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Abstract: Dupin cyclides are classical algebraic surfaces of low degree. Recently, they have gained
popularity in computer-aided geometric design (CAGD) and architecture owing to the fact that
they contain many circles. We derive algebraic conditions that fully characterize the Dupin cyclides
passing through a fixed circle. The results are applied to the basic problem in CAGD of the blending
of Dupin cyclides along circles.
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1. Introduction
Dupin and Darboux cyclides are remarkable algebraic surfaces of degree four or three

that contain many circles. They were discovered, respectively, by Charles Dupin [1] and
Gaston Darboux [2] in the 19th century. Over the past few decades, they have gained
popularity in computer-aided geometric design (CAGD) and architecture, making them
interesting and important subjects for investigation. Dupin cyclides are used predominantly
for blending surfaces along circles to model elaborate CAGD surfaces [3–10] or smoothly
blending Dupin cyclides with natural quadrics and canal surfaces along the circles [11–16].

The prototypical example of a Dupin cyclide is a torus of revolution with major radius
R and minor radius r. A canonical implicit equation of a torus is(

x2 + y2 + z2 + R2 − r2)2 − 4R2(x2 + y2) = 0. (1)

We must have r < R for a smooth torus surface. A torus contains two orthogonal circles
through each point. These circles are curvature lines of the torus and are called principal
circles. A smooth torus has two additional circles through each point on a bitangent plane
to the torus; see Figure 1a. They are called Villarceau circles [17].

A Dupin cyclide is the image of a torus under a Möbius transformation: for example,
an inversion with respect to a sphere. These transformations preserve the angles and the
set of circles and lines on the surfaces [18,19]. Accordingly, smooth Dupin cyclides inherit
the property of having two principal circles and two Villarceau circles through each point;
see Figure 1b. Some of these circles may degenerate to straight lines.

The implicit equation for a Dupin cyclide is of degree four or three and can be written
in the form

a0
(

x2 + y2 + z2)2
+ 2(b1x + b2y + b3z)

(
x2 + y2 + z2)

+ c1x2 + c2y2 + c3z2 + 2d1yz + 2d2xz + 2d3xy (2)
+ 2e1x + 2e2y + 2e3z + f0 = 0,

with some a0, b1, . . . , f0 ∈ R. For general values of the coefficients, this implicit equation
defines a more general surface called a Darboux cyclide [20]. These cyclides typically
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have six circles through each point, and they are more challenging to use in geometric
modeling [21]. The practical problem of distinguishing Dupin cyclides among Darboux
cyclides is considered in [18].

The basic problem considered in this paper is the smooth blending of two Dupin
cyclides along a fixed circle. Our approach is to match implicit equations (2) for the
two Dupin cyclides we blend. To solve the basic problem algebraically, we first consider
the general linear family of Darboux cyclides passing through a fixed circle. Then, we
use the results in [18] to characterize the smaller family of Dupin cyclides in terms of
the algebraic relations for the free coefficients of the general family of Darboux cyclides.
This is considered in Section 3 together with the formulation of the main results of the
paper. We prove them separately for quartic and cubic equations in Sections 4 and 5. The
smooth blending between two implicit equations of Dupin cyclides along a fixed circle is
investigated in Section 6. In the last section, we express the Möbius invariant from [18] of
Dupin cyclides as applied to our particular families of Dupin cyclides.

(a) (b)

Figure 1. A smooth torus (a) and a smooth Dupin cyclide (b). The solid circles are principal circles,
and the dashed circles are Villarceau circles.

2. Preliminaries
First off, let us recall the salient results in [18] on distinguishing Dupin cyclides among

Darboux cyclides. They are formulated using the following abbreviations of algebraic
expressions in the coefficients in (2):

B0 = b2
1 + b2

2 + b2
3,

C0 = c1 + c2 + c3,

E0 = e2
1 + e2

2 + e2
3,

W1 = c1c2 + c1c3 + c2c3 − d2
1 − d2

2 − d2
3,

W2 = c1c2c3 + 2d1d2d3 − c1d2
1 − c2d2

2 − c3d2
3,

W3 = b2
1c1 + b2

2c2 + b2
3c3 + 2b2b3d1 + 2b1b3d2 + 2b1b2d3,

W4 = c1e2
1 + c2e2

2 + c3e2
3 + 2d1e2e3 + 2d2e1e3 + 2d3e1e2.

Let σ12, σ13 denote the permutations of the variables b1, b2, b3; c1, c2, c3; d1, d2, d3; and e1, e2, e3
that permute the indices 1, 2 or 1, 3, respectively.

To recognize quartic Dupin cyclides among the form (2), we can assume a0 = 1 by
dividing all coefficients by a0. Then, we apply the shift

(x, y, z) 7→ (x, y, z)− 1
2 (b1, b2, b3) (3)

to remove the cubic terms and reduce the equation to an intermediate Darboux form:(
x2 + y2 + z2)2

+ c1x2 + c2y2 + c3z2 + 2d1yz + 2d2xz + 2d3xy (4)

+ 2e1x + 2e2y + 2e3z + f0 = 0.

Theorem 1. The surface in R3 defined by (4) is a Dupin cyclide only if the 12 equations
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K1 = 0, σ12K1 = 0, σ13K1 = 0, L1 = 0, σ12L1 = 0, σ13L1 = 0,
M1 = 0, σ12M1 = 0, σ13M1 = 0, N1 = 0, N2 = 0, N3 = 0,

are satisfied, where

K1 = (c3 − c2)e2e3 + d1(e2
2 − e2

3) + (d2e2 − d3e3)e1,

L1 =
(
W1 + 4 f0 − (c2 + c3)

2 − d2
2 − d2

3
)
e1

+
(
C0d3 + c3d3 − d1d2

)
e2 +

(
C0d2 + c2d2 − d1d3

)
e3,

M1 = 2(c1e1 + d3e2 + d2e3)(W1 + 4 f0) + e1(W2 − C0W1 − 4E0),

N1 =
(
4W1 + 12 f0 − 3C2

0
)
(W1 + 4 f0)− 2C0(W2 − C0W1 − 6E0)− 4 W4,

N2 = 4(W2−C0W1−2E0)(W1+4 f0) +
(
C2

0−4 f0
)(

W2+C0W1+8C0 f0−4E0
)
,

N3 =
(

W2 + C0W1 + 8C0 f0 − 4E0
)2 − 4(W1 + 4 f0)

3.

