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Abstract: A common practice in inventory systems with several customers requiring differentiated
service levels is to group them into two or three classes, where a customer class is a group of
customers with the same preset service level in terms of product availability. However, there is no
evidence that grouping customers into two or three classes is optimal in terms of the ordering policy
parameters. This paper studies the effect of the number of customer classes on the inventory level of
a single-period inventory system with stochastic demand and individual service-level requirements
from multiple customer classes. Using a Sample Average Approximation approach, we formulate
computationally tractable multi-class service level models, under responsive and anticipative priority
policies in cases of shortage, as mixed integer linear problems (MIPs). The effect of the number
of classes on the inventory level is determined using a round-up aggregation scheme; i.e., given a
sufficiently large initial number of classes, it is reduced by adding the lower service level classes
to the next higher class. We analytically characterize the optimal inventory level under responsive
and anticipative priority policies as a function of the initial number of classes and the number of
classes grouped based on the round-up aggregation scheme. Under a responsive priority policy,
we show that there is an optimal number of classes, while under an anticipative priority policy, the
optimal number of classes is equal to the initial number of classes. The effect of free-riders resulting
from the round-up aggregation scheme on the optimal inventory level is studied through numerical
experiments.

Keywords: inventory; shortage; service level; customer classes; priority policy; round-up aggregation;
Sample Average Approximation

MSC: 90C15; 90B05; 90C90; 62D05

1. Introduction

Research on inventory systems subject to multiple customer classes is based on the
fact that, for the same product, demand may arise from different customer groups with
varying requirements for delivery times or service levels regarding product availability.
Although these inventory systems have been extensively studied, less attention has been
focused on the single-period problem under stochastic demand and individual service-level
requirements from multiple customer classes. This scenario is not unusual; we are talking
about a relatively common situation, e.g., wholesalers supplying products to different
customers in a retail market, and where the attention priority of each customer, as well as
their demand, is different.

In these scenarios, a key challenge is to minimize the amount of products the whole-
saler needs to meet customer demand, all while ensuring a specified service level. This
is especially important in shortage situations. A common practice is to group customers
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into two or three customer classes, using Pareto or ABC classifications, respectively, where
A-class represents priority customers who can demand high service levels. However, to
the best of our knowledge, there is no evidence that grouping customers into two or three
classes achieves inventory level minimization in a single-period inventory system with
multiple customer classes. The complexity of this problem, arising when customers are
grouped into more than three classes, has hindered research on the effect of the number of
customer classes on inventory level in this type of inventory system.

In this paper, we consider a seasonal product wholesaler who serves several customer
classes with different service level requirements in terms of product availability; the whole-
saler is likely to face shortages because the purchase order is made before knowing the real
demand of its different customer classes. Given this situation, the wholesaler has to make
two decisions. The first one is the amount of products to purchase and the second decision
involves determining how to allocate the available inventory when the purchased quantity
is less than the total demand. Two types of priority policies can be identified in the case
of shortage, (i) responsive priority policies, where the order in which customer classes are
going to be served (priority list) is defined using the realized demand information, and
(ii) anticipative priority policies, where a priority list is defined before demand realization. The
simplest responsive policy is the greedy allocation priority policy (GP policy), where customers
are served in ascending order according to the demand realization, while the simplest
anticipative policy is the fixed-list allocation priority policy (FLP policy), where customers are
served in descending order based on the preset service level of each customer class.

The objective of this paper is to determine the effect of the number of customer
classes on the inventory level of a single-period inventory system with stochastic demand
and individual service level requirements from multiple customer classes. The research
questions we consider in this paper are as follows: (i) How does the number of customer
classes affect the inventory level under different priority policies? (ii) What is the optimal
number of customer classes under different demand configurations? and (iii) What priority
policy performs better under different demand configurations?

To address this issue, both priority policies mentioned above, GP and FLP, are used,
and the service level, considered to ensure product availability for each customer class, is
measured by the probability of satisfying the entire demand for each class, namely, the α
service-level. For each priority policy, we formulate a multi-customer class service-level
constraint (SLC) problem under the α service level as a chance-constrained stochastic
programming model. These α-SLC problems are difficult to solve since they imply leading
with convolutions and multiple integrals when customers are grouped into more than three
classes, which limits the study of how the number of classes affects the inventory level. An
efficient way to deal with chance constraints is to utilize the Sample Average Approximation
(SAA) approach. The basic idea of SAA in problems where chance constraints are involved
is to replace the theoretical distribution function by the empirical distribution obtained from
random sampling. Thus, we show how to formulate the multi-customer class SLC models
with chance constraints as mixed integer linear problems (MIPs) using a sample-based
approach (SAA models), and taking advantage of the SAA method, we obtain a feasible
solution with guaranteed quality in terms of its optimality gap. Then, assuming knowledge
of the number of initial classes (n >> 1) and using a round-up aggregation scheme to reduce
the customer classes, we study how the number of classes affects the inventory level under
GP and FLP policies. Based on the SAA models, structural insights into the number of
classes when a round-up aggregation scheme is used are derived. Under this aggregation
scheme, which does not harm the service level of the aggregated classes, the variation in the
inventory level is caused by the free-rider classes (free-rider effect) and by the aggregation
scheme (cluster effect). We isolated and separately measured the effect induced by the free
riders and the aggregation scheme on the order quantity. We show in this paper that the
order quantities under the GP and FLP policies have different behaviors regarding the
number of classes. The order quantity under the GP policy is not monotonous with respect
to the number of classes, while the quantity ordered under a FLP policy is.
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The main contributions of this study are summarized as follows: (1) To the best of
our knowledge, this is the first time that the effect of the number of customer classes on
the inventory level has been studied. (2) We show how to reformulate the multi-class
α-SLC problem under GP and FLP policies as MIPs using a sample-based approach. (3) An
efficient mechanism for grouping customer classes (round-up aggregation scheme) is
presented. (4) Novel propositions to analytically characterize the optimal inventory level
under GP and FLP policies are provided. (5) To the best of our knowledge, this is the
first time that the effect of free-riders and the customer class aggregation scheme on the
inventory level under GP and FLP policies, respectively, has been explored.

The remainder of this paper is structured as follows. A review of related work is
discussed in Section 2. Section 3 presents the multi-class α-SLC problems under the GP and
FLP policies, respectively. In Section 4, we show how to reformulate the α-SLC problems as
MIPs using a sample-based approach. Section 5 presents the SAA method to obtain α-SLC
model bounds under GP and FLP policies and measure the solution quality in terms of the
optimality gap. Section 6 presents the customer class aggregation scheme and addresses
the relationship between inventory level and the number of customer classes under GP and
FLP policies. Computational results are reported in Section 7. Finally, we conclude with
managerial insights and future extensions to this work in Section 8.

2. Literature Review

Inventory systems with several customer classes have been extensively studied in
various contexts, in which four dimensions are distinguished according to Schulte and
Pibernik [1]: (i) the frequency with which rationing decisions are made (static or dynamic),
(ii) the number of customer classes (two or an arbitrary number), (iii) the number of periods
(single or multi-period, with different ordering inventory policies in the latter case), and
(iv) the shortage approach (backorders or lost sales). A comprehensive review of multi-class
inventory systems can be found in Kleijn and Dekker [2], and the details of classification
are well documented in Teunter and Haneveld [3].

Several priority policies have been studied under a single-period inventory system
with multiple customer classes. Lagodimos [4] proposed two priority policies when faced
with inventory shortages, namely fair share rationing and priority rationing. Fair share
rationing consists of rationing the available inventory among different customers to achieve
the same stockout probabilities, while priority rationing satisfies customer demands in the
sequence defined by a priority list. Two rules for building priority lists are proposed. The
first one is the GP policy, and the second one is to assign random priorities (randomized
list policy). Lagodimos [4] also introduced the availability assumption, which states that the
demand of only one customer is not completely satisfied in the case of a shortage. More
precisely, given a rationing policy, the last customer on the list will not be fully served.
Alptekinoğlu et al. [5] classifies the priority rules according to whether they make use
of actual demand information or not, i.e., responsive and anticipative priority policies,
respectively. According to Alptekinoğlu et al. [5], a GP policy is responsive, while the
FLP and randomized-list policies are anticipative priority policies. Chen and Thomas [6]
analyzed four responsive priority policies: the GP policy; the proportional priority policy,
which gives each customer the same fraction of his order; the linear priority policy, which
satisfies each customer minus a common amount corresponding to the difference between
total orders and capacity divided by the number of customers; and the uniform priority policy,
which allocates an equal inventory quantity for every customer and evenly redistributes
any excess inventory to customers whose demands are not yet fully satisfied.

