve overloading and are all performed at maximum overload, denoted as steady
flight, max long acceleration, max long deceleration, max load factor turns, max load factor
pull-up, and max load factor push over. Steady flight represents that the aircraft’s state
remains unchanged, maintaining the control variables of the previous moment. Turning
can be divided into left and right, so there are a total of seven basic maneuver instructions
mentioned above, which provide choices for action selection during subsequent maneuver
decision generation.
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2.2. Design of Situation Assessment for Air Combat Environment

The maneuver decision generation process of UCAV is not a random selection process,
but is the selection of an optimal maneuver execution by the unmanned fighter after
a reasonable assessment of the air combat battlefield situation. Air combat situation
assessment must be based on the status and trend of state changes of UCAV in the air. The
air situation has relative stability, which may remain unchanged for a certain period or may
accumulate over time and change in nature. The purpose of maneuver decision-making
is to hope that drones can attack enemy drones in a more advantageous position through
various maneuvers, while preserving their advantages.

The spatial geometric relationship between the two UCAVs can be used to assist in air
combat situation assessment. Figure 1 shows our camp in red and the enemy camp in blue.
Formula 5 is obtained from the spatial geometric relationships in Figure 1.

dr =
√
(xb − xr)

2 + (yb − yr)
2 + (zb − zr)

2

αr = arccos( vr·dr
vr ·dr

)

αb = arccos( vb ·dr
vb ·dr

)

(5)

where dr is the distance vector from red to blue, αr represents the angle of attack, and αb
represents the angle of escape.
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Depending on the spatial position and flight speed (including speed magnitude and
flight direction) of the two aircraft, the situational assessment indicators are roughly divided
into angular advantage, distance advantage, and energy advantage. The energy advantage
includes height and speed advantages, equivalent to two parts: potential energy and
kinetic energy.

1. Angle advantage function

Aa = 1 − αr + αb
2

(6)

In the equation, when the attack angle is very small and the escape angle is also
small, it is equivalent to the fact that both the enemy and our drones are flying in almost
a straight line, and our nose is almost aligned with the enemy’s tail. This is an excellent
attack situation and the angle advantage function is the largest.

2. Distance advantage function

Ad =

{
e−

(d−d0)
2

2σ2 ,d>d0

1, d ≤ d0

(7)

where d is the distance between two aircraft, d0 is the effective attack distance of UCAV’s
airborne weapons, and σ is the adjustment parameter.
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3. Energy advantage function

Ae = arc tan
∆h
k

+ arc tan
∆v
k

(8)

where ∆h and ∆v represent the height difference and speed difference between two aircraft,
respectively, and k is a proportional adjustment parameter that is dimensionless, as there
are significant numerical differences between height and speed.

In summary, the air combat situation assessment is the sum of the weighted advantages
functions of the three parts mentioned above. For the reward function in reinforcement
learning, we use the advantage function as the basis. When the aircraft’s state exceeds its
own limit, we add some negative values to the advantage function in order to ensure that
the aircraft is in a normal state. In the next section, based on the value of the advantage
functions constructed above, UCAV uses the evaluation of the enemy or friend situation
as the decision-making basis at a certain moment and achieves the goal of expanding the
situation advantage by continuously accumulating advantages.

3. Deep Q-Network Hybridization with Extended Kalman Filter

This chapter introduces the architecture of deep Q-network and deep Q-network
hybridization with an extended Kalman filter based on the characteristics of autonomous
maneuvering decisions based on the real-time generation of maneuvering commands
for UCAVs in complex dynamic air environment and gives the framework of this fusion
algorithm with one-to-one UCAV air combat maneuvering decision generation.

3.1. Deep Q-Network Description

Deep learning has excellent feature learning ability, while reinforcement learning has
strong decision-making ability. Deep reinforcement learning combines the advantages
of both, making it widely used in dynamic decision making, real-time predictions, and
gaming. The basic framework of deep reinforcement learning is composed of agents and
environments. The agent selects actions according to a certain strategy based on the current
state and rewards, and the environment responds to this action and receives the next state
and rewards. Agents optimize their strategies by continuously updating the value function
to maximize cumulative rewards.