Proof. This result is covered by [18] (Proposition 3.6). We consider and use only the
formulated necessity in the proof of the main new Theorem 3.

Theorem 2. The surface in R3 defined by (2) is a cubic Dupin cyclide only if the following
equations are satisfied:

a0 = 0, e1 = 1
4 E1, e2 = 1

4 σ12E1, e3 = 1
4 σ13E1, (5)

f0 =
W3

4B2
0

(
W3

B0
− C0

)2
+

W3W1

4B2
0

+
W2 − C0W1

4B0
, (6)

where

E1 = − b1

B0

(
W3

B0
− c2 − c3

)2
+

2b2
1

B2
0
(b3c3d2 + b2c2d3)−

4b1

B2
0
(b3d2 + b2d3)

2

+
2(b3d2 + b2d3)

B2
0

(b2
2c1 + b2

3c1 − 2b2b3d1)−
2b2b3

B2
0

(c2 − c3)(b2d2 − b3d3)

+
b1

B0

(
(c1 − c2)(c1 − c3)− d2

1 + d2
2 + d2

3
)
+

2d1

B0
(b2d2 + b3d3).

Proof. This is covered by [18] (Theorem 2.4).

3. Main Results
Without loss of generality, we assume that a fixed circle Γ ⊂ R3 with radius r > 0 is

given by the equations
x = 0, y2 + z2 = r2. (7)

The Darboux cyclides passing through the circle Γ form a linear subspace of the space of
coefficients in (2), as we formulate in Lemma 1. Computing the variety of Dupin cyclides
passing through the circle Γ is less trivial. The defining equations are obtained by restricting
the coefficients of (2) to cyclides passing through Γ and by considering the effects on the
equations in Theorems 1 and 2.

Lemma 1. A Darboux cyclide passing through the circle Γ has an implicit equation of the form

u0(x2 + y2 + z2 − r2)2 + 2(x2 + y2 + z2 − r2)(u1x + u2y + u3z + u4)

+ 2x
(
v1x + v2y + v3z + v4

)
= 0, (8)

where u0, u1, u2, u3, u4, v1, v2, v3, v4 are real coefficients.
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Proof. The equation of a Darboux cyclide passing through the circle Γ will be in the ideal
generated by x and y2 + z2 − r2 of the polynomial ring R(r)[x, y, z] over the field R(r). The
terms of degree four and three should match the Darboux form (2). Therefore, we expand
the generator y2 + z2 − r2 to x2 + y2 + z2 − r2 so that the quartic and cubic terms

u0(x2 + y2 + z2 − r2)2 + 2(x2 + y2 + z2 − r2)(u1x + u2y + u3z),

are contained in the ideal of the circle Γ. The remaining terms of degree ⩽ 2 should be in
the same ideal; hence, they have the shape

2u4(x2 + y2 + z2 − r2) + 2x
(
v1x + v2y + v3z + v4

)
.

Following this lemma, the ambient-space of Darboux cyclides passing through the
circle Γ are identified as P8, with the coordinates (u0 : . . . : u4 : v1 : . . . : v4). The Dupin
cyclides defined over R are represented by real points on an algebraic variety DΓ in this
projective space. If we consider the radius r as a variable, the variety DΓ should be
invariant under the scaling of (x, y, z) ∈ R3. Accordingly, the obtained equations can be
checked to also be weighted-homogeneous, with weight 1 for r and the respective weights
0, 1, 1, 1, 2, 2, 2, 2, 3 of the coordinates of P8. We assume r to be a parameter r ̸= 0 in our
proofs and computations.

We define the variety DΓ of Dupin cyclides as a specialized image of the variety
D0 in [18] (Figure 1) that represents the whole variety of Dupin cyclides within the
projective family (2) of Darboux cyclides. The specialization is identified by the projective
subfamily (8). The variety DΓ turns out to be reducible and to have several components
with a maximum dimension of four. Section 4 provides a brief description distinguishing
those components. We are interested in the components that generically correspond to
irreducible cyclide surfaces defined over R. There are two components fulfilling this
interest, which reflects the fact that the circle Γ could be either a principal or a Villarceau
circle on a Dupin cyclide; see Section 4. Accordingly, we split the main result into two
Theorems as follows.

Theorem 3. The surface in R3 defined by (8) is an irreducible Dupin cyclide containing Γ as a
Villarceau circle if and only if the equations

v4 − 2r2u1 = 0, v1 + 2u4 − 2r2u0 = 0, (9)

u2v2 + u3v3 − 2u1u4 = 0, 4r2(u2
1 + u2

2 + u2
3)− 4u2

4 − v2
2 − v2

3 = 0, (10)

and the inequality
u2

4 < r2(u2
2 + u2

3) (11)

are satisfied.

Theorem 4. The surface in R3 defined by (8) is an irreducible Dupin cyclide containing Γ as a
principal circle only if the ranks of the following two matrices are equal to 1:
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N =

 u2 v2
u3 v3
u4 v4

, (12)

M =



u2 v2(v4 − 2r2u1)
u3 v3(v4 − 2r2u1)
u4 v4(v4 − 2r2u1)

2u0 v2
2 + v2

3 − 4r2u2
1

u1 4r2u0v4 − 2r2(u2v2 + u3v3)− 4r2u1(v1 + u4)
v1 4r4(u2

2 + u2
3 + 2u0v1)− 4r2(v1 + u4)

2 − (v4 − 2r2u1)
2

v2 −8r4u1u2 − 4r2v2(v1 + u4 − 2r2u0)
v3 −8r4u1u3 − 4r2v3(v1 + u4 − 2r2u0)
v4 −8r4u1u4 − 4r2v4(v1 + u4 − 2r2u0)


. (13)

Remark 1. The rank conditions mean vanishing of the 2 × 2 minors of the matrices N and M.
The 2 × 2 minors from the first three rows of M differ from the minors of N by the common factor
v4 − 2r2u1. Incidentally, this factor appears as an equation for the Villarceau case. Localizing with
(v4 − 2r2u1)

−1 leads to the ideal for the principal circle case. But the Villarceau case equations of
Theorem 3 do not imply a lesser rank of M, as the second column does not necessarily vanish fully,
particularly in the fourth row. Rather similarly, the 2 × 2 minors from the last three rows of M
differ from the minors of N by the common factor −8r4u1, as the terms −4r2vi(v1 + u4 − 2r2u0)
are proportional to the first column. Therefore, the 2 × 2 minors formed only by the first three rows
or only by the last three rows of M can be ignored.