In this paper, we consider a single-period inventory problem under stochastic demand
and individual service-level constraints from multiple customer classes, where given a
priority policy in the case of shortage, it is required to determine the minimum order
quantity such that the preset service levels of each customer class are met. In Table 1, we
classify these works according to (i) the priority policy (responsive or anticipative), (ii) the
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service level (α or β), (iii) the stochastic programming model approach, (iv) the solution
approach, and (v) the number of customer classes reported in the numerical results.

Table 1. Studies on single-period inventory problems with multi-class service level requirements.

Priority Policy Service Level Model
Approach

Solution
Approach

Number
of Classes

Author R A α β

Swaminathan and Srinivasan [7] x x CC H ≤ 2
Zhang [8] x x CC CF -
Alptekinoğlu et al. [5] x x x CC CF ≤ 3
Zhong et al. [9] x x SI-LP H ≤ 3
Lyu et al. [10] x x SI-LP SAA ≤ 4
Lyu et al. [11] x x x TS H ≤ 6
Jiang et al. [12] x x x TS H ≤ 10
This paper x x x CC SAA ≤ 8

R: responsive; A: anticipative; CC: chace-constraint; SI-LP: semi-infinite linear programming; TS: two-stage; H:
heuristic; CF; closed form; SAA: Sample Average Approximation.

Swaminathan and Srinivasan [7] studied the single-period problem with individual
α service levels. They formulated a service-level problem with chance constraints under
a responsive priority policy. To solve this problem, the authors partitioned the demand
space into mutually excluded regions, where each region has a unique combination of
service customers and an occurrence probability. They proposed an algorithm that defines
the regions and obtains an upper bound for the optimal order quantity. A binary search
is performed within the pre-established regions to find the optimum value of the order
quantity. The combinatorial complexity of the problem and hence the difficulty of obtaining
a solution are evident from their work.

Zhang [8] analyzed the single-period problem with individual α service levels under
a randomized priority policy. Firstly, he formulated a service-level model with chance
constraints for two customers, where the service level constraints are based on the proba-
bility of using one of the two feasible lists, which is equivalent to the probability that one
customer is in the first or second place on the list. The author concludes that it is difficult to
extend his results to n-customers because this involves determining the probabilities for
all n! possible priority lists. To formulate the problem for multiple customers, this author
employed the availability assumption of Lagodimos [4] and defined an approximation for
the service level of each customer based on the probability that the customer is the last
one on the list. Consequently, he developed a stochastic programming model to determine
the minimum order quantity such that the service level provided to a customer should
be higher than his/her preset service level. Finally, Zhang [8] determined the optimum
probability of a customer being in the last place on the list to make a minimum purchase.

Alptekinoğlu et al. [5] proposed a single-period model with individual α service levels
from multiple customers as a service level problem with chance constraints. The objective is
to minimize the order quantity and to determine an optimal priority policy that satisfies the
service levels of each customer. They obtain complete solutions for the anticipative priority
policy and partial solutions for the responsive priority policy in the form of bounds. The
numerical experiments shown by Alptekinoğlu et al. [5] are up to three customer classes.
Zhong et al. [9] studied the single period problem with individual fill-rate (β) service
levels under an anticipative priority policy called the largest-debt-first policy. The problem
is formulated as a semi-infinite linear model. The solution approach is a sample-based
heuristic, where the priority policy of the tth scenario is built in descending order to the
average debt for the first t − 1 samples. Zhong et al. [9] showed results for only three
customers since the solution of a larger number is computationally prohibitive due to the
exponential number of constraints involved. Lyu et al. [10] studied the same problem as
Zhong et al. [9] but solved it using SAA. They show results in up to four customer classes.
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Lyu et al. [11] study a single-period multi-customer inventory system under α and
β service levels and responsive priority policy. The responsive priority policy problem is
formulated in two stages, where in the first stage, the optimal order quantity is determined
using the bisection method, and in the second stage, the optimal allocation rule is deter-
mined by solving a knapsack problem. They, using their two-stage formulation, determine
bounds for the order quantity based on an anticipative policy with respect to the responsive
policy. They show results for up to six customer classes.

Jiang et al. [12] present a framework to study a single-period multi-customer inventory
system under the α and β service levels and responsive priority policy. The problem
is formulated as a two-stage stochastic problem with chance constraints (service-level
constraints). In the first stage, they assume a feasible order quantity and solve the dual
problem using the stochastic gradient descent (SGD) algorithm. Thus, they obtain the
optimal responsive priority policy, denoted as max-weighted-service policy, where the weights
are the Lagrangian multipliers of each service level constraint. In the second stage, given
the optimal priority policy, they determine the optimal order quantity using a min-max
stochastic programming formulation of the original problem, which is solved using the
descent stochastic approximation (SA) algorithm of Juditsky and Nemirovski [13]. They
show results for up to ten customer classes.

In summary, only a few papers have considered single-period inventory systems with
individual service-level requirements from multiple customers under priority policies in the
case of shortage. Furthermore, given its combinatorial complexity or its multidimensional
integration requirements, the single-period problem under priority policies is difficult to
solve. This has limited the study of the effect of the number of customer classes on the
inventory level. Unlike previous works, we study the effect of the number of customer
classes on the inventory level under responsive and anticipative policies.

An efficient way to deal with chance constraints is to utilize the Sample Average Approx-
imation (SAA) approach. The basic idea of SAA in problems where chance constraints are
involved is to replace the theoretical distribution function with the empirical distribution
obtained from random sampling. In this sense Calafiore and Campi [14] studied an alter-
native ‘randomized’ or ‘scenario’ approach for dealing with uncertainty in optimization
based on constraint sampling. They show that a convex optimization problem in which
constraints are imprecisely known can be efficiently solved in the ϵ − level sense using a
randomized algorithm, i.e., the probability that a candidate solution violates the constraint
of the problem is at most ϵ. Calafiore and Campi [15] extended their work by focusing
on the robust control and showing the usefulness of probabilistic optimization in this
context. Ahmed and Shapiro [16], in addressing a chance-constrained problem with a
discrete distribution that can be quite difficult to solve, presented several approaches based
on integer programming for solving the SAA problem. In contrast, Luedtke and Ahmed
[17] studied the utilization of sample approximation to generate feasible solutions and
optimality bounds for general chance-constrained problems. They show an approach to
choosing the number of replications that is independent of the size of the sample and the
risk level and showed how the sample approximation scheme can be used to obtain lower
bounds that are valid with high confidence. Finally, Pagnoncelli et al. [18] applied SAA in
a chance-constrained portfolio selection problem and obtained the upper bounds as well
as candidate solutions to the problem. Furthermore, they presented a way to choose the
size of the sample such that the optimal solution of the SAA problem is feasible for the
corresponding true problem with high confidence.

3. Problem Description and Formulation

Consider a wholesaler who supplies a single product to several customers, including
large retail chains that request high service level in terms of product availability, from a
centralized inventory pool in a single period. The inventory can also be viewed as various
capacities in manufacturing or service systems.
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The wholesaler classifies its consumers in I (i = 1, . . . , n) customer classes, where
each class is a group of customers with the same preset service level in terms of product
availability. Let class 1 (i = 1) be the high-priority class, which corresponds to large
retail chains, and let class n (i = n) be the lowest-priority class, which represents retailers
who have to settle for the lowest service level. Let Xi be the demand of class i with non-
negative continuous distribution function Fxi (·) and density function fxi (·), and let ξi be
the realization of customer class i. Throughout the paper, we use boldface letters to denote
vectors; for example, the demand vector is denoted as X := (X1, . . . , Xn).

At the beginning of a period, the wholesaler orders a lot of sizes S > 0, without
knowing the actual demand of the customer classes. Next, the demand is realized for
each customer, who then orders from the wholesaler. After learning the demand of each
customer class, two mutually exclusive events could happen: (i) no rationing is required,
because ∑i∈I ξi ≤ S, or (ii) rationing occurs, because ∑i∈I ξi > S, and the wholesaler must
allocate S according to an explicit priority policy.