A deep Q-network is a classic deep reinforcement learning algorithm based on a value
function, designed to approximate the Q function (state value function). The Google Deep-
Mind team proposed DQN in a paper published by NIPS 2013 [15]. The most important
contribution is to directly use the original state space as the input of the network, while the
input features are not manually completed like traditional reinforcement learning imple-
mentations. Similarly, they can use the same architecture to train agents to play different
Atari games and achieve leading results.

In traditional reinforcement learning, state values are usually stored in the Q table,
and after each action, the Bellman equation is used to update the Q table.

Q(s, a)new = Q(s, a)old + α[r + γmax
a′

Q(s′, a′)− Q(s, a)old] (9)

where α is the learning rate between 0 and 1, r is the reward in the current state, γ is the
discount factor, s′ is the next state, and a′ is an optional action for the next state.

However, when the state dimension is high, the Q table suffers from the dimensionality
explosion problem. DQN uses a neural network to represent the Q function, with the input
being the state and the output being the Q value of each action. Unlike supervised learning,
how to train Q-network remains to be solved. DQN uses a target network to calculate the
target Q value, which is a replica of the main network but is not frequently updated to
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maintain the stability of the target Q value. The target Q value that the network needs to
predict is calculated as in Equation (10).

Qπ(st, at) = r + γmax
a′

Qπ(s′, a′; θ−) (10)

where θ− is the parameter of the target Q-network.
Loss calculation refers to the loss function used in training the main Q-network, which

measures the difference between the Q value output from the main Q-network and the
target Q value. The commonly used loss function is the mean square error (MSE), as shown
in (11).

L(θ) =
1

2N

N

∑
i=1

[ri + γmax
a′

Qπ(s′i, a′; θ−)− Q(si, ai; θ)]
2 (11)

where N is the number of samples in a batch, and si and ai are the state and action of the
i-th sample.

The gradient update process of DQN is shown in formula (12) below.

∇θ L(θ) =
1
N

N

∑
i=1

[ri + γmax
a′

Qπ(s′i, a′; θ−)− Q(si, ai; θ)]∇θQ(si, ai; θ) (12)

The two key techniques of DQN include using a memory replay buffer to store and
sample historical transfer data, to break the correlation between data, and improve data
utilization and learning efficiency. The ε-greedy strategy is used to balance exploration and
utilization, which means randomly selecting actions with a certain probability, otherwise
choosing the current optimal action.

3.2. DQN-EKF Algorithm

The purpose of the target Q-network is to improve the stability of Q value estimation
and avoid continuous changes in the target Q value caused by the update of the main
network parameters, thereby affecting the convergence of training. The parameters of the
target Q-network are periodically copied from the main network, ensuring that the target Q
value does not fluctuate violently with each step of training, but slowly follows the changes
of the main network.

The true values of the weight parameters of the deep Q-network may have some
deviation or fluctuation from the values we train, which may come from factors such as
noise in the training data, randomness of the optimization algorithm, and complexity of
the network structure. The uncertainty of network parameters can affect the performance
and stability of the network, so it is necessary to analyze and filter out the uncertainty of
network parameters [16].

EKF is an extension of the Kalman filter, which can handle nonlinear system models
and observation models, while the Kalman filter can only handle linear models [17]. In a
deep Q-network, the goal is to learn a Q function, namely Q(s, a; θ). It can consider the
network parameters as system states and the Q value as observation values and use EKF to
perform Bayesian inference and update on the network parameters. The state equation and
observation equation are as follows.{

θt = f (θt−1, ωt−1) = θt−1 + ωt−1
zt = h(θt, vt) = Q(st, at; θt) + vt

(13)

where f (·) and h(·) are the state functions and observation functions of nonlinear systems,
respectively; ωt is the process noise, which follows a normal distribution N(0, Q); and vt is
the measurement noise, which follows a normal distribution N(0, R).

The Taylor expansion of the equations of state and observation is used to approxi-
mate the nonlinear system as a linear system so that the Kalman filter can be used. This
linearization process is also the core of the EKF.