Remark 2. The Hilbert series of the two algebraic varieties described by Theorems 3 and 4 can be
computed using computer algebra systems Maple or Singular. The principal circle component of DΓ
has the Hilbert series Hp(t)/(1 − t)4, where

Hp(t) = 1 + 4t + 7t2 − 10t3 + 10t4 − 5t5 + t6. (14)

Hence, the dimension of the variety equals 4, and the degree equals Hp(1) = 8. The Zariski closure
of the Villarceau circle component is a complete intersection. The Hilbert series of this component is
(1 + 2t + t2)/(1 − t)4. Hence, the dimension of this variety equals 4, and the degree equals 4.

4. Distinguishing Principal and Villarceau Circles
As we will analyze in Section 5, the specialized variety DΓ of Dupin cyclides turns out

to be reducible. We discard some of the components because they:
• Either represent only reducible cyclide surfaces: namely, a pair of touching spheres

(where one of the spheres could be a plane or degenerates to a point); see Remark 4;
• Or generically represent cyclide surfaces with complex (rather than real) coefficients

in (8); real surfaces appear only in lower-dimensional intersections with the two main
families described in Theorems 3 and 4.
We claim that the two main families are distinguished by the homotopy class of Γ as

either a principal circle or a Villarceau circle. These two homotopical types can be discerned
by inspecting the type of Γ on representative surfaces under Möbius transformations
(which are finite compositions of inversions). Indeed, principal circles are preserved [19]
(Theorem 3.14) by Möbius transformations. The components of DΓ are invariant under
the continuous action of Möbius transformations that fix the circle Γ. As mentioned in the
introduction, any Dupin cyclide can be obtained from a torus by a Möbius transformation.
Further, the torus can be chosen to pass through the circle Γ (by Euclidean similarity),
and that circle can be considered as fixed. Therefore, it is enough to check the homotopy
types for the toruses on both main components. Furthermore, the “vertical” principal
circles (around the tube) and the “horizontal” principal circles (around the hole) can be
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interchanged by a Möbius transformation centered inside the torus tube; see [18] (§6.1).
Hence, we consider only a fixed “vertical” principal circle in a moment.

Under Euclidean similarities, we can move the torus (1) so that the circle Γ is a
principal circle (with radius r) or a Villarceau circle (with radius R). The principal circles
on the vertical plane x = 0 are given by (y ± R)2 + z2 = r2. Identifying one of those circles
with Γ by the shift y 7→ y + R, we obtain an equation of the form (8) with

(u0 : u1 : u2 : u3 : u4 : v1 : v2 : v3 : v4) = (1 : 0 : −2R : 0 : 2R2 : −2R2 : 0 : 0 : 0) (15)

for the representative (under the Möbius transformations) tori with Γ as a principal circle.
It is straightforward to check that the second columns of N and M consist of zeroes for
the representative tori (15), while the second and fourth equations of Theorem 3 are not
satisfied generically. Hence, Theorem 4 covers the cases where Γ is a principal circle.

Now consider a Villarceau circle of the torus (1) on the plane z = αx + βy, where
α = r/ϱ, β = 0, ϱ =

√
R2 − r2. It is moved onto Γ by the Euclidean transformation

(x, y, z) 7→
(

rx + ϱz
R

, r − y,
rz − ϱx

R

)
. (16)

Then the torus equation becomes(
x2 + y2 + z2 − 2ry + R2)2 − 4

(
(rx + ϱz)2 + R2(y − r)2) = 0. (17)

This identifies (8) with

(u0 : u1 : u2 : u3 : u4 : v1 : v2 : v3 : v4) = (1 : 0 : −2r : 0 : 2r2 : 2R2 − 4r2 : 0 : −4rϱ : 0) (18)

as an implicit equation for the representative tori with Γ as a Villarceau circle. The
representative tori (18) satisfy the equations of Theorem 3, while the rows with u2 and u0
in the first column form a lower-triangular matrix with non-zero determinant generically.
Hence, Theorem 3 describes the cases with Γ as a Villarceau circle.

Remark 3. We must have u2
4 ⩽ r2(u2

2 + u2
3) for real points on the Villarceau circle component.

Indeed, eliminating v3 in (10) gives a quadratic equation for v2 with the discriminant

16u2
3(u

2
1 + u2

2 + u2
3)
(
r2u2

2 + r2u2
3 − u2

4
)
, (19)

which has to be non-negative. The strict inequality (11) throws away horn cyclides; see the case
J0 = 0 in Section 7. Villarceau circles on horn cyclides coincide with “vertical" principal circles
(that is, those around the tube). The Villarceau and principle circle components intersect exactly at
the locus of horn Dupin cyclides on DΓ. In fact, Equations (9) and (10) together with rank N < 2
imply the equation r2(u2

2 + u2
3) = u2

4 for horn cyclides already; then, the second column of M
reduces to zero entries.

Remark 4. The variety DΓ contains a component of dimension 4 (and degree 10) that represents
reducible surfaces (8) of two touching spheres (or a sphere and a tangent plane). This component is
defined by the 2 × 2 minors of the matrix

L =


u2 v2
u3 v3
u4 v4

u0v2 2(u1v2 − u2v1)
u0v3 2(u1v3 − u3v1)
u0v4 2(u1v4 − u4v1)

, (20)

and the additional equation

4r2(u2
1 + u2

2 + u2
3) + v2

2 + v2
3 − 8v1(r2u0 − u4)− 4v4u1 − 4u2

4 = 0. (21)
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The condition rank L ⩽ 1 alone gives a reducible surface (8). Its spherical (or plane) components
are defined by

x2 + y2 + z2 + sx − r2 = 0, (22)

u0(x2 + y2 + z2) + (2u1 − su0)x + 2u2y + 2u3z + 2u4 − r2u0 = 0, (23)

where s = vi/ui for some or (usually) all i ∈ {1, 2, 3}. Equation (21) is the touching condition.
The touching point is

(x, y, z) = −
(
s(u2

2 + u2
3 − 2u0u4) + 2u1u4, u2(su1 − 2v1 + 2u4), u3(su1 − 2v1 + 2u4)

)
2
(
u2

1 + u2
2 + u2

3 − 2u0v1
) .

Further, we have surface degeneration to the circle Γ when rank(L) = 0 and u1 = 0, v1 = 2r2u0.
If we restrict the principal circle component to rank(L) = 0, we have degeneration to a double
sphere. The intersection of this degenerate component with the principal circle component represents
the cases when the touching point is on Γ. The intersection with the Villarceau component represents
a sphere through Γ and a point on Γ; this intersection has a lower dimension of two and is contained
in the principal circle component as well.

5. Proving Theorems 3 and 4
Let us define the ring

RΓ = R(r)[u1, u2, u3, u4, v1, v2, v3, v4], (24)

and let us denote the 2 × 2 minors N as

T2 = u3v4 − u4v3, (25)
T3 = u2v4 − u4v2, (26)
T4 = u2v3 − u3v2. (27)

Let us also denote

U0 = u2
1 + u2

2 + u2
3. (28)

We define the variety DΓ in Section 3 as the specialized image of the variety D0 in [18]
(Figure 1). The variety D0, including the cubic part of Theorem 2, can be obtained from
the 12 equations of Theorem 1 by applying the shift (3) backwards and homogenizing
with a0, as explained in [18] (§5). By straightforward Euclidean equivalence of cyclide
surfaces, it is enough to consider (8) separately as a quartic equation that can be simplified
by translating to (4) or as a cubic equation. Accordingly, we split the proofs into two cases
and use Theorems 1 and 2 in a parallel way. We arrive at parallel options to simplify the
reducible variety DΓ from the full consideration of equations in those Theorems. Most of
the particular equations or factors considered by us appear naturally in examined Gröbner
bases. Even if an equation like (31) appears as an arbitrary choice, a formal proof does not
have to justify the consideration.

5.1. Proof for Quartic Cyclides
Without loss of generality, we may assume u0 = 1 while considering quartic cyclides.

To apply Theorem 1, it is necessary to apply the shift (3) with (b1, b2, b3) = (u1, u2, u3) so as
to bring the cyclide equation (8) to the form (4). The obtained expression is
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(
x2 + y2 + z2

)2
+

(
2(u4 + v1 − r2)− u2

1 −
U0

2

)
x2

+

(
2(u4 − r2)− u2

2 −
U0

2

)
y2 +

(
2(u4 − r2)− u2

3 −
U0

2

)
z2

− 2u2u3yz + 2(v3 − u1u3)xz + 2(v2 − u1u2)xy (29)
− (2u1v1 + u2v2 + u3v3 − 2v4 − u1(U0 − 2u4))x
− (u1v2 − u2(U0 − 2u4))y − (u1v3 − u3(U0 − 2u4))z

−
3U2

0
16

+
U0(u4 + r2) + u1(u1v1 + u2v2 + u3v3 − 2v4)

2
− 2r2u4 + r4 = 0.

Identification with the coefficients c1, c2, . . . , f0 in (4) defines the ring homomorphism

ρ : R[c1, c2, c3, d1, d2, d3, e1, e2, e3, f0] → RΓ.

Let IΓ ⊂ RΓ denote the ideal generated by the ρ-images of the 12 polynomials in Theorem 1.
The polynomials in this ideal have to vanish when (8) is a Dupin cyclide. The polynomial
ρ(K1) factors in RΓ: namely, ρ(K1) = − 1

4 T4V0, where

V0 = u2
1 (2u1u4−u2v2−u3v3)+(u2

2+u2
3−2u4)(2u1u4+2u1v1+u2v2+u3v3−2v4).

This shows that the variety defined by IΓ is reducible. To investigate real points of the
variety, we consider three possible options: T4 ̸= 0, V0 ̸= 0, and T4 = V0 = 0.

First, assume that T4 ̸= 0. Elimination of v2, v3, v4 gives the product V1V2 ∈ IΓ in the
remaining variables, where

V1 = v1 + 2u4 − 2r2, V2 = (u2
1 + u2

2 + u2
3 − 2u4)

2 + 4r2u2
1. (30)

If V2 = 0, then U0 − 2u4 = 0, u1 = 0 as we look only for real components. The augmented
ideal contains this sum of squares: v2

4 + r2V2
1 = 0. Therefore, V1 = 0 is inevitable for the

real components with T4 ̸= 0. The ideal IΓ + (V1) in RΓ[T−1
4 ] contains several multiples of

the polynomial V3 = v4 − 2r2u1. Localizing V3 ̸= 0 gives the trivial ideal of RΓ[T−1
4 , V−1

3 ],
which is, hence, an empty variety. With V3 = 0, we obtain the equations of Theorem 3 in
the homogenized form with u0. The points on the corresponding variety describe cases
when Γ is a Villarceau circle, as analyzed in Section 4.

Secondly, assume that V0 ̸= 0. Localization of IΓ in the ring RΓ[V−1
0 ] gives an ideal

generated by the 2 × 2 minors of the matrix L in (20) and the additional equation (21) with
u0 = 1. Here, we obtain the reducible Dupin cyclides of Remark 4.

The last option is T4 = V0 = 0. We notice polynomial multiples of T2
2 + T2

3 in the
Gröbner basis of (IΓ, T4, V0). Localization at T2

2 + T2
3 ̸= 0 gives an ideal that contains the

four polynomials of Theorem 3. Hence, it describes some points in the Villarceau circle
component (of the option T4 ̸= 0). We assume further that T2 = T3 = 0. Consideration of
the following polynomial allows further progress:

V4 = (2r2u1 + v4)(U0 − 2u4 − 2v1)− u1(4r2u4 + v2
2 + v2

3)

+ (v1 − 4r2)(u2v2 + u3v3) + 8r2v4. (31)

The localization V4 ̸= 0 leads to a subcase (describing touching spheres) of the
option V0 ̸= 0. Hence, we assume that V4 = 0. Elimination of v2, v3, v4 in the ideal
(IΓ, T2, T3, T4, V0, V4) leads to some generators that factor with

V5 = u2
1(u

2
2 + u2

3) + (u2
2 + u2

3 − 2u4)
2. (32)

The further localization V5 ̸= 0 leads to the principal circle component in Theorem 4. The
remaining case V5 = 0 splits into these two subcases, as we are interested in the real points
only:
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(i) u1 ̸= 0, so that u2 = u3 = 0, and eventually u4 = 0. The obtained ideal is
reducible, with the prominent factor V6 = u2

1(v
2
2 + v2

3) + 4v2
4 after elimination of

v1. The localization V7 ̸= 0 belongs to the principal circle component. The case
V6 = 0 simplifies to v2 = v3 = v4 = 2v1 − u2

1 = 0, and the cyclide degenerates to a
double-sphere case.