The objective of the wholesaler is to determine the minimum order quantity S under
an explicit priority policy that meets the preset service level of each customer class. In this
paper, we consider the α service level defined as the probability of no stockout [19]. In the
case of several customer classes, we interpret the α service level of class i, with i = 1, . . . , n,
as the probability of satisfying the entire demand of class i. Let αi(S) and αi ∈ (0, 1) be the
provided and preset α service-levels for class i, respectively, with α1 ≥ . . . ≥ αn.

Using the α service-level definitions described above and the priority list approach of
Alptekinoğlu et al. [5] to model the GP and FLP policies, we present two multi-customer
class SLC problems, which are denoted as α-SLCP(n), with P = {G, F} specifying the GP
and FLP policies, respectively.

3.1. Multi-Class SLC Problem under the α Service Level and a GP Policy

A priority list under a GP policy is constructed using a smaller-demand-filled-first
rule; i.e., this list serves the customer classes in ascending order of demand realizations. Let
π(k) be the customer class in the kth position of the priority list and ΠG = {π(1), . . . , π(n) :
ξπ(1) ≤ ξπ(2) ≤ . . . ≤ ξπ(n)} be the priority list under a GP policy.

The conditions required to fully meet the demand of class i under a non-negative
demand and a GP policy are as follows: (i) there does not exist rationing, i.e., ∑i∈I ξi ≤ S,
or (ii) rationing occurs and all demands for classes before i in the priority list are less than
or equal to S, including customer class i, i.e., ∑i∈I ξi > S and π(k) = i, ∑k

l=1 ξπ(l) ≤ S, for
any k = 1, ..., n. Therefore, the α service level provided to the class i under a GP policy is

αi(S) = P
(

∑i∈I Xi ≤ S
)
+∑n

k=1 P
(

∑i∈I Xi > S, π(k) = i, ∑k
l=1 Xπ(l) ≤ S

)
. Using the total

probability law, we have

αi(S) =
n

∑
k=1

P
(

π(k) = i,
k

∑
l=1

Xπ(l) ≤ S

)
. (1)

Using (1), we formulate a multi-customer class SLC problem under a GP policy and α
service level as the following NLP problem.

α-SLCG(n) : min
S

S (2)

s.t:
n

∑
k=1

P
(

π(k) = i,
k

∑
l=1

Xπ(l) ≤ S

)
≥ ᾱi ∀i ∈ I (3)

S ≥ 0. (4)

The objective is to determine the minimum order quantity S that satisfies the preset
service level for each customer class. Constraint (3) ensures that the α service level provided
to class i, under the GP policy, is greater than or equal to its preset service level, and
constraint (4) is the non-negativity constraint.
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The α-SLCG(n) model is difficult to solve because the events that describe the position
of class i in the priority list increase with the number of classes, which induces n(n − 1)!
terms in (1) for any i ≤ n. Furthermore, (1) must be conditioned in n random variables,
which induces expressions with multiple integrals when n > 2. A simple illustrative
example with two customer classes is provided in Appendix A.

3.2. Multi-Class SLC Problem under α Service-Level and FLP Policy

A priority list under an FLP policy is constructed using a high-service-level-first rule;
i.e., this list serves customer classes in decreasing order according to the preset service level
of each customer class. Thus, under an FLP policy, π(i) = i for any i ∈ I.

The conditions to fully meet the demand of class i, under non-negative demand
and FLP policy, are as follows: (i) rationing does not exist, i.e., ∑i∈I ξi ≤ S, or (ii) ra-
tioning occurs, and all demands for classes before i in the priority list are less than or
equal to S, including the customer class i, i.e., ∑i∈I ξi > S and ∑i

l=1 ξl ≤ S. Therefore,

the α service level provided to the class i under a FLP policy is αi(S) = P
(

∑i∈I Xi ≤

S
)
+P
(

∑i∈I Xi > S, ∑i
l=1 Xl ≤ S

)
. Using the total probability law, we have:

αi(S) = P
(

i

∑
l=1

Xl ≤ S

)
. (5)

It should be noted that αi(S) is independent of n for any i ≤ n because the position of
class i in the priority list is fixed. Then, using (5), we formulate a multi-customer class SLC
problem under an FLP policy and an α service level as the following NLP problem.

α-SLCF(n) : min
S

S

s.t: P
(

i

∑
l=1

Xl ≤ S

)
≥ ᾱi ∀i ∈ I (6)

S ≥ 0.

Constraint (6) ensures that the α service-level provided to class i, under the FLP policy,
is greater than or equal to its preset service level.

Alptekinoğlu et al. [5] shows that the optimal solution to the α-SLCF(n) problem
is maxi∈I{G−1

∑ (ᾱi)}, where G∑(·) is the distribution function of ∑i
l=1 Xl for i = 1, . . . , n.

This solution is difficult to compute when X1, . . . , Xn have different distribution functions,
which implies leading with convolutions.

4. A Sample-Based Formulation of Multi-Class SLC Problems

The α-SLCP(n) models, with P = {G, F}, are difficult to solve for more than three
customer classes (n > 3) since they require multidimensional integration. In this section,
we present a sample-based reformulation of α-SLCG(n) and α-SLCF(n), respectively, using
the SAA approach.

Consider a sample with N scenarios (ξ1, . . . , ξN) of the random vector X. Let
J (j = 1, ..., N) be the set of scenarios and let ξ

j
i be the demand realization for the cus-

tomer class i in the jth scenario. Let Zj
i be equal to 1 if the class i is fully satisfied in the jth

scenario, and 0 otherwise. Under a sampling-based approach, the α service level provided
to the class i is defined as

α̂i(Zi) =
1
N

N

∑
j=1

Zj
i ,

i.e., the number of times the demand for class i is fully satisfied over the total number of
scenarios sampled.
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The GP policy under a sample-based approach is modeled for class i using the indexed
set Nij, defined as the set of customer classes that must be satisfied completely before

customer class i in the jth scenario, i.e., Nij =
{

r ∈ I : ξ
j
r < ξ

j
i

}
, for any i ∈ I, j ∈ J. Thus,

the sampled version of α-SLCG(n) can be formulated as the following MIP:

α-SAAG(n) : min
S,Z

S (7)

s.t:
1
N

N

∑
j=1

Zj
i ≥ ᾱi ∀i ∈ I (8)

∑
i∈I

ξ
j
i Z

j
i ≤ S ∀j ∈ J (9)

Zj
i ≤ Zj

r ∀i ∈ I, j ∈ J, r ∈ Nij (10)

S ≥ 0

Zj
i ∈ {0, 1} ∀i ∈ I, j ∈ J. (11)

Constraint (8) ensures that the sampled α service level provided to the class i is greater
than or equal to its preset service level. Constraint (9) prevents the total satisfied demand
in the jth realization from exceeding the order quantity S. Constraint (10) satisfies the
demands of the customer classes according to the GP policy. Constraint (11) is an integrality
constraint.

In the same way, the sampled version of α-SLCF(n) can be formulated as the follow-
ing MIP:

α-SAAF(n) : min
S,Z

S

s.t:
1
N

N

∑
j=1

Zj
i ≥ ᾱi ∀i ∈ I

∑
i∈I

ξ
j
i Z

j
i ≤ S ∀j ∈ J

Zj
i ≤ Zj

i−1 ∀j ∈ J, i = 2, . . . , n (12)

S ≥ 0

Zj
i ∈ {0, 1} ∀i ∈ I, j ∈ J,

where constraint (12) ensures that customer classes are satisfied according to an FLP policy
(high-service-level-first rule).

5. The SAA Method and Validation Procedure

Let S∗
P(n) and ŜP(n) be the optimal solutions of α-SLCP(n) and α-SAAP(n), respectively,

with P = {G, F}. In the SAA approach, M independent batches are generated, each of
which has N scenarios, and the SAA problem is solved M times. Therefore, M optimal
solutions are obtained, one for each batch (Ŝr

P(n), r = 1, . . . , M).

According to Pagnoncelli et al. [18], the value ŜP(n) converges to optimality as N
tends towards infinity. Since the determination of the true optimal value S∗

P(n) of the
optimal solution is impossible due to the extremely large number of scenarios required, we
statistically estimated the lower and upper bounds. In this sense, Luedtke and Ahmed [17]
shows that the minimum of the objective function values from these M replications provides
a statistical estimation of a lower bound of the true optimum. In contrast, Ahmed and
Shapiro [16] took any optimal solution by solving the SAA problem (Ŝr

P(n), r = 1, . . . , M)

and validated the result according to a given confidence level 1 − δ, as a feasible solution
of the true problem by obtaining an upper bound for the optimal value S∗

P(n). These
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statistical estimates of the upper and lower bounds allow us to compute an estimation of
the optimality gap and the construction of confidence intervals.

The SAA procedure to determine estimates of the bounds for the α-SLCP(n) models,
with P = {G, F}, can be stated as follows:

SAA Procedure:
Initialize: Generate M independent replications, each with N random samples of X, given
by ξr

j for r = 1, . . . , M, and j = 1, . . . , N. For each r, solve the α-SAAP(n) model. Let

Ŝ1
P(n), Ŝ2

P(n), . . . , ŜM
P(n) be the corresponding optimal solutions. Also, independently generate

a large enough sample of N′ scenarios where N′ ≫ N.

Step 1: To estimate a lower bound, rearrange the calculated optimal solutions in increasing
order as follows: Ŝ(1)

P(n) ≤ Ŝ(2)
P(n) ≤ · · · ≤ Ŝ(M)

P(n). Then, with a probability of at least 1 − δ, the

random quantity Ŝ(L)
P(n), 1 ≤ L ≤ M, gives a lower bound for the true optimal solution S∗

P(n).
Following Luedtke and Ahmed [17], use the minimum of the optimal solutions from these
M replications. Thus, the lower bound is expressed as Ŝ(1)

P(n).

Step 2: To estimate an upper bound, first verify the feasibility of the candidate solution
Ŝr

P(n) in the true problem α-SAAP(n). In this sense, there are different criteria for choosing
candidate solutions that verify their feasibility, e.g., the feasibility of all the optimal solutions
of the SAA problem can be verified (Ŝr

P(n), ∀r = 1, ..., M), and the lowest feasible solution
is determined. Another approach may be to select the greatest value of the optimal
solution Ŝ(M)

P(n).
Based on Ahmed and Shapiro [16], estimate the probability for the greedy and fixed-

list service level problems such that constraint (3) and (6) are violated for the customer class
i. Let q̂i

N′(ŜP,α(n)) = ∆i/N′ be the estimation of the probability of violating the constraint,
where ∆i is the number of times the constraint is violated for the customer class i in N′

samples. Note that it is not necessary to solve any optimization problems in this case.
This leads to the following approximation (1 − δ)-confidence for the upper bound of this
probability for each customer class i:

UBi
δ,N′

(
ŜP(n)

)
= q̂i

N′

(
ŜP(n)

)
+ zδ

√√√√ q̂i
N′

(
ŜP(n)

)(
1 − q̂i

N′

(
ŜP(n)

))
N′ ∀i = 1, . . . , n,

where zδ = Φ−1(1 − δ) is the inverse standard normal distribution for a confidence level
(1 − δ). If the bound results in UBi

δ,N′(ŜP(n)) ≤ 1 − ᾱi for each i = 1, . . . , n, it is possible to
ensure ‘up to a probability of bad sampling ≤ δ’, that ŜP(n) is feasible in the true problem
and that it is an upper bound for the true optimal value S∗

P(n).

Step 3: Compute an estimation of the optimality gap of the solution ŜP(n), using the lower
bound estimate in Step 1 and the upper bound estimated in Step 2, as follows:

GapP(n) =

 ŜP(n) − Ŝ(1)
P(n)

ŜP(n)

. (13)

6. Relationship between the Number of Customer Classes and Order Quantity

In this section, we derive several properties of the ordered quantity resulting from
solving α-SAAP(n) models, with P = {G, F}. These properties allow us to establish how
the number of classes affects the order quantity under GP and FLP policies.

To modify the number of customer classes, we consider a round-up aggregation
scheme. This policy adds the demand of class i to the demand of class i − 1, for any
i = 2, . . . , n, and maintains the preset service level of class i − 1. As a result, customers are
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grouped into n − 1 classes. This procedure could continue until the customer classes are
grouped into a single class.

The round-up aggregation scheme does not negatively affect the service level of
the aggregate classes, because it is ensured that they receive a higher service level than
their original preset service level. This implies that the customer classes added under a
round-up aggregation scheme are free-riders, i.e., classes that receive a higher service level
than required.

It should be noted that there are several rules for adding demand under the round-up
scheme, e.g., (i) the low-service-level-first-rule, which always adds the demand of the class
n to the demand of the class n − 1; (ii) the high-service-level-first-rule, which always adds
the demand of class 2 to the demand of class 1; and (iii) the random rule, which randomly
chooses the class i whose demand is added to the demand of class i − 1.

Let n − m be the number of classes added under any aggregation rule of the round-
up scheme, for any m = 1, . . . , n. In this case, the customers are grouped into I

′
(i =

1, . . . , m) classes. Let ξ
′

and ᾱ
′

be the demand and preset service levels for the new set
of customer classes. To determine the minimum order quantity S such that the preset
service level of each i = 1, . . . , m customer class is satisfied, under a GP or FLP policy, we
solve the α-SAAP(m) model with ξ

′
and ᾱ

′
. We denote this problem as α-SAAP(n, m) and

ŜP(n,m) as its optimal solution. Under the low-service-level-first-rule round-up aggregation

scheme, ᾱ
′
i = ᾱi for any i = 1, . . . , m, ξ

′
i = ξi for any i = 1, . . . , m − 1, and ξ

′
m = ∑n

i=m ξi.
The following propositions establish an ordering of the optimal order quantity when the
number of customer classes varies according to the low-service-level-first-rule round-up
aggregation scheme.

Proposition 1. ŜG(n,m) ≤ ŜG(n,1) for any m ≥ 1, where ŜG(n,m) and ŜG(n,1) are the optimal
solutions of α-SAAG(n, m), with m ≥ 1, and α-SAAG(n, 1), respectively.

Proof. The proof is provided in Appendix B.

The main consequence of Proposition 1 is that grouping all classes in a single class with
the highest preset service level (full-round up) induces the largest optimal order quantity. In
other words, grouping customers into m > 1 classes is better than grouping them into a
single class. Proposition 1 is independent of the preset service levels; i.e., it is valid when
ᾱ
′
i = ᾱ for any i = 1, ..., m. Thus, we conclude that the reduction in the order quantity by

grouping customers in m > 1 classes is not only caused by free-rider customer classes.

Proposition 2. ŜF(n,m) ≤ ŜF(n,m−1) for any m = 2, ..., n, where ŜF(n,m) and ŜF(n,m−1) are the
optimal solution of α-SAAF(n, m) and α-SAAF(n, m − 1), respectively.

Proof. The proof is provided in Appendix C.

The main consequence that we observe in Proposition 2 is that the order quantity
induced by the FLP policy is non-increasing with the number of customer classes.

Proposition 3. ŜP(n) ≤ S̃P(n,m), where ŜP(n) is the optimal solution of α-SAAP(n) model with
preset service levels ᾱ1 ≥ ᾱ2 ≥ ... ≥ ᾱn, and S̃P(n,m) is the optimal solution of α-SAAP(n) with
preset service levels ᾱ

′
i = ᾱi for any i = 1, ..., m and ᾱ

′
i = ᾱm for any i = m + 1, ..., n.

Proof. The proof is provided in Appendix D.

The main consequence that we observe in Proposition 3 is that the order quantity
induced by the GP and FLP policies is non-decreasing with the number of free-rider classes.
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7. Computational Study

In this section, we present our numerical study and its results. The main objectives of
the computational study are as follows: (i) to quantify Proposition 1, which establishes that
the order quantity induced by the GP policy when customer classes are grouped in more
than one class is less than or equal to the order quantity induced when customer classes are
grouped into a single class; (ii) to quantify Proposition 2, which establishes that the order
quantity induced by the FLP policy is non-increasing in the number of customer classes;
(iii) to quantify separately the effect of the free-rider customer classes and the effect of the
aggregation rule on the order quantity; and (iv) to evaluate the performance of the SAA
approach in terms of quality solution (optimality gap).

To illustrate the performance of GP and FLP policies under the α service level, we
generated several instances under different demand configurations. Each instance started
with eight customer classes, i.e., n = 8, which were then gradually merged according to the
low-service-level-first-rule round-up aggregation scheme until all classes were grouped into
a single class, solving α-SAAP(n, m) models, with P = {G, F}, for any m = 1, . . . , 8. Thus,
it is possible to compute the effect of the number of customer classes on the order quantity.