Mathematics 2024, 12, 261 7 of 13

For the state equation, a first-order Taylor expansion of f (θt−1, ωt−1) at the a posteriori
estimate θ̂t−1 at the time of t − 1 yields the following Equation (14).

f (θt−1, ωt−1) ≈ f (θ̂t−1, 0) +
∂ f
∂θ

∣∣∣∣
θ̂t−1

(θt−1 − θ̂t−1) +
∂ f
∂ω

∣∣∣∣
θ̂t−1

ωt−1 (14)

where ωt−1 is simplified to 0 and f (θ̂t−1, 0) ∼ θ̃t,
∂ f
∂θ

∣∣∣
θ̂t−1

and ∂ f
∂ω

∣∣∣
θ̂t−1

are the partial deriva-

tive matrices at θ̂t−1 and 0, respectively. Approximating the above expansion formula into
the state equation yields Equation (15).

θt = f (θ̂t−1, 0) +
∂ f
∂θ

∣∣∣∣
θ̂t−1

(θt−1 − θ̂t−1) +
∂ f
∂ω

∣∣∣∣
θ̂t−1

ωt−1 (15)

Equation (15) can be viewed as a linear system, where ∂ f
∂θ

∣∣∣
θ̂t−1

is the state transfer

matrix, usually denoted A, and ∂ f
∂ω

∣∣∣
θ̂t−1

is the process noise matrix, usually denoted W.

For the observation equation, a first-order Taylor expansion is performed for h(θt, vt)
at θ̃t, as shown in (16).

h(θt, vt) ≈ h(θ̃t, 0) +
∂h
∂θ

∣∣∣∣
θ̃

(θt − θ̃t) +
∂h
∂v

∣∣∣∣
θ̃

vt (16)

where vt simplifies t to 0 and makes h(θ̃t, 0) equal to z̃t. ∂h
∂θ

∣∣∣
θ̃

and ∂h
∂v

∣∣∣
θ̃

are the partial

derivative matrices at θ̃t and 0, respectively. Approximating the above expansion formula
into the equation of state yields Equation (17).

zt = h(θ̃t, 0) +
∂h
∂θ

∣∣∣∣
θ̃

(θt − θ̃t) +
∂h
∂v

∣∣∣∣
θ̃

vt (17)

Equation (17) can also be regarded as a linear observation model, where ∂h
∂θ

∣∣∣
θ̃

is the

observation matrix, usually denoted as H, ∂h
∂v

∣∣∣
θ̃

is the observation noise matrix, usually
denoted as V.

Therefore, using linearization, the state and observation equations obtained by lin-
earizing at the posteriori estimate can be written in the following form:{

θt = θ̂t + At−1(θt−1 − θ̂t−1) + Wt−1ωt−1
zt = z̃t + Ht(θt − θ̃t) + Vtvt

(18)

where p(Wω) ∼ N(0, WQWT), p(Vv) ∼ N(0, VRVT).
After linearization, the process is divided into prediction and correction stages accord-

ing to the method of linear Kalman filter.
In the prediction process, prior estimates need to be obtained for θ̂t− , given by the

system. Then, it is necessary to calculate the covariance matrix Pt− of the prior error et− , as
shown in (19).

Pt− = APt−1 AT + WQWT (19)

During the calibration process, the first step is to calculate the Kalman gain Kt rep-
resenting the proportion of the covariance of state observation prediction error to the
covariance of observation prediction error; the calculation formula is as shown in (20).

Kt = Pt− HT(HPt− HT + VRVT)
−1

(20)
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And then the posterior estimation of θ̂t is calculated as (21).

θ̂t = θ̂t− + Kt[zt − h(θ̂t− , 0)] (21)

Finally, it is necessary to update the covariance matrix Pt of the state estimation error
et, as shown in (22).

Pt = (I − KtH)Pt− (22)

To summarize the above formula, the algorithm flow of combining DQN and EKF is
mainly as follows (Figure 2):
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Step 1: Initialize the deep Q-network model, parameters, and its covariance matrix P0.
Step 2: For each time step t = 1, 2, . . ., perform the following sub-steps:

(i) Prediction: Based on the state transition equation and process noise, pre-
dict the mean of state θ̂t− for the next time step and covariance Pt− .

(ii) Correction: Calculate the Kalman gain Kt based on the observation equa-
tion and observation noise and update the mean of state θ̂t and covariance
Pt.

(iii) Interaction: Based on the current state observation st and the ε-greedy strat-
egy, select an action at and execute it using the main network Q(st, at; θ̂t)
with the optimal true parameter estimates to obtain the reward rt and the
next state st+1.

Step 3: Repeat the above steps until the convergence condition is met or the maximum
number of iterations is reached.

In summary, the system state is the weight of DQN, the system dynamic model is
DQN itself, and the observation model is the function H that maps the weight to the Q
value. EKF is used to handle nonlinear situations and consider the uncertainty of weights
and observations. The network parameters updated through EKF iteration are calculated
based on the formula of the Kalman filter (KF). KF is an optimization method used to
estimate system state, which continuously updates the posterior distribution of the state
using the dynamic model and observation model of the system. The network parameters
updated after EKF iteration will be closer to the true values and have less uncertainty.

4. Simulation Experiments
4.1. Simulation Experiments Design

To verify the effectiveness of the DQN hybridization with EKF algorithm proposed
in this article in solving the autonomous maneuvering decision generation problem of
UCAVs, simulation experiments’ design and analysis will be described in this section.
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The hardware used in this simulation is Intel(R) Core (TM) i9-12900H CPU with 32 G
RAM and NVIDIA GeForce RTX 3060 GPU. Operating system and software versions are
Windows 64-bit, torch1.13.1 + cu117, python 3.9.16, and MATLAB 2022b.

Before the simulation starts, it is necessary to initialize the air combat environment and
assign the starting positions and movement directions of the red and blue sides according
to the requirements of the adversarial task, followed by adversarial simulation training.
Among them, the maneuvering strategy of our UCAV always relies on the hybridization
algorithm of DQN-EKF for decision making. We are assuming that the scope of the air
combat environment is limited to a cube with a side length of 12 km. Assuming the
performance of both red and blue aircraft is consistent, with a maximum flight speed of
400 m/s, close to Mach 1.2, a stall speed of 180 m/s, and a maximum normal overload of
8 G. The maneuver decision cycle is set to 0.25 s, which means that every 0.25 s, both red
and blue aircraft have an opportunity to select maneuver actions based on the current air
situation. In addition, the rules for determining victory or defeat are, within the limited
number of maneuver decision steps, if our unmanned fighter’s attack angle is less than
60◦ and escape angle is less than 30◦, and our continuous dominance in this attack range
reaches 9 times or more times, our victory will be determined. On the contrary, the enemy
wins, otherwise, it is a draw.

During the simulation training phase, an online learning process will be conducted for
6000 rounds of confrontation between the red and blue sides, with a maximum simulation
step count of 250 in each round, which is close to one minute of autonomous maneuvering
combat time. Table 1 below provides the key parameter settings for DQN.

Table 1. Parameters setting for DQN.

Index Value

memory capacity 20,000
discounted factor 0.9

batch size 64
learning rate 0.008
ε-greedy value 0.95–0.01

4.2. Simulation Experiment Analysis

In actual one-on-one air combat, pilots will control the aircraft’s joystick based on the
occupancy information of both the enemy and ourselves. In order to achieve autonomous
maneuver decision generation for UCAVs, it is necessary to rely on intelligent decision-
making networks to make maneuvering action choices after analyzing the air combat
environment situation. Conducting simulation experiments is a low-cost verification
method. Designing different initial air combat situations directly affects the generation
of maneuver decisions. Before the start of the simulation experiments, a confrontation
scenario in which both sides are at a disadvantage is designed to approximate the actual
air combat engagement process.

The UCAVs of the red and blue sides are in a state of balance, representing mutual
checks and balances. In the initial stage, both red and blue are flying at the same speed and
the same altitude. But their initial flight heading is in the same straight line and opposite
direction, which is a state of head-on flight.

Following the pre-defined network parameters and air combat environment design,
the integrated reward curve for the rounds obtained by our UCAV throughout the training
process is shown in Figure 3. The figure clearly shows that as the training is iterated,
the reward value has a rapid increase compared to the starting phase. Compared to the
traditional DQN, the DQN-EKF method of training rewards can be highly rewarding
and the reward values are more stable in the later stages of training. By calculating the
cumulative average reward for each episode, the original DQN score was −25.05, and now
the DQN-EKF score is −42.31. DQN-EKF has a numerical improvement of 68.90%. The
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training results demonstrate the feasibility of the DQN-EKF in solving the autonomous
maneuvering decision generation problem for UCAV.
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When the red and blue sides are at a disadvantage to each other, ideally the red aircraft
should increase the angle factor, altitude factor, and speed factor to gain a greater energy
advantage and battlefield initiative. Therefore, the following is a review and analysis of the
flight trajectories of the red and blue sides, and two representative maneuvering decision
trajectories are selected for discussion.

(I) Strategy 1

Figure 4 shows the course of the fight trajectory of the red and blue sides. Due to
the head-on attitude in the initial phase, if the red UCAV does not take any maneuvering
action and still maintains its initial maneuvering action, it increases the risk of being shot
down by the blue UCAV. Therefore, the red side makes a rightward circling flight in the
initial phase to avoid the possibility of being shot down. When the distance between the
two sides is close, the red UCAV makes a maneuver with the tendency to attack, and then
pulls upwards to expand its advantage in altitude and make the accumulation of potential
energy. Finally, the red UAV successfully enters the rear of the attack target and keeps it
within its own attack range. Figure 5 shows the trend of attack angle and escape angle of
the red and blue UCAVs. Towards the end of the round, the attack angle of the red UCAV
converges to zero after several adjustments. At the same time, the fleeing angle is also
stable and close to zero. This indicates that the red side is in a more stable attack zone and
the blue side is in a non-escapable zone.
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(II) Strategy 2

Strategy 2 shows the flight trajectories of the red and blue sides as shown in Figure 6. In
this round of air combat fighting, the maneuvering decisions of the red unmanned fighters
are shown to be very simple. Their angle of attack and angle of escape changes during the
engagement are shown in Figure 7. The red unmanned fighter’s heading makes a change
out to the left from the initial moment, which can be roughly seen as a pull-up to the upper
left. This maneuver effectively parries the target weapon attack, while completing the
accumulation of its own attack advantage. Subsequently, the red unmanned fighter dives
and turns at an altitude of about 7 km to adjust its attitude and create attack conditions
until the blue unmanned fighter shoots it down. Compared with the maneuver decision
process of the strategy, this strategy appears to be more efficient and takes fewer maneuver
steps. The above maneuver decision strategy also laterally reflects the reliability of the
maneuver decision network trained by the DQN and EKF hybrid algorithms.
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We continued to use the DQN-EKF hybrid algorithm to simulate the initial state
of parallel flight between two UCAVs, which demonstrated the process of the red side
accumulating its own advantages from the initial situation of equal strength between
the two sides. The red side UCAV first dives downward, completing a circle of vertical
mediation to form a tail chase situation. But the trajectory on the right of Figure 8 shows
the opposite, with the red side launching attacks from above enemy aircraft.
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5. Conclusions

The maneuver decision-making method based on deep Q-network hybridization with
an extended Kalman filter proposed in this article can achieve truly autonomous maneuver
decision-making for UCAVs. This method combines the advantages of a deep Q-network
in solving the game problem and the ability of an extended Kalman filter in solving the
uncertainty of network parameters. By analyzing the results of the DQN-EKF network
training, it can be found that the method used in this paper can have faster convergence than
the original DQN. The average reward of the DQN-EKF hybrid algorithm is 68.90% higher
than the original DQN algorithm. Due to the addition of EKF, the optimal true parameter
estimates are obtained by continuous iterative updates, and the optimal true parameter
estimates are used to calculate the accurate maneuver value function and select the optimal
maneuver decision maneuver. The flight trajectories of the simulation experiments show
that the maneuver strategy generated by this method can enable the UCAV to perform the
task of defeating enemy aircraft more autonomously, accurately, and stably in a dynamic
3D environment and complete the autonomous maneuver decision. Future research will
target the design of a hybrid parallel computing framework to make improvements in the
efficiency of training.
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