(ii) u1 = 0, u2
2 + u2

3 − 2u4 = 0. Elimination of the variables u1, u2, u3, u4 gives us a
principal ideal, and the generator factors with

V7 = (v2
2 + v2

3)
3 + (v1v2

2 + v1v2
3 + 2v2

4)
2. (33)

The localization V7 ̸= 0 belongs to the principal circle component. With V7 = 0 we get
v2 = v3 = v4 = 0, and the resulting ideal contains the product (u2

2 + u2
3 + 2v1)

2(u2
2 +

u2
3 + 2v1 − 4r2). Either of the factors leads to points on the principal circle component.

5.2. Proof for Cubic Cyclides
We use Theorem 2 to recognize cubic Dupin cyclides in the form (8) with u0 = 0. The

equation is first transformed to the form (2)

2(u1x + u2y + u3z)(x2 + y2 + z2) + 2(u4 + v1)x2 + 2u4y2 + 2u4z2

+2v2xy + 2v3xz + 2(v4 − r2u1)x − 2r2u2y − 2r2u3z − 2r2u4 = 0. (34)

Let
ρ0 : R[b1, b2, b3, c1, c2, c3, d1, d2, d3, e1, e2, e3, f0] → RΓ.

be the ring homomorphism defined by the coefficient identification. Since ρ0(B0) = U0, all
remaining computations are considered over the localized ring RΓ[U−1

0 ]. Let us denote
by I∗

Γ the ideal generated by the numerators of the ρ0-images of the four equations in
Theorem 2. This ideal contains the product T4V∗

0 , where

V∗
0 = 2u1u4U0 + 2u1v1(u2

2 + u2
3) + (u2v2 + u3v3)(u2

2 + u2
3 − u2

1). (35)

Like in the quartic case, we consider the three options: T4 ̸= 0, V∗
0 ̸= 0, and T4 = V∗

0 = 0.
The localization T4 ̸= 0 gives us directly the u0 = 0 part of the Villarceau circle

component in Theorem 3.
Localizing V∗

0 ̸= 0 gives an ideal containing the 2 × 2 minors of the matrix L and
Equation (21). This case describes only reducible cyclides of Remark 4.

With T4 = V∗
0 = 0, the ideal (I∗

Γ , T4, V∗
0 ) contains the sum of squares T2

2 + T2
3 . Hence,

T2 = T3 = 0 since we are looking only for real points of the variety DΓ. The further
candidate for localization to consider is

V∗
1 = 4r2u2

1 + v2
2 + v2

3 − 4u1v4. (36)

By comparing Gröebner bases, the localization of (I∗
Γ , T2, T3, T4, V∗

0 ) at V∗
1 ̸= 0 indeed

coincides with the ideal of the principal circle defined by the 2 × 2 minors of N and M.
The remaining case V∗

1 = 0 can be localized further at V∗
2 = u2

2 + u2
3 + u2

4. The localization
V∗

2 ̸= 0 defines points on the principal circle component. The case V∗
2 = 0 simplifies

to u2 = u3 = u4 = 0, and the cyclide equation degenerates to a subcase of a touching
sphere + plane case.

6. Smooth Blending of Cyclides
Here, we apply the main results to the practical problem of blending smoothly two

Dupin cyclides along a common circle. Smooth blending in this context means that the
cyclides share tangent planes along their common circle.

Lemma 2. Consider two cyclide equations of the form (8) with possibly different coefficients
u0, . . . , u4, v1, . . . , v4. Then they are joined smoothly along the circle Γ if and only if the
rational function
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F (y, z) =
v2y + v3z + v4

u2y + u3z + u4
(37)

is the same function on the circle Γ for both cyclides.

Proof. The normal vector of cyclides (8) along the circle Γ is defined by the gradient of the
defining polynomial. The gradient is computed as(

v2y + v3z + v4, 2y(u2y + u3z + u4), 2z(u2y + u3z + u4)
)
.

On the two given cyclides, the paired gradient vectors should be proportional along the
circle in order to obtain smooth blending. After the division by u2y + u3z + u4, the gradient
vectors are rescaled to

(
F (y, z), 2y, 2z

)
for direct comparison.

A special case is when the rational function (37) is a constant on Γ. This is equivalent
to rank(N ) = 1. Therefore, the rational function F is constant when Γ is a principal circle
case of a Dupin cyclide. As the following Lemma implies, the envelope surface of tangent
planes of any cyclide equation satisfying rank(N ) = 1 along Γ is a circular cone or cylinder.
It is known [7] that the envelope appearing as a cone or cylinder occurs in the case of Dupin
cyclides if the circle is principal. This is due to the representation of Dupin cyclides as canal
surfaces, where they are considered as conics in the four-dimensional Minkowski space,
and the tangent lines to those conics represent circular cones or cylinders; see [7] for details.

Lemma 3. If the function F (y, z) ≡ λ on the circle Γ for some constant λ, then the envelope
surface of tangent planes of the cyclide (8) along Γ is given by the equation

y2 + z2 =

(
r − λx

2r

)2
. (38)

It is a circular cone if λ ̸= 0 or a cylinder if λ = 0.

Proof. We parametrize the circle by (0, r cos φ, r sin φ). The envelope line passing through
such a point is orthogonal to the rescaled gradient vector

(
λ, 2r cos ϕ, 2r sin ϕ

)
and to

the tangent vector (0,− sin ϕ, cos ϕ) to the circle. The line therefore follows the direction
of the cross-product vector (2r,−λ cos ϕ,−λ sin ϕ). The envelope of tangent planes is
parametrized therefore as

(x, y, z) = (0, r cos φ, r sin φ) + t (2r,−λ cos φ,−λ sin φ). (39)

Hence, x = 2rt, y2 + z2 = (r − λt)2. Elimination of t gives (38).

Remark 5. The envelope of tangent planes degenerates to the plane x = 0 of the circle Γ when
λ = ∞. If the circle is a Villarceau circle, then the envelope of tangent planes is a more complicated
surface of degree four. As mentioned in Remark 3, the condition rank(N ) = 1 combined with the
equations of the Villarceau component leads to singular horn cyclides. On the other hand, the cone
envelope occurs also in the degenerate case of Remark 4.

6.1. Smooth Blending along Principal Circles
In this section, we focus on smooth blending between Dupin cyclides having Γ as a

principal circle. The main case to investigate is by fixing a tangent cone along the circle Γ
and finding Dupin cyclides that fit the blending conditions along the circle; see Figure 2a.

Proposition 1. Let us fix the parameter λ ̸= 0 and the cone (38) containing the circle Γ. The
Dupin cyclides that join the fixed cone smoothly along Γ as a principle circle are fully characterized
by the five equations
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v2 = λu2, v3 = λu3, v4 = λu4, (40)

4r2u1(λu0 − u1) + λ2(u2
2 + u2

3)− 2λu0u4 = 0, (41)

16r4(λu0 − u1)
2 + 4λ2r2u2

1 − λ2(λ2 + 4r2)(u2
2 + u2

3)− 8λ2r2u0v1 = 0. (42)

Proof. From Lemmas 2 and 3, the tangency conditions along the circle are given by vi = λui
for i ∈ {2, 3, 4}. We specialize u0, v2, v3, v4 in the ideal generated by the 2 × 2 minors
of N and M and obtain an ideal Iλ in Rλ = R(r)[u1, u2, u3, u4, v1, λ, λ−1]. We notice
many multiples of u2, u3, u4 in a Gröbner basis of Iλ. If u2u3u4 ̸= 0, we obtain an ideal
I∗

λ ⊂ Rλ[(u2u3u4)
−1] generated by the five equations of the proposition. The points with

u2u3u4 = 0 satisfy the equations of I∗
λ ∪ Rλ by checking the cases u2 = u3 = u4 = 0,

ui = 0, ujuk ̸= 0 or ui = uj = 0, uk ̸= 0 with i, j, k ∈ {2, 3, 4} being pairwise distinct. Each
of the resulting ideals RΓ[λ, λ−1] contains I∗

λ ∪Rλ.

Remark 6. The five equations of Proposition 1 are linear in the five variables u4, v1, v2, v3, v4.
Hence, we can easily solve the equations for those variables and obtain a parametrization of the
family of Dupin cyclides touching the cone along the circle Γ. Apart from the first three equations,
the variables u2, u3 appear only within the expression u2

2 + u2
3, representing a rotational degree of

freedom: rotating the two Dupin cyclide patches independently around the x-axis preserves the
smooth blending along the circle Γ.

The limit cases λ = 0 and λ = ∞ contain interesting families of Dupin cyclides as well.
The family with λ = 0 allows us to blend two toruses or a torus with a Dupin cyclide; see
Figure 2b–d. The family in the case λ = ∞ allows us to blend a Dupin cyclide with a plane;
see Figure 2e.

Proposition 2. Let us fix the cylinder defined by the parameter λ = 0 in (38). The only Dupin
cyclides that join this cylinder smoothly along Γ are characterized by the equations

u1 = v2 = v3 = v4 = 0, (43)

2r2u0v1 + r2(u2
2 + u2

3)− (v1 + u4)
2 = 0. (44)

Those Dupin cyclides are symmetric with respect to plane x = 0 of the circle Γ.

Proof. The equations v2 = v3 = v4 = 0 follow from the condition λ = 0 and the tangent
conditions in Lemma 2. With those constraints, the ideal of the principal circle component
reduces to the other two equations u1 = 0 and (44). The symmetry property with the plane
x = 0 follows from Equation (43).

Proposition 3. Let us fix the plane x = 0 (of the circle Γ) defined by the parameter λ = ∞ in (38).
The only Dupin cyclides that join this plane smoothly along the circle Γ are characterized by the
equations

u2 = u3 = u4 = 0, v4 = 2r2u1, (45)

16r4u2
0 + 4r2u2

1 − (v2
2 + v2

3)− 8r2u0v1 = 0. (46)

This family of Dupin cyclides is preserved by the reflection with respect to the plane of the circle.
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(a) (1 : − 49
30 : 0 : 76

15 : 323
30 : − 1669

120 : 0 : − 76
15 : − 323

30 )

(1 : −2 : −5 : 0 : 17
2 : − 93

8 : 5 : 0 : − 17
2 )

(b) (1 : 0 : −3 : 0 : 9
2 : − 9

2 : 0 : 0 : 0)

(1 : 0 : 0 : 76
15 : 323

30 : − 361
30 : 0 : 0 : 0)

(c) (1 : 0 : 5 : 0 : 25
2 : − 25

2 : 0 : 0 : 0)

(1 : 0 : −3 : 0 : 9
2 : − 9

2 : 0 : 0 : 0)

(d) (1 : 0 : 0 : 0 : −4 : 8 : 0 : 0 : 0)

(1 : 0 : −3 : 0 : 9
2 : − 9

2 : 0 : 0 : 0)

(e) (1 : a : 0 : 0 : 0 : 1
2 a2 + 15

8 : 1 : 0 : 2a) (f) (1 + t : 0 : 1 : 0 : 12
13 : 2

13 + 2t : 0 : − 10
13 : 0)

Figure 2. Two Dupin cyclide equations with different coefficient values (u0 : . . . : u4 : v1 : . . . : v4)

are smoothly blended along the circle Γ with r = 1. The two cyclides on (e) are obtained from the
parameter values a = 1 and a = 1.8. The two cyclides on (f) are obtained from the parameter values
t = 0 and t = 0.4.

Proof. Similar to the proof of Proposition 2. The equations u2 = u3 = u4 = 0 follow from
the tangent condition λ = ∞, and the ideal of the principal circle component reduces to the
other two equations of the proposition. The reflection (x, y, z) 7→ (−x, y, z) with respect to
the plane x = 0 preserves the coefficients u0, u2, u3, u4, v1 and symmetries u1, v2, v3, v4 to
−u1,−v2,−v3,−v4 in (8). This transformation preserves Equations (45) and (46).
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Remark 7. The cubic cyclides with u0 = 0 in the family of Proposition 3 degenerate to reducible
surfaces: namely, the cases of touching sphere + plane.

It is interesting to distinguish torus surfaces in the principal circle component. We get
two cases depending on the position of the circle Γ (wrapping around the torus hole or
around the torus tube). Figure 2c,d illustrate two different configurations of torus blending
using those two kinds of principal circles. The circle wraps around the torus tube of both
toruses in Figure 2c. The circle wraps around the torus tube for one torus and around the
torus hole for the other torus in Figure 2d. The examples satisfy the pertinent algebraic
conditions exactly; this article does not consider the issue of numerical stability.

Proposition 4. Equation (8) defines a torus having Γ as the principal circle if and only if one of the
following applies:
(i) u0 = 1, u2

2 + u2
3 = 2u0u4, v1 = −u4, v2 = v3 = v4 = 0;

(ii) u0 = 1, u2 = u3 = v2 = v3 = 0, u4 =
2r2u1(λ − u1)

λ2 ,

v1 =
λ2u2

1 + 4r2(λ − u1)
2

2λ2 , v4 = λu4 =
2r2u1(λ − u1)

λ
.

Proof. Assume that the circle Γ is wrapping around the torus tube. Then we have a tangent
cylinder along the circle, defined by v2 = v3 = v4 = 0 as in Proposition 2. The cross section
of (8) with the plane x = 0 is a pair of circles with the same radius (Γ, Γ′):

Γ′ : x =

(
y +

u2

u0

)2
+

(
z +

u3

u0

)2
−

r2u2
0 − 2u0u4 + u2

2 + u2
3

u2
0

= 0.

We need u2
2 + u2

3 = 2u0u4 for the equality of radii. Equation (44) then factors into (v1 +
u4)(v1 + u4 − 2r2u0). Due to the rotations in the yz-plane that preserve the circle Γ, we
can assume that the revolution axis of the torus is parallel to the z-axis. Then u3 = 0, and
we say u2 =

√
2u0u4. Note that u0u4 > 0 by the derived equation u2

2 + u2
3 = 2u0u4. The

rotated cyclide equation must be

u0

(
x2 +

(
y −

√
u4

2u0

)2

+ z2 − r2 +
u4

2u0

)2

− 2u4

(
y −

√
u4

2u0

)2

+ 2v1x2 = 0. (47)

Comparing with (1), we recognize a torus equation (with shifted y) when v1 = −u4. The
other option v1 = 2r2u0 − u4 gives a surface that is not symmetric around the revolution
axis; hence, that is not a torus. This shows possibility (i).

Assume now that the circle Γ is wrapping around the torus hole. Then we have a
tangent cone along the circle, i.e., v2 = λu2, v3 = λu3, v4 = λu4 as in Proposition 1. The
section with x = 0 should be a pair of concentric circles. Hence, u2 = u3 = 0. Again, with
u0 = 1 and the parametrization in Proposition 1, the cyclide equation reduces to((

x +
u1

2

)2
+ y2 + z2 +

r2(λ − u1)
2

λ2 −
u2

1(λ
2 + 4r2)

4λ2

)2

− 4r2(λ − u1)
2

λ2 (y2 + z2) = 0.

This is a torus equation, comparable to (1).

6.2. Smooth Blending along Villarceau Circles
By Remarks 3 and 5, it is not possible to smoothly blend a Dupin cyclide that has

Γ as a principle circle with a Dupin cyclide that has Γ as a Villarceau circle. It is left to
investigate blending between cyclides in the Villarceau circle component. The following
result is illustrated in Figure 2f.
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Proposition 5. Let D denote a Dupin cyclide (8) that has Γ as a Villarceau circle. The only Dupin
cyclides that join D smoothly along Γ are obtained by perturbing the equation of D by

(x2 + y2 + z2 − r2)2 + 4r2x2.

Those cyclides have Γ as a Villarceau circle.

Proof. Let D′ = (u0 : u′
1 : . . . : u′

4 : v′1 : . . . : v′4) be a Dupin cyclide that has Γ as a Villarceau
circle and assume that D′ and D are smoothly blending along the circle Γ. We obtain the
matrix equation:



0 0 0 2 1 0 0 0
−2r2 0 0 0 0 0 0 1

0 r2v2 0 v4 0 −r2u2 0 −u4
0 0 r2v3 v4 0 0 −r2u3 −u4
0 v3 v2 0 0 −u3 −u2 0
0 v4 0 v2 0 −u4 0 −u2
0 0 v4 v3 0 0 −u4 −u3





u′
1

u′
2

u′
3

u′
4

v′1
v′2
v′3
v′4


=



2r2u0
0
0
0
0
0
0
0


.

The first two rows of the matrix are linear equations obtained from D′ being in the Villarceau
circle component. The last five rows are the tangency conditions for the given Dupin cyclide
D from Lemma 2. Note that the 7 × 8 matrix has the full rank seven symbolically. We must
have vi ̸= 0 for some i ∈ {2, 3, 4} to avoid rank N < 2 and degeneracy to a horn cyclide.
Then, by setting s = u′

i/vi, we can solve

u′
j = suj, v′j = svj, for j ∈ {2, 3, 4}, (48)

u′
1 = s

v4

2r2 = su1, v′1 = 2r2u0 − 2su4. (49)

After dividing the equation of D′ by s, all coefficients are fixed except v′1 = 2r2u0/s − 2u4,
and u0 becomes u0/s. Hence, with t = u0/s − u0, u0 and v′1 become u0 + t and 2r2u0 −
2u4 + 2r2t = v1 + 2r2t, respectively. This is exactly a perturbation by amount t.

7. The Möbius Invariant J0

In this section, we compute a Möbius invariant denoted by J0 [18] (Section 6) for Dupin
cyclides in the Villarceau and principal circle components described by Theorems 3 and 4,
respectively. This invariant extends the Möbius invariant

J0 =
r2

R2

(
1 − r2

R2

)
(50)

for toruses to the Dupin cyclides. The smooth Dupin cyclides are characterized by 0 < J0 ⩽
1/4, and the singular Dupin cyclides are characterized by J0 ⩽ 0. A singular Dupin cyclide
can be obtained from a spindle or a horn torus (see Figure 3) by Möbius transformations.