We analyze four different configurations in terms of demand. What changes in each
configuration is the set of classes that dominate in terms of demand in each initial instance.
We generated 200 random instances. To illustrate the concept of dominance demand,
consider any configuration where the dominant classes belong to the set Nc, where Nc is
the set of classes that dominate in terms of demand in the configuration c = 1, . . . , 4. We
say that the classes that belong to Nc dominate in terms of demand if ∑i∈Nc µi > ∑i∈I\Nc µi.
Table 2 shows the four configurations.

Table 2. Configurations.

Configuration Demand Dominance Nc

1 Class 1, 2 and 3 N1 = {1, 2, 3}
2 Class 6, 7 and 8 N2 = {6, 7, 8}
3 Class 4 and 5 N3 = {4, 5}
4 No class N4 = ∅

As shown in Table 2, the first configuration considers that the demand is concentrated
on the first three classes; i.e., the high-priority classes dominate demand. The second
configuration considers that the last three classes concentrate the demand; i.e., the low-
priority classes dominate demand. The third configuration considers that the two middle
classes concentrate the demand. Finally, in the fourth configuration, there are no demand
dominant classes; i.e., all customer classes have similar demands.

Each initial instance with eight customer classes uses the following common criteria
and parameters: service level requirements ᾱ1 = 0.99 and ᾱi = 0.95 − 0.05(i − 2) with
i = 2, . . . , 8, and normal demand distributions with a coefficient of variation CVi = 0.4 for
any i ∈ I. In Appendix E, we show how each configuration is built. Once the instances
for each configuration are built, we solve the α-SAAP(n, m) models for any m = 1, . . . , 8
for each instance using a number of replications and scenarios according to Luedtke and
Ahmed [17] and Pagnoncelli et al. [18], respectively. Consequently, we use M = 10 and
N = 3000. Furthermore, we determine the number of sufficiently large samples N′ = 10,000
to obtain the upper bound. The bounds are determined with a confidence level of 99.9%,
i.e., δ = 0.001.

The α-SAAP(n, m) models, with P = {G, F} are solved using CPLEX 20.1 for any
m = 1, ..., n. For each instance, the stopping criterion is 10−3 optimality gap. All tests were
performed on a MacBook Pro with an Intel Core i7 2.3 GHz processor and 16 GB RAM,
designed by Apple in Cupertino, CA, USA, and assembled in China.



Mathematics 2024, 12, 1509 12 of 22

We determined for each instance the CPU time of α-SAAP(n, m) for any m = 1, . . . , n.
The average and maximum CPU times for each instance under the GP policy were 3798 and
29,363 s, respectively, and under the FLP policy, they were 9618 and 19,253 s, respectively.

7.1. Number of Customer Classes Versus Order Quantity

From Propositions 1 and 2, we conclude that grouping customer classes into several
classes has a positive effect on the order quantity. To quantify this effect, we computed the
benefit of grouping customer classes into different numbers of classes versus a single class
under GP and FLP policies. This benefit is measured for each instance as follows:

BP(n, m) =

∑M
r=1

(
Ŝr

P(n,1) − Ŝr
P(n,m)

Ŝr
P(n,1)

)
M

∀m = 1, . . . , n, (14)

where Ŝr
P(n,1) is the order quantity obtained by solving the rth replication of α-SAAP(n, m)

with m = 1, and Ŝr
P(n,m)

is the order quantity obtained by solving the rth replication of
α-SAAP(n, m) with m = 1, . . . , n.

The benefit is interpreted as the percentage for which the order quantity of a single
class is reduced. Note that the benefit of considering a single-class, i.e., m = 1, will always
be zero, and Ŝr

G(n,m)
= Ŝr

F(n,m)
for any r = 1, . . . , M and m = 1, allowing a comparison

to the priority policy that yields the greater benefit. Figure 1 shows, for each demand
configuration, the average benefits of grouping customer classes into different numbers of
classes according to (14).
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Figure 1. Benefit under GP and FLP policies with n = 8.
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As we expected, Figure 1 shows that under GP and FLP policies, grouping all cus-
tomer classes into more than a single class has a positive benefit on the order quantity
(Proposition 1). The benefit is on average 22.4% and 22.1% for GP and FLP policies, respec-
tively (Appendix F contains the details of the average and maximum benefit). In particular,
under the FLP policy, the benefit monotonically increases with the number of customer
classes (Proposition 2), increasing on average by 3.3% for each increase in the number of
customer classes.

From Figure 1, we observe that the allocation under the GP policy is not always better
than under the FLP policy. For example, when the high-priority classes dominate in terms of
demand (configuration 1) and the customer classes are strictly grouped into more than four
classes, the FLP policy performs better than the GP policy because BF(n, m) > BG(n, m) for
any m = 5, . . . , 8. Under configurations 3 and 4, BF(n, 8) > BG(n, 8). Unlike the case when
low-priority classes dominate in terms of demand (configuration 2), the GP policy always
performs better than the FLP policy, i.e., BF(n, m) < BG(n, m) for any m = 2, . . . , 8.

We also observe that for each configuration under the GP policy, there is an optimal
number of customer classes m∗ such that the benefit obtained is always greater than or
equal to the benefit obtained under the FLP policy. All grouping of customer classes into a
number of customer classes that exceed the optimum m∗ will have a benefit under the FLP
policy that is greater than that if the allocation is performed under the GP policy. Therefore,
the optimal number of customer classes for configurations 1, 2, 3, and 4 under the GP policy
are m∗ = 4, 8, 6, and 7 classes, respectively. In contrast, Figure 1 shows that the optimal
number of customer classes under the FLP policy is to group the classes into eight customer
classes for all demand configurations. This result is aligned with Proposition 2.

In particular, under the GP policy, Figure 1 shows that the maximum average benefit
is achieved when the low-priority classes dominate demand (configuration 2) and the
customer classes are grouped into eight classes. Its benefit has a value in excess of 30%.
This occurs because the customer classes with high demand require a lower service level by
increasing the number of customer classes, thus reducing the order quantity. Furthermore,
under the FLP policy, Figure 1 shows that the maximum average benefit is achieved when
the middle priority classes dominate demand (configuration 3) and the customer classes
are grouped into eight classes. Its benefit has a value of 23.7%. Note that the benefit
does not vary greatly according to the demand configuration. This is because the priority
list is not built based on the demand realization;i.e., the allocation order in a shortage is
defined previously.

The variation of the order quantity when grouping the customer classes into different
numbers of classes is caused by the free riders and by the aggregation rule. In what follows,
we quantify the effect induced by the free riders and the aggregation rule on the order
quantity. We denote these effects as the free-rider effect and the cluster effect, respectively.

7.2. Free-Rider and Cluster Effects

Free-rider classes are customer classes that receive a higher service level than required.
To isolate and measure the free-rider effect, we determine the variation in S by increasing
the preset service level of n − m customer classes to ᾱ

′
i = ᾱm for any i = m + 1, . . . , n.

Consequently, under Sample Average Approximation, the variation of S induced by the
free-rider effect is defined as:

FP(n, m) =

∑M
r=1

(
Ŝr

P(n) − S̃r
P(n,m)

Ŝr
P(n)

)
M

∀m = 1, . . . , n, (15)

where Ŝr
P(n) is the order quantity obtained by solving the rth replication of the α-SAAP(n)

model, and S̃r
P(n,m)

is the order quantity obtained by solving the rth replication of the

α-SAAP(n) model with ᾱ
′
i = ᾱi for any i = 1, . . . , m and ᾱ

′
i = ᾱm for any i = m + 1, . . . , n.

The variation of the order quantity induced by the free-rider effect is the percentage at which
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the order quantity is only modified by providing a higher service level than that required,
without modifying the number of customer classes. Under GP and FLP policies, the free-rider
effect is always negative or zero, i.e., FP(n, m) ≤ 0, because ŜP(n) ≤ S̃P(n,m) for any n > 1 and
m = 1, . . . , n (Proposition 3). Table 3 shows the average and maximum variation of the order
quantity induced by the free-rider effect for all configurations according to (15).

Table 3. Free-rider effect under GP and FLP policies, and n = 8.

FG(n, m)

Configuration 1 Configuration 2 Configuration 3 Configuration 4

m Average Max Average Max Average Max Average Max

1 0.0% 0.0% −42.2% −43.2% −26.3% −27.0% −1.7% −2.3%
2 0.0% 0.0% −29.5% −30.0% −13.0% −13.4% 0.0% 0.0%
3 0.0% 0.0% −22.2% −22.6% −5.7% −6.1% 0.0% 0.0%
4 0.0% 0.0% −16.8% −17.1% −0.4% −0.6% 0.0% 0.0%
5 0.0% 0.0% −12.3% −12.5% 0.0% 0.0% 0.0% 0.0%
6 0.0% 0.0% −8.1% −8.4% 0.0% 0.0% 0.0% 0.0%
7 0.0% 0.0% −4.1% −4.3% 0.0% 0.0% 0.0% 0.0%
8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

FF(n, m)

Configuration 1 Configuration 2 Configuration 3 Configuration 4

m Average Max Average Max Average Max Average Max

1 −28.5% −29.6% −28.6% −29.0% −31.1% −32.0% −25.6% −26.1%
2 −18.6% −18.9% −18.6% −19.0% −19.7% −20.2% −16.6% −17.0%
3 −13.2% −13.5% −13.2% −13.6% −13.6% −13.9% −11.8% −12.0%
4 −9.6% −9.8% −9.6% −9.9% −9.5% −9.7% −8.6% −8.8%
5 −6.7% −6.9% −6.7% −7.0% −6.2% −6.4% −6.0% −6.2%
6 −4.2% −4.4% −4.3% −4.4% −3.4% −3.5% −3.8% −3.9%
7 −2.0% −2.2% −2.1% −2.2% −0.9% −0.9% −1.8% −1.9%
8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

As we expected, Table 3 shows that the free-rider effect is negative or zero for all
configurations. We also noticed that the free-rider effect is non-increasing for the number of
classes that are free-rider, i.e., S̃r

P(n,m)
≥ S̃r

P(n,m+1) for any m = 1, . . . , 7. In particular, under
the FLP policy, the free-rider effect is strictly decreasing in the number of free-rider classes,
i.e., S̃r

F(n,m)
> S̃r

F(n,m+1) for any m = 1, . . . , 7.
From Table 3, we observe that when high-priority classes dominate demand (config-

uration 1), the GP policy is absolutely robust in terms of the number of free-rider classes
because the order quantity does not change even when providing the highest service level
for all customer classes, i.e., FG(8, m) = 0 for any m = 1, . . . , 8. This occurs because when
building the priority list under a GP policy, the customer classes with the highest demand
and required service level will be located at the end of this list. Therefore, to meet their
required service level, the rest of the customer classes located earlier in the priority list
will receive the highest service level. In contrast, when the low-priority classes dominate
demand (configuration 2), the GP policy does not accept any free-rider classes without
modifying the order quantity. Table 3 also shows that the FLP policy is not robust in
the number of free-rider classes because the order quantity is increasing in the number
of free-rider classes. This occurs because the allocation will always follow the order of
the same priority list; therefore, when attending the last customer class, which requires a
greater service level as a result of being a free-rider class, the order quantity will increase.

The variation in the order quantity when grouping the customer classes into different
numbers of classes is also caused by the aggregation rule that we referred to as the cluster
effect. To isolate and measure the cluster effect under the low-service-level-first round-up
aggregation scheme, we compute the variation induced in S by grouping n − m customer
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classes, each of them with preset service level ᾱ
′
i = ᾱm for any i = m + 1, . . . , n, in a single

class with preset service level ᾱm. Consequently, under Sample Average Approximation,
the variation in S induced by the cluster effect is

CP(n, m) =

∑M
r=1

(
S̃r

P(n,m)
− Ŝr

P(n,m)

Ŝr
P(n)

)
M

, ∀m = 1, . . . , n, (16)

where S̃r
P(n,m)

is the order quantity resulting from solving the rth replication of the α-SAAP(n)

model with ᾱ
′
i = ᾱi for any i = 1, . . . , m and ᾱ

′
i = ᾱm for any i = m + 1, . . . , n; Ŝr

P(n,m)
is the

order quantity resulting from solving the rth replication of the α-SAAP(n, m); and Ŝr
P(n)

is the order quantity resulting from solving the rth replication of the α-SAAP(n) model.
If this variation is positive, i.e., CP(n, m) > 0 with n > 1 and m = 1, . . . , n, this means
that grouping customer classes in m classes reduces the order quantity. Table 4 shows the
average and maximum variation n the order quantity induced by the cluster effect for all
configurations according to (16).

Table 4. Cluster effect under the GP and FLP policies and n = 8.

CG(n, m)

Configuration 1 Configuration 2 Configuration 3 Configuration 4

m Average Max Average Max Average Max Average Max

1 −2.0% −2.4% −2.9% −3.4% −3.8% −4.4% −9.1% −9.7%
2 5.9% 5.4% −4.4% −4.8% −5.7% −5.9% −2.8% −3.4%
3 10.1% 9.6% −5.7% −6.0% −7.0% −7.3% 1.4% 0.9%
4 13.2% 12.4% −6.9% −7.4% −8.2% −8.5% 4.3% 3.7%
5 1.7% 1.4% −8.2% −8.5% −4.3% −4.7% 6.6% 6.0%
6 0.0% 0.0% −9.6% −9.8% 0.4% 0.3% 8.5% 8.0%
7 0.0% 0.0% −11.0% −11.3% 0.0% 0.0% 11.6% 11.1%
8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

CF(n, m)

Configuration 1 Configuration 2 Configuration 3 Configuration 4

m Average Max Average Max Average Max Average Max

1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
4 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
6 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
7 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

From Table 4, we observe that under the GP policy, there is a number of customer
classes m̂ that have the maximum positive variation in the order quantity. Therefore, any
grouping of customer classes in a number of classes other than m̂ yields a lower variation on
the order quantity, i.e., CG(8, m) < CG(8, m̂) for any m ̸= m̂. Note that the optimal number
of customer classes m∗ that we observe in Table A1 matches the number of classes that
have maximum positive variation, i.e., m∗ = m̂. In contrast, under the FLP policy, Table 4
shows that there is no variation in the order quantity for the grouping of customer classes
into fewer classes providing the same service level. This occurs because the priority list
built under an FLP policy is the same for both problems. Therefore, the order quantity will
not change if there are no modifications in the service level required by any customer class.

The total variation in the order quantity produced by grouping customer classes
according to the low-service-level-first-rule round-up aggregation scheme in m classes,
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instead of grouping them in n classes, is the sum of the free-rider (15) and cluster effects
(16), i.e.,

FP(n, m) + CP(n, m) =

∑M
r=1

(
Ŝr

P(n) − Ŝr
P(n,m)

Ŝr
P(n)

)
M

.

From Tables 3 and 4, we observe that when high-priority classes dominate demand
(configuration 1), the total variation in the order quantity S under the GP policy is totally
caused by the cluster effect, while for configurations 2, 3, and 4, the total variation of the
order quantity S is caused by both effects. Note that the total variation in the order quantity
under the GP policy by grouping customer classes in m̂ instead of n classes is only caused
by the cluster effect, given that under the same number of customer classes m̂, the free-rider
effect is null under the GP policy. In contrast, from Tables 3 and 4, we observe that the total
variation in the order quantity S under the FLP policy, for all configurations, is only caused
by the free-rider effect because the cluster effect is null under the FLP policy.

7.3. Performance of Sample Average Approximation

To measure the quality solutions resulting from solving the SAA problems, the opti-
mality gap is determined according to (13) using the minimum value of the M replicates
as a lower bound and verifying the feasibility of the highest value of these replicates. In
the case of non-feasibility, this value is increased by 0.1% until it meets the established
condition and is considered a feasible solution and the upper bound. The values are, at
least with 99.9% probability, the lower and upper bounds of the problem. Figure 2 shows,
for each demand configuration, the average relative optimality gap of the feasible solution,
ŜP(n), resulting from the SAA method and using the α-SAAP(n, m) model with m = 1, . . . , 8,
under the GP and FLP policies.
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Figure 2. Average optimality gap under the GP and FLP policies with n = 8.
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From Figure 2, we observe that the average optimality gap of the feasible solution
ŜP(n) is decreasing with m under a GP policy. Furthermore, the magnitude of the average
optimality gap under the GP policy does not vary with the demand configurations. On the
other hand, the average optimality gap under the FLP policy decreasesand then increases
with m. The inflection coincides, for each demand configuration, with the inflection of the
benefit of grouping customer classes into different numbers of classes (Figure 1).

We observe that the SAA method has a good performance in terms of solving the
greedy and fixed-list service level problems because the maximum optimality gap is 4.8%
and 4.5% under GP and FLP policies, respectively. Table A2 in Appendix G contains the
average and maximum optimality gap for each demand configuration and priority policy.

8. Conclusions

This paper studies the effect that the number of customer classes has on the order
quantity under a single-period inventory system with stochastic demand and individual α
service-level requirements from multiple customer classes. We formulated multi-customer
class service-level problems under greedy and fixed-list priority policies as nonlinear
problems with chance constraints. These problems are difficult to solve for more than three
customer classes. Consequently, we have proposed a reformulation of models as MIP using
a Sample Average Approximation approach, which allowed us to obtain results for up to
eight customer classes in reasonable computational times. The computational results show
that the Sample Average Approximation method is able to identify good-quality solutions
because, for the tested instances, the maximum optimality gap was 4.8%, which is a very
good solution.

To determine the effect of the number of customer classes on the inventory level under
greedy and fixed-list priority policies, we considered a round-up aggregation scheme that
does not harm the service level of the aggregated classes. Under such a policy, the variation
in the order quantity when grouping the customers into different numbers of customer
classes is caused by the free-rider classes (free-rider effect) and by the aggregation rule
(cluster effect).

Under a low-service-level-first-rule round-up aggregation scheme, several properties
of the models were proven, from which we obtained the following managerial insights.

• Under greedy and fixed-list priority policies, grouping all customer classes in a single
class with the highest preset service level induces the largest optimal order quantity.
Therefore, grouping customers into more than one class has a positive effect on the
order quantity.

• The order quantity induced by the fixed-list priority policy is non-increasing with the
number of customer classes.

• The order quantity induced by the greedy and fixed-list priority policies is non-
decreasing with the number of free-rider classes.

We conducted several test problems under low-service-level-first-rule round-up ag-
gregation scheme and different demand configurations of customer classes, from which we
observed the following managerial insights.

• When the high-priority classes dominate demand and customers are grouped into
strictly more than four classes, the fixed-list priority policy performs better than the
greedy priority policy; i.e., allocating resources under greedy priority policy is not
always better than that of the fixed-list priority policy.

• When the low-priority classes dominate demand, the greedy priority policy always
performs better than the fixed-list priority policy.

• Under greedy and fixed-list priority policies, the optimal number of customer classes
is greater than or equal to four classes. Therefore, for the instances we tested, it was not
optimal to group the customers into two or three customer classes using, for example,
Pareto or ABC classification.

• When high-priority classes dominate demand, the total variation of the order quantity,
when grouping customers into different numbers of customer classes under greedy
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priority policy is totally caused by the cluster effect. For other demand configurations,
the total variation in the order quantity is caused by cluster and free-rider effects.

• Under greedy priority policy, the total variation of the order quantity when grouping
customers into the optimal number of customer classes is totally caused by the cluster
effect because, under the same number of customer classes, the free-rider effect is null.

• Under the fixed-list priority policy, the total variation of the order quantity when
grouping customers into different numbers of customer classes is totally caused by
the free-rider effect because the cluster effect is null under fixed-list policy.

• When the high-priority classes dominate demand, greedy priority policy is absolutely
robust in the number of free-rider classes because there is no variation in the order
quantity by increasing the number of free-rider classes.

In this way, we have answered the research questions posed at the beginning of
this document. A brief response for each research question is the following. (i) How
does the number of customer classes affect the inventory level under different priority
policies? From Figure 1, we can see that under the greedy priority policy, the inventory
level depends on the demand configuration, having in all configurations a number of
classes that minimizes the inventory level. Here there is no monoticity. Under a fixed-list
priority policy, the inventory level is non-increasing in the number of classes for all the
configurations. (ii) What is the optimal number of customer classes under different demand
configurations? According to Figure 1, for the greedy priority policy, the optimal number
depends on the configuration of the demand, but we can observe that when the demand is
dominated by the high-priority classes (configuration 1), the optimal number of classes is
smaller than when the demand is dominated by the low-priority classes (configuration 2).
For the fixed-list priority approach, the optimal number is always the maximum number of
classes that can be had. (iii) What priority policy performs better under different demand
configurations? When the high-priority classes dominate in terms of demand (configuration
1) and the customer classes are strictly grouped into more than four classes, the fixed-list
priority policy performs better than the greedy priority policy. When the low-priority
classes dominate in terms of demand (configuration 2), the greedy priority policy always
performs better than the fixed-list priority policy.

There are two main questions left for future research. The first one is to determine the
best aggregation rule under a round-up scheme because the low-service-level-first-rule is
not the only aggregation rule under a round-up scheme. Other aggregation rules include
the high-service-level-first-rule and the random-rule. The second issue is to determine
how different priority policies, such as the largest-debt-first policy of Zhong et al. [9] or the
max-weighted-service policy of Jiang et al. [12], affect the number of customer classes in a
single-period inventory system. A final issue is to address the risk of using responsive
priority policies because, under these types of policies, the priority list in case a shortage is
not previously known by customers or offers.

Finally, this contribution is intended to be useful for managers seeking guidelines for
grouping their customers, as well as for academics seeking to investigate the performance
of different configurations of customer service policies.
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Appendix A. An Illustrative Example α-SLCG(n) with n = 2

To illustrate the complexity of α-SLCG(n), let us consider the α service evel provided to
class 1 under two customer classes, i.e., n = 2. According to (1), the α service level provided
to the class 1 when n = 2 is α1(S) = P(X1 < X2, X1 ≤ S) + P(X2 < X1, X1 + X2 ≤ S),
where events X1 < X2 and X2 < X1 are equivalent to customer class 1 being in first and
second place in the priority list, i.e., π(1) = 1 and π(2) = 1, respectively. Conditioning in
X1 and X1 + X2, respectively, we obtain

α1(S) =
∫ S

0
(1 − Fx2(y)) fx1(y)dy +

∫ S

0
Fx2(y/2) fx1+x2(y)dy,

where fx1+x2(·) is the density function of X1 + X2.

Appendix B. Proof of Proposition 1

Proof. Considering the following reformulation of the α-SAAG(n, 1) model,

min
S,Z

S

s.t:
1
N

N

∑
j=1

Zj
i ≥ ᾱi ∀i = 2, . . . , m (A1)

1
N

N

∑
j=1

Zj
1 ≥ ᾱ1 (A2)

m

∑
i=1

ξ
′ j
i Zj

i ≤ S ∀j = 1, . . . , N (A3)

Zj
i ≤ Zj

r ∀i = 1, . . . , m, j = 1, . . . , N, r ∈ Nij, i ̸= r (A4)

Zj
i ≥ Zj

r ∀i = 1, . . . , m, j = 1, . . . , N, r ∈ Nij, i ̸= r (A5)

S ≥ 0

Zj
i ∈ {0, 1} ∀i = 1, . . . , m, j = 1, . . . , N,

where ξ
′ j
i = ξ

j
i for any i = 1, . . . , m − 1, and ξ

′ j
m = ∑n

i=m ξ
j
i .

The above formulation is a reformulation of α-SAAG(n, 1) because (A1) is dominated
by (A2) given that Zj

i = Zj
r ((A4)–(A5)) for any i = 1, . . . , m, j = 1, . . . , N, and r = 1, . . . , m

with i ̸= r, and the fact that ᾱ1 ≥ ᾱi for any i = 2, . . . , m. Since (A1) is dominated and
always holds, it is the same as not existing. Furthermore, given that Zj

i = Zj
r, constraint (A3)

can be rewritten as ∑n
i=1 ξ

j
i Z

j
1 ≤ S, Zj

i for any i = 2, . . . , m and j = 1, . . . , N is meaningless
in the reformulation and (A1), (A4) and (A5) can be relaxed resulting α-SAAG(n, 1).

It is easy to show that α-SAAG(n, m) is a relaxation of the reformulation of α-SAAG(n, 1)
model because by relaxing (A2) and (A5), we obtain α-SAAG(n, m). Therefore, the optimal
solution of α-SAAG(n, m) is a lower bound of model α-SAAG(n, 1), i.e., ŜG(n,m) ≤ ŜG(n,1)
for any m ≥ 1.

Appendix C. Proof of Proposition 2

Proof. Considering the following reformulation of the α-SAAF(n, m − 1) model for any
m = 2, . . . , n:
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min
S,Z

S

s.t:
1
N

N

∑
j=1

Zj
i ≥ ᾱi ∀i = 1, . . . , m − 1 (A6)

1
N

N

∑
j=1

Zj
m ≥ ᾱm (A7)

m−1

∑
i=1

ξ
′ j
i Zj

i ≤ S ∀j = 1, . . . , N (A8)

Zj
i ≤ Zj

i−1 ∀i = 2, . . . , m − 1, j = 1, . . . , N (A9)

Zj
m ≥ Zj

m−1 ∀j = 1, . . . , N (A10)

Zj
m ≤ Zj

m−1 ∀j = 1, . . . , N (A11)

S ≥ 0

Zj
i ∈ {0, 1} ∀i = 1, . . . , m − 1, j = 1, . . . , N (A12)

Zj
m ∈ {0, 1} ∀j = 1, . . . , N, (A13)

where ξ
′ j
i = ξ

j
i for any i = 1, . . . , m − 2, and ξ

′ j
m−1 = ∑n

i=m−1 ξ
j
i .

The above formulation is a reformulation of α-SAAF(n, m − 1) because (A7) is domi-
nated by (A6) when i = m − 1 given that Zj

m = Zj
m−1 ((A10) and (A11)) and the fact that

ᾱm−1 ≥ ᾱm. Since (A7) is dominated and always holds, it is equivalent to the fact that it
does not exist. Thus, Zj

m is meaningless in the reformulation, and (A10), (A11), and (A13)
can be relaxed, resulting in α-SAAF(n, m − 1).

Given Zj
m = Zj

m−1 in the reformulation of α-SAAF(n, m − 1), constraint (A8) can be

rewritten as ∑m
i=1 ξ

′ j
i Zj

i ≤ S with ξ
′ j
i = ξ

j
i for any i = 1, . . . , m − 1, and ξ

′ j
m = ∑n

i=m ξ
j
i . Thus,

it is easy to show that α-SAAF(n, m) is a relaxation of the reformulation of α-SAAF(n, m− 1)
model because by relaxing constraint (A10), we obtain α-SAAF(n, m). Therefore, the opti-
mal solution of α-SAAF(n, m) is a lower bound of model α-SAAF(n, m − 1), i.e., ŜF(n,m) ≤
ŜF(n,m−1).

Appendix D. Proof of Proposition 3

Proof. The α-SAAP(n) model with preset service levels ᾱ1 ≥ ᾱ2 ≥ . . . ≥ ᾱn is a relaxation
of the α-SAAP(n) model with preset service levels ᾱ

′
i = ᾱi for any i = 1, . . . , m and ᾱ

′
i = ᾱm

for any i = m + 1, . . . , n, because 1
N ∑N

j=1 Zj
i ≥ ᾱ

′
i > ᾱi for any i = m + 1, . . . , n. Therefore,

the optimal solution of α-SAAP(n) model with preset service levels ᾱ1 ≥ ᾱ2 ≥ . . . ≥ ᾱn is a
lower bound of the α-SAAP(n) model with preset service levels ᾱ

′
i = ᾱi for any i = 1, . . . , m

and ᾱ
′
i = ᾱm for any i = m + 1, . . . , n, i.e., ŜP(n) ≤ S̃P(n,m).

Appendix E. Tested Configurations

All the means in the initial instances with eight customer classes are generated using
M ∼ U[100, 10,000].

• Configuration 1. In this configuration, the three classes with the highest priority
dominate demand, i.e., ∑i∈N1

µi > ∑i∈I\N1
µi. The instances for this configuration

were generated using the following parameter: the demand per period for each
customer class is normally distributed with the mean µi = M(9 − i).

• Configuration 2. In this configuration, the three classes with the lowest priority
dominate demand, i.e., ∑i∈N2

µi > ∑i∈I\N2
µi. The instances for this configuration
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were generated using the following parameter: the demand per period for each
customer class is normally distributed with the mean µi = M(i).

• Configuration 3. In this configuration, the two classes with medium priority dominate
demand, i.e., ∑i∈N3

µi > ∑i∈I\N3
µi. The instances for this configuration were gener-

ated using the following parameter: the demand per period for each customer class is

normally distributed with the mean µi = M
(

2.5 − (i − 4.5)2/3
)3/2

.

• Configuration 4. In this configuration, no customer class dominates demand. The
instances for this configuration were generated using the following parameter: the
demand per period for each customer class is normally distributed with the mean
µi = 4M.

Appendix F. Benefit under GP and FLP Policies

Table A1. Benefit under the GP and FLP policies and n = 8.

BG(n, m)

Configuration 1 Configuration 2 Configuration 3 Configuration 4

m Average Max Average Max Average Max Average Max

1 0.0% 0.00% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2 7.8% 9.5% 7.8% 9.7% 8.7% 10.7% 7.2% 8.6%
3 11.9% 13.8% 11.9% 13.7% 13.4% 14.9% 11.0% 12.5%
4 14.9% 17.2% 14.8% 16.5% 16.5% 18.2% 13.6% 15.3%
5 3.6% 5.9% 17.0% 18.9% 19.8% 21.5% 15.7% 17.4%
6 2.0% 4.2% 18.9% 20.6% 23.4% 25.4% 17.4% 19.3%
7 2.0% 4.2% 20.7% 22.3% 23.1% 25.1% 20.2% 22.6%
8 2.0% 4.2% 31.1% 33.2% 23.1% 25.1% 9.7% 12.3%

BF(n, m)

Configuration 1 Configuration 2 Configuration 3 Configuration 4

m Average Max Average Max Average Max Average Max

1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2 7.8% 9.5% 7.9% 9.7% 8.7% 10.7% 7.2% 8.6%
3 11.9% 13.8% 11.9% 13.7% 13.4% 14.9% 11.0% 12.5%
4 14.7% 16.6% 14.8% 16.5% 16.5% 18.2% 13.6% 15.3%
5 17.0% 18.8% 17.0% 18.9% 19.0% 20.7% 15.7% 17.4%
6 18.9% 20.5% 18.9% 20.6% 21.2% 22.9% 17.4% 19.3%
7 20.6% 22.2% 20.6% 22.3% 23.1% 24.8% 19.0% 20.8%
8 22.2% 23.6% 22.2% 23.8% 23.7% 25.4% 20.4% 22.3%

Appendix G. Optimality Gap under GP and FLP Policies

Table A2. Optimality gap under the GP and FLP policies with n = 8.

GapG(%)

Configuration 1 Configuration 2 Configuration 3 Configuration 4

m Average Max Average Max Average Max Average Max

1 2.8% 3.5% 2.8% 3.7% 3.0% 4.8% 2.4% 3.1%
2 1.7% 2.3% 1.7% 2.4% 1.9% 2.5% 1.4% 2.2%
3 1.6% 2.1% 1.4% 2.1% 1.7% 2.2% 1.3% 1.7%
4 3.6% 4.8% 1.3% 1.8% 1.5% 2.4% 1.2% 1.6%
5 3.2% 4.5% 1.3% 1.7% 1.6% 2.3% 1.1% 1.4%
6 2.8% 4.7% 1.2% 1.6% 2.3% 3.1% 1.1% 1.4%
7 2.8% 4.7% 1.3% 1.5% 2.2% 3.1% 2.6% 4.6%
8 2.8% 4.7% 2.6% 3.6% 2.2% 3.1% 3.8% 4.6%

GapF(%)

Configuration 1 Configuration 2 Configuration 3 Configuration 4

m Average Max Average Max Average Max Average Max

1 2.8% 3.9% 2.8% 3.5% 3.0% 4.5% 2.3% 3.2%
2 1.7% 2.6% 1.7% 2.4% 1.9% 2.3% 1.5% 2.2%
3 1.5% 2.3% 1.4% 2.1% 1.7% 2.1% 1.3% 1.9%
4 1.4% 2.0% 1.3% 1.8% 1.5% 2.0% 1.2% 1.7%
5 1.4% 1.9% 1.4% 1.7% 1.6% 2.0% 1.2% 1.7%
6 1.3% 1.8% 1.2% 1.8% 1.5% 2.2% 1.2% 1.6%
7 1.3% 1.8% 1.2% 1.6% 1.5% 1.9% 1.2% 1.7%
8 1.3% 1.9% 1.2% 1.7% 1.5% 2.0% 1.1% 1.6%
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