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Abstract: This paper presents an efficient two-step hybrid block method (ETHBM) to obtain an
approximate solution to the FitzHugh–Nagumo problem. The considered partial differential equation
model problems are semi-discretized, reducing them to equivalent ordinary differential equations
using the method of lines. In order to evaluate the effectiveness of the proposed ETHBM, three
numerical examples are presented and compared with the results obtained through existing methods.
The results demonstrate that the proposed ETHBM produces more efficient results than some other
numerical approaches in the literature.
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1. Introduction

In this section, we introduce the nonlinear FitzHugh–Nagumo equation (NFNE),
which is a well-known model in mathematical biology. The classical form of the NFNE is
given by

ut = uxx + u(x, t) (λ − u(x, t)) (1 − u(x, t)), (1)

and the generalized form of the NFNE is given by

ut = q1(t)uxx − q2(t)ux + q3(t)u(x, t) (λ − u(x, t)) (1 − u(x, t)), (2)

where u is the dependent variable, x and t are the space and time variables, respectively,
q1(t), q2(t), and q3(t) are arbitrary real-value functions, and 0 ≤ λ ≤ 1 is a constant. The
above equations are subject to the following initial and boundary conditions:

u(x, 0) = q(x), a ≤ x ≤ b, (3)

u(a, t) = p1(t), u(b, t) = p2(t), t ≥ 0, (4)

where q(x), p1(t), and p2(t) are the given functions.
The NFNE problems given in Equations (1)–(4) are essential nonlinear reaction–

diffusion equations that are used to model the behaviors of excitable systems, such as
nerve cells and heart muscle cells. The NFNE has been of interest to theoretical paleontolo-
gists, physicists, and applied mathematicians because it has been used to model real-life
problems in mathematical biology and computational neuroscience, where FitzHugh–
Nagumo equations are used to model the electrical activity of neurons in the brain and the
heartbeat of the heart [1–3].
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There are several analytical and numerical methods used for solving the NFNE. Some
of the most common methods are briefly discussed as follows:

One common analytical method used for integrating FitzHugh–Nagumo equations
and related problems is the homotopy perturbation method (HPM). The HPM involves us-
ing a homotopy, a continuous deformation of one equation into another, to find the solution
of the nonlinear PDE of the form (1). The HPM can be used to obtain analytical solutions
with reasonable accuracy. The advantage of HPM is that it can provide accurate solutions
with fewer iterations compared to some other analytical methods. The disadvantage is that
finding an appropriate initial guess for the solution may be difficult. A detailed description
of this method can be found in [4–9].

Another analytical approach used to solve FitzHugh–Nagumo equations and related
problems is the Adomian decomposition method (ADM). This method decomposes the
solution into Adomian polynomials, which comprise a set of functions. The ADM can be
applied to various nonlinear differential problems and provide accurate solutions. The
most significant advantage of ADM is its ease of implementation as well as its ability to
provide exact solutions to some model problems. Nevertheless, for a satisfactory analytical
solution, the series convergence requires more terms to obtain a good analytical solution.
More details about ADM and its modifications are reported in [10–12].

Numerical solutions to the NFNE can be obtained by discretizing the spatial and tem-
poral domains and applying finite difference methods. These approaches can yield reliable
results for a large range of initial and boundary conditions, but they are computationally
expensive and can show numerical instability. For more details about finite difference
methods, see [13–16].

Another numerical technique is the finite element method (FEM). The FEM involves
discretizing the domain into a finite number of elements and approximating the solution
to each element using a polynomial function. The solution is then obtained by combining
the element’s solution with a global solution. This approach is highly adaptable and
handles irregular geometry and complex boundary conditions. However, the FEM can
be computationally expensive and require many elements to generate accurate results.
For more details about FEM, see [17–20].

Many researchers have introduced various analytical and numerical methods to solve
problems of the types described in Equations (1)–(4). Those strategies include the analytical
method by Li and Guo [21], the variational formulation method presented in [22], the
Jacobi–Gauss–Lobatto method by Bhrawy [3], analytical and numerical solutions presented
in [23], a numerical approach presented by Chandraker et al. [24], the pseudo-spectral
method presented by Daniel and Shizgal [25], exponential and cubic B-spline methods
presented in [26,27], optimized numerical methods presented in [28,29], the block method
reported in [30], and the differential quadrature method reported by Mittal and Jiwari [31].