(a) (b)

Figure 3. A cutaway view of singular toruses: (a) a spindle torus (J0 < 0, r > R); (b) a horn torus
(J0 = 0, r = R).
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We use [18] ((6.15) and (6.17)) to compute J0 for, respectively, the quartic equation (8)
with u0 ̸= 0 and the cubic equation (8) with u0 = 0. The obtained expression gives the
Möbius invariant when the equation defines a Dupin cyclide. It is convenient to subtract
1/4 from J0 and obtain a perfect square expression frequently. Let us denote by Ĵ0 the
remainder 1/4 − J0. The goal is to have a compact equivalent formula for J0 in each of the
two components.

Obtaining a J0-expression for quartic Dupin cyclides in the principal circle case is not
straightforward. Consider the ideal Iλ generated by the five equations of Proposition 1. By
incorporating separately the numerator and the denominator of Ĵ0 in the ideal Iλ and by
eliminating the linear variables u4, v1, . . . , v4, we obtain a representative numerator and a
representative denominator with a common factor. This gives a new expression of Ĵ0 up to
a constant multiplier. It is easy to find this constant by solving it from the difference of the
two expressions of Ĵ0 modulo Iλ. The resulting J0 expression is

J0 =
1
4
−
(
8r4(λu0 − u1)

2 − 4r2(λ2 + 4r2)u2
1 + λ2(λ2 + 2r2)(u2

2 + u2
3)
)2

16r4
(
4r2(λu0 − u1)2 − λ2(u2

2 + u2
3)
)2 . (51)

By further elimination of u2
2 + u2

3 using (41)–(42), we obtain the more compact form

J0 =
1
4
−
(
4r4λu0 − 2r2(λ2 + 6r2)u1 + λ(λ2 + 2r2)u4

)2

16r4
(
2r2λu0 − 2r2u1 − λu4

)2 . (52)

It is interesting that this compact form (52) also covers the J0 expression of the family of
cubic Dupin cyclides u0 = 0 in Proposition 1.

Since the majority of Dupin cyclides in the principal circle component belong to the
family of Dupin cyclides in Proposition 1, three equivalent expressions for J0 in the principal
circle component are obtained by substituting λ = vi/ui into (52) for each i = 2, 3, 4. The
equality of two different J0 expressions can be checked by reducing the numerator of the
difference between them modulo the ideal of the principal circle component.

In the two limiting cases of Propositions 2 and 3 of the principal circle component, we
use the same method and obtain the expression

J0 =
1
4
− (4r2u0 − 4u4 − 3v1)

2

4v2
1

(53)

for the family λ = 0 of Proposition 2, and

J0 =
1
4
− (3r2u0 − v1)

2

4r4u2
0

(54)

for the family λ = ∞ of Proposition 3. Note that the latter formula is always well-defined
because the family of Proposition 3 does not contain irreducible cubic Dupin cyclides by
Remark 7.

In the Villarceau circle case, the simplification of J0 in [18] (6.15) modulo the
equations (9) and (10) is straightforward. Elimination of v2, v3, and v4 gives a common
factor of the numerator and the denominator and leads to the expression

J0 =
r2u2

2 + r2u2
3 − u2

4
16(r2u2

2 + r2u2
3 − u2

4) + 4v2
1

. (55)

Alternative eliminations give
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J0 =
1
4
−

r2v2
1

4
(
r2(v2

1 + v2
2 + v2

3)− v2
4
) , (56)

=
1
4
−

v2
1

16r2
(
u2

2 + u2
3 + u0v1 − r2u2

0
) . (57)

These expressions are applicable to cubic Dupin cyclides as well. The invariant values
should be positive because singular cyclides have no real Villarceau circles. Indeed, the
numerator in (55) is positive by the inequality u2

4 < r2u2
2 + r2u2

3 in (11). The denominator is
positive as well from the same condition. The limiting case u2

4 = r2u2
2 + r2u2

3 of Theorem 3
represents horn cyclides since J0 = 0 from (55), as mentioned in Remark 3.

8. Conclusions
This paper derives the algebraic conditions that fully characterize the general family

of Dupin cyclides passing through the fixed circle (7). The algebraic conditions restrict
the coefficients of the general family (8) of Darboux cyclides passing through the circle.
The main results are divided to Theorems 3 and 4, which reflect the position of the circle
as either a Villarceau circle or a principal circle of the Dupin cyclides. The two obtained
general families are four-dimensional; see Remark 2. The main results can be applied to
check whether a particular surface (8) is a Dupin cyclide or to generate parametric families
of Dupin cyclides (by considering subvarieties of DΓ).

The found algebraic conditions are used in Section 6 to characterize and exemplify
pairs of Dupin cyclides that blend smoothly along circles. The construction of smooth
blending constitutes the basic application of Dupin cyclides in CAGD. The focal case
of smooth blending requires fixing a tangent cone along the circle (7), which reduces
the dimension of general families of smoothly matching Dupin cyclides to three; see
Proposition 1. Even if we would like to join two Dupin cyclides continuously along a circle
at a constant angle [9], the straightforward way of modeling is to fix the tangent cones
meeting at the desired angle. This leads to choosing within two distinct families of Dupin
cyclides in the context of Section 6. The J0-invariant of Section 7 determines (up to Möbius
transformations) the proportions of a whole Dupin cyclide.

Using implicit equations like (8) rather than parametrizations amounts to an alternative
technique of blending cyclides. Like in [18], the algebraic conditions on implicit equations
for Dupin cyclides are quite non-linear. Their derivation and concise presentation required
particular earnestness and attention. The derivation in Section 5 was facilitated by the
computer algebra systems Maple 2018 and Singular 4.2.1, employment of a Gröbner basis,
elimination and localization techniques, and syzygy computations [22].

Future work may establish blending routines of using implicit equations for Dupin
cyclides and compare their practicability, efficiency, and accuracy to existing parametriza-
tion techniques [3–8]. The results could be applied to uniformize investigation of blending
Dupin cyclides at two fixed circles or on fixed spheres, cones, or cylinders [11–16].
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