Block methods have been applied to solve Burgers’ and other equations in the avail-
able literature. The previous works have focused on the numerical solutions of various
differential equations using different methods. The primary contribution of this study lies
in introducing an efficient two-step hybrid block method (ETHBM) designed to provide
an approximate solution for both classical and generalized nonlinear FitzHugh–Nagumo
equations (NFNE). The results presented in this paper hold substantial significance as they
emphasize the efficacy of the ETHBM for solving the NFNE in Equations (1) and (2). The re-
sults of numerical examples reported in this paper show that the ETHBM outperforms
existing methods used for comparison in accuracy and computational efficiency, thereby
establishing its superiority in numerical solution techniques for the considered equations.

2. Problem Discretization and Development of the Proposed Method

In this section of the manuscript, we will focus on the problem discretization and the
development of the proposed method.
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2.1. Problem Discretization

In order to transform the NFNE in Equations (1) and (2) into a set of ODEs, we will
employ the widely utilized method known as the method of lines. This approach involves
the discrete partitioning of both the spatial and temporal domains. Firstly, the spatial
domain, which ranges from a to b, will be discretized into a collection of N equidistant
grid points. These grid points are conveniently labeled as xi, with each point defined as
xi = a + ihx, where hx = b−a

N . This discretization allows us to break down the spatial
dimension into manageable intervals. Similarly, we discretize the temporal domain into a
sequence of M equidistant time steps, denoted as tn = n∆t, where ∆t signifies the size of
each time step. This temporal discretization ensures that we accurately capture the system’s
evolution over time. Then, using finite difference schemes, we approximate the derivatives
in the original NFNE given in Equations (1) and (2). The resulting approximation of the
classical NFNE takes the following form:

d
dt

ui =
1
h2

x
(ui+1 − 2ui + ui−1) + ui(λ − ui)(1 − ui), i = 1, . . . , N − 1, (5)

and the generalized of NFNE takes the following form:

d
dt

ui = q1(t)
1
h2

x
(ui+1 − 2ui + ui−1)− q2(t)

ui+1(t)− ui−1(t)
2hx

+ q3(t)ui(λ − ui)(1 − ui), i = 1, . . . , N − 1, (6)

where ui represents the numerical approximation of the function u(xi, tn); xi corresponds
to the spatial grid points; and tn corresponds to the time steps.

2.2. Development of the Proposed Method

In order to obtain an approximate solution for the problems presented in Equations (5)
and (6) within a subinterval [tn, tn+2], a fifth-degree polynomial denoted as p(t) is utilized
and represented as

u(t) ≈ p(t) =
5

∑
j=0

ajtj, (7)

where the coefficients aj are real numbers that fulfill specific collocation conditions at
designated nodes. We approximate the derivative of u(t) using the following equation:

u′(t) ≈ p′(t) =
5

∑
j=1

aj jtj−1. (8)

To develop the ETHBM, we select two hybrid points, b1 and b2, from the interval
[tn, tn+2]. To obtain the system of equations required for the proposed ETHBM, we substi-
tute tn into Equation (7) and tn, tn+b1 , tn+1, tn+b2 , and tn+2 into Equation (8). This substitu-
tion results in a system of equations, which includes the following equations:

p(tn) = un,

p′(tn) = gn, p′(tn+b1) = gn+b1 , p′(tn+1) = gn+1, p′(tn+b2) = gn+b3 , p′(tn+2) = gn+2,

where un+j and gn+j are approximations of the solution u(tn+j) and its derivatives g(tn+j,
u(tn+j)), respectively.
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After determining the values of an for n = 0, 1, 2, 3, 4, and 5, we substitute them
into Equation (7) and replace the variable t with tn + xh. This substitution results in a
continuous approximation using the polynomial in Equation (7), as follows:

p(tn + xh) = un + h
(

β0(x)gn + βb1(x)gn+b1 + β1(x)gn+1 + βb2(x)gn+b2

)
+ h(β2(x)gn+2). (9)

where {βi(x)}i=0,b1,1,b2,2 depend on b1 and b2. To obtain the proposed ETHBM, we substi-
tute the values of x as x = 1

4 , x = 1, x = 7
4 , and x = 2 into Equation (9). After inserting

b1 = 1
4 and b2 = 7

4 , and simplifying, we obtain the following formulas:

un+b1 = un +
h
(
18692gn+b1 + 1052gn+b2 + 12717gn − 1708gn+1 − 513gn+2

)
120960

,

un+1 = un +
h
(
2464gn+b1 − 416gn+b2 − 81gn + 1624gn+1 + 189gn+2

)
3780

,

un+b3 = un +
7h

(
1316gn+b1 + 956gn+b2 + 81gn + 2156gn+1 − 189gn+2

)
17280

,

un+2 = un +
1

945
h
(
512

(
gn+b1 + gn+b2

)
+ 27gn + 812gn+1 + 27gn+2

)
. (10)

The formula in Equation (10) is the ETHBM. This method is designed to solve the
transformed systems of ODEs given in Equations (5) and (6).

3. Analysis of the ETHBM

In this section of the manuscript, we present the theoretical aspects of the ETHBM.
The theoretical analysis presented here provides a rigorous understanding of the ETHBM
method and its performance, which is crucial for its practical application.

3.1. Local Truncation Errors, Consistency, and Convergence of the ETHBM

The formulas in Equation (10) can be expressed using the following recurrence relation:

R̄Un = hS̄U′
n, (11)

where the constant matrices R̄ and S̄ correspond to the coefficients of the left- and right-
hand sides of the formulas in Equation (10), and the vectors Un and U′

n represent the values
of the solution and its derivatives at the nodes tn, tn+b1 , tn+1, tn+b2 , and tn+2.

To analyze the error associated with the ETHBM, we introduce an operator denoted as
L, which is linked to the method presented in Equation (10). This operator L takes as its
input the function u(t) and the step size h:

L[u(t); h] = ∑
j∈I

[
Θju(tn + jh)− hΨju′(tn + jh)

]
, (12)

where Θj and Ψj are column vectors within the matrices R̄ and S̄, respectively. Set I
consists of 0, b1, 1, b2, 2, representing the indices used in the ETHBM. Assuming that u(t) is
sufficiently differentiable, we expand u(tn + jh) and u′(tn + jh) in a Taylor series around
the point, tn, where j denotes the index in the set, I. Consequently, we obtain

L[u(tn); h] = θ0u(tn) + θ1hu′(tn) + θ2h2u′′(tn) + · · ·+ θqhqu(q)(tn) + . . . , (13)

where θq is defined as

θq =
1
q!

[
k

∑
j∈I

jqΘj − q
k

∑
j∈I

jq−1Ψj

]
, q = 0, 1, 2, . . . . (14)
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By utilizing the definitions of order and LTEs as provided in [32,33], we can derive the
order (p) and expressions of the LTEs for the obtained formulas. The resulting expressions
are presented below:

Table 1 displays the LTEs and order of the obtained formulas. The ETHBM is a two-step
method and, therefore, has zero-stability properties. Moreover, the method is consistent
since the order p exceeds one. Furthermore, due to its zero-stability and consistency, the
ETHBM is convergent.

Table 1. Local truncation error and the order of accuracy for the ETHBM.

Formula Order local Truncation Error

un+b1
5 343h7u(6)(tn)

5,898,240 +O(h7)

un+1 5 − 11h6u(6)(tn)
23,040 +O(h7)

un+b2 5 343h6u(6)(tn)
5,898,240 +O(h7)

un+2 6 h7u(7)(tn)
20,160 +O(h8)

3.2. Linear-Stability Analysis

In this section, we follow the guidelines reported by [33] to study the linear stability
analysis of the ETHBM. Linear stability analysis is a crucial aspect of numerical methods,
as it helps us understand the behavior of the method in the presence of small perturbations.
To perform the linear stability analysis, we apply the proposed ETHBM to the differential
equation u′ = νu, where Re(ν) < 0. This differential equation is a standard test equation
used in the linear stability analysis. By applying ETHBM to this equation, we derive the
following recurrence relation:

Un+1 = M(z)Un, z = νh, (15)

where ν is a complex number, and M(z) denotes a stability matrix, with its explicit repre-
sentation being

M(z) =
(

C0 + zE
)−1(

C1 + zD
)

, (16)

where the components of C0, C1, E, and D are obtained as follows:

C0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, C1 =


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

,

E =


0 0 0 1 + 471

4480

0 0 0 1 + 21
640

0 0 0 1 − 3
140

0 0 0 1 + 1
35

,

D =


1 − 4673

30240
61

4320 − 263ν
30240

19
4480

− 2303
4320 − 3773

4320 1 − 1673
4320

49
640

− 88
135 1 − 58

135
104
945 − 1

20

− 512
945 − 116

135 − 512
945 1 − 1

35

.

This recurrence relation helps us understand the stability properties of ETHBM. By an-
alyzing the eigenvalues of the matrix M(z), we can determine the stability region of the
method. A stable method produces numerical solutions that do not grow unbounded as
we increase the time steps. By performing the linear stability analysis, we can gain insights
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into the behavior of ETHBM and its potential applications in solving real-world problems.
This analysis will help us understand the strengths and weaknesses of our method and
compare it with other existing numerical methods. The eigenvalues of the stability matrix
M(z) for ETHBM are calculated as

{
0, 0, 0, 7z4+85h3+405z2+960z+960

7z4−85z3+405z2−960z+960

}
. These eigenvalues

hold particular significance as they directly influence the stability characteristics of the
numerical solution. To evaluate the stability of the ETHBM, we introduce the concept of
the spectral radius, denoted as ρ(M(z)). This parameter offers crucial insights into the
method’s stability behavior. The region where the absolute value of the spectral radius is
less than one, denoted as S = {z ∈ C : |ρ(M(z))| < 1}, represents the resulting region of
absolute stability. Figure 1 visually represents the ETHBM’s stability region, demonstrating
that the entire left half of the complex plane falls within this region. This observation em-
phasizes the ETHBM’s remarkable quality of being A-stable, signifying its robust capability
to solve the considered differential problem effectively.

Figure 1. ETHBM’s stable region in the complex z-plane.

4. Implementation of the Proposed ETHBM
Using approximations of uxx and ux at (xi, t), Equations (1) and (2) are discretized

to obtain ODE systems in Equations (5) and (6), and then the formulas in Equation (10)
are reformulated as G(u) = 0, to represent the discretized problem. The unknowns are
represented by Ũ, as follows:

Ũ =
(
u1,n+b1

, u2,n+b1
, . . . , uN−2,n+b1

, u1,n+1, u2,n+1, . . . , uN−2,n+b2 , u1,n+1, u2,n+1, . . . , uN−2,n+1
)
.

The implicit nature of the proposed ETHBM method results in nonlinear equation
systems that must be solved at each time step using a nonlinear solver. The nonlinear equa-
tions are then solved using the Newton method (NM). The NM uses iterative computations
to find the solution to a linear system until convergence, starting with an initial solution
guess and updating it until convergence. In the ETHBM scheme, Newton’s method adopts
the following formulation:

Ũi+1 = Ũi − (J0)
−1Gi,

where Ũi represents the current approximation of the solution, Gi denotes the nonlinear
function computed at Ũi, and J0 indicates the fixed Jacobian matrix of G evaluated at
Ũi. In order to initiate the NM iterations, the solution can be approximated using values
from the previous time step. In the ETHBM scheme, known values un and gn are utilized
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to determine initial values for unknowns in each iteration. These initial values are cal-
culated as un+j = un + (jh)gn, where h represents the time step size and j = b1, 1, b2, 2
corresponds to four different sets of unknowns within the system. By employing these
initial values, the convergence of the NM iterations is accelerated, leading to a reduction in
the computational cost.

5. Numerical Examples and Comparisons

In this section, our focus is on presenting the numerical solutions for a real-world model,
which is commonly known as the nonlinear FitzHugh–Nagumo in Equations (1) and (2). We
utilize our proposed ETHBM to obtain numerical results.

Moreover, we go a step further and compare the results of ETHBM with other existing
numerical methods that can be found in the literature. This comparison will help us
understand the strengths and weaknesses of our proposed method compared to other
methods. By doing so, we hope to provide the performance of ETHBM and its potential
applications in solving real-world problems under consideration. The maximum error
norm L∞ is calculated using the following formula:

L∞ = max
0≤i≤N, 0≤j≤M

∣∣u(xi, tj)− U(xi, tj)
∣∣
∞,

where u(xi, tj) and U(xi, tj) represent the exact solution and the solution obtained through
ETHBM, respectively, at the discrete space point, xi, and time point, tj. This formula helps
us determine the maximum difference between the exact solution and the solution obtained
through our proposed method. By utilizing the formulas, we can evaluate the accuracy and
efficiency of our proposed method and compare it with other existing numerical methods.

In the tables and figures presented in this paper, we use abbreviations to represent dif-
ferent methods and performance measures. These abbreviations are essential in presenting
the numerical results concisely and clearly.

ETHBM denotes the efficient two-step hybrid block method proposed in this manuscript.
This method is the focus of our study, and we use it to obtain numerical solutions for
Equations (1) and (2).

The polynomial differential quadrature method is represented by PDQM and is cited
from [34]. This method is a numerical method used in solving differential equations.
It involves approximating the derivatives of the solution using polynomial interpolation.

The compact finite difference block technique is denoted by CFDBT and is described
in [35]. This method involves approximating the derivatives of time-dependent partial
differential equations using finite difference approximations in combination with the
block method.

The discontinuous Galerkin method is referred to as DGM and is reported in [36].
This method is a numerical method used in solving partial differential equations. It involves
approximating the solution using piecewise polynomials and discontinuous Galerkin
methods. The nonstandard finite difference method is referred to as NFDM and is reported
in [37]. The proposed method is implemented using the composed codes in Mathematica
13 on an i7-configured computer running a 64-bit operating system.

5.1. Numerical Example 1

As a first numerical example, we consider the NFNE in Equation (1). The equation is
subject to the following initial condition, as presented in [34,35]:

u(x, 0) =
1
2
+

1
2

tanh
(

x
2
√

2

)
, x ∈ [−10, 10].

This initial condition represents the system’s initial state at time t = 0. We can express
the solution to this problem in analytical form as follows:
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u(x, t) =
1
2
+

1
2

tanh
(

x
2
√

2
− 1

4
(2λ − 1)t

)
.

This analytical solution helps us understand the system’s behavior and provides a
benchmark for evaluating the accuracy of our numerical method. The boundary conditions
for Example 1 are obtained from the analytical solution. These boundary conditions ensure
that the solution remains bounded and well-behaved as we increase the number of time
steps. By solving this problem using our proposed method, we can obtain numerical
solutions that approximate the exact solution.

The computational order of convergence (OC) in Table 2 is obtained using the follow-
ing formula:

OC = − log2

(
L∞(h)

L∞(2h)

)
.

Table 2. Order of convergence for Example 1 with t ∈ [0, 1], λ = 0.5.

h Method L∞ ROC
1
10 ETHBM 2.1011 × 10−10

1
20 ETHBM 5.1773 × 10−12 5.3428
1
40 ETHBM 1.3484 × 10−13 5.2629
1
80 ETHBM 4.9511 × 10−15 4.7674

For Example 1, we present the numerical results obtained using the proposed ETHBM
method for λ = 0.75 and N = 100 at different time values in Table 2. We also compare these
results with the numerical results obtained using the CFDBT and the PDQM methods. The
data in Table 2 demonstrate that the L∞ error of the proposed ETHBM is smaller than the L∞
errors obtained using the CFDBT and PDQM methods, demonstrating the effectiveness and
robustness of the proposed ETHBM method in solving the NFNE problem in Equation (1).
Furthermore, we provide a plot of the absolute error at t = 5 and N = 100 for Example 1
in Figure 2, and the CPU time in seconds that the computer used to obtain the Figure 2
using the ETHBM is 4.3125. This figure shows that the proposed ETHBM method yields
significantly smaller errors than the CFDBT and PDQM methods.

Figure 2. Plot of absolute error with N = 100 on (x, t) ∈ [−10, 10]× [0, 5] for Example 1.
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5.2. Numerical Example 2

Consider a class of NFNE in Equation (1), which belongs to the class of stiff test
problems as reported by [35,37]. The problem is given by

ut = uxx + η u(x, t) (λ − u(x, t)) (1 − u(x, t)), x ∈ [−10, 10],

where the parameter λ ∈ (0, 1) plays a critical role in characterizing the overall dynamics
of the equation, while η > 0 represents the natural growth rate. This stiff problem is subject
to the following initial condition:

u(x, 0) =
1
2
− 1

2
tanh

(√
ηx

2
√

2

)
, x ∈ [−10, 10].

This problem is an example of a stiff differential equation, which is a type of differential
equation that is difficult to solve numerically due to the presence of rapidly varying and
slowly varying components. The solution to this problem can be expressed in analytical
form as follows:

u(x, t) =
1
2
− 1

2
tanh


√

η

(
x + t

(√
η
2 (2λ − 1)

))
2
√

2

.

We use the above exact solution to provide the boundary conditions for Example 2,
guaranteeing that the solution remains well-behaved and bounded as we increase the
number of time steps.

As an illustration, we present the numerical results obtained using the proposed
ETHBM technique for λ = 0.2, t = 0.5, and N = 100 at various η values in Table 3.
Additionally, we compare these results with the numerical results obtained using the
CFDBT and the NFDM methods. The data in Table 3 show that the proposed ETHBM
method has a smaller L∞ error than the L∞ errors obtained using the CFDBT and NFDM
methods. This result highlights the effectiveness and robustness of the proposed ETHBM
method in solving the stiff type of the NFNE in Equation (1). Furthermore, we provide
the plots of the absolute errors at t = 0.5, N = 100, η = 2 and t = 0.5, N = 100, η = 10 for
Example 2 in Figures 3 and 4, respectively; the CPU times in seconds that the computer used
to obtain these figures using the ETHBM are 2.0582 and 2.2344, respectively. These figures
show that the proposed ETHBM method yields significantly smaller errors than the CFDBT
and PDQM methods.

Table 3. Comparison of L∞ for Example 1 with λ = 0.75, N = 100.

t L∞ for ETHBM L∞ for CFDBT L∞ for PDQM

0.2 1.0658 × 10−12 5.4996 × 10−8 4.7416 × 10−5

0.5 1.8416 × 10−11 1.0653 × 10−7 1.2312 × 10−4

1.0 4.8221 × 10−11 1.5822 × 10−7 2.6261 × 10−4

1.5 5.3832 × 10−11 1.9190 × 10−7 4.2096 × 10−4

2.0 5.5785 × 10−11 2.1710 × 10−7 5.9999 × 10−4

3.0 8.9709 × 10−11 2.5517 × 10−7 1.0324 × 10−3

5.0 2.8277 × 10−10 3.1252 × 10−7 2.3050 × 10−3
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Figure 3. Plot of absolute errors with N = 100, η = 2 on (x, t) ∈ [−10, 10]× [0, 0.5] for Example 2.

Figure 4. Plot of absolute errors with N = 100, η = 10 on (x, t) ∈ [−10, 10]× [0, 0.5] for Example 2.

5.3. Numerical Example 3

We apply the proposed method in the third numerical example to solve the generalized
NFNE presented in Equation (2). This equation is subject to a specific initial condition, as
reported in [34,36]. The initial condition represents the system’s initial state at time t = 0
and is given by

u(x, 0) =
λ

2
+

λ

2
tanh

( x
2

)
, x ∈ [−10, 10].
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The above initial condition provides a starting point for solving the NFNE problem in
Equation (2). The analytical solution to the NFNE problem in Equation (2) is given by the
following expression:

u(x, t) =
λ

2
+

1
2

λ tanh
(

1
2

λ(x − (3 − λ) sin(t))
)

,

where the parameter λ ∈ (0, 1). This analytical solution is a useful reference for evaluat-
ing the accuracy and efficiency of numerical methods for solving the NFNE problem in
Equation (2). The boundary conditions of this problem are obtained from the exact solution,
ensuring that the solution remains well-behaved and bounded as we increase the number
of time steps.

Table 4 compares the L∞ errors for Example 3 at t = 0.5 with λ = 0.75 and N = 100
using three different numerical methods: ETHBM, CFDBT, and NFDM. This table shows
the L∞ errors for each method at different time values. From this table, we can see that
the ETHBM method has the smallest L∞ error for all values of times, followed by DGM
and PDQM, indicating that the ETHBM method provides the most accurate approximation
of the solution for Example 3. Furthermore, we can observe that as the value of time
increases, the L∞ error also increases for all three methods. This suggests that a shorter
time is necessary for a more accurate solution approximation. Overall, the results in Table 5
demonstrate the effectiveness of the ETHBM method in providing accurate approximations
of solutions to the generalized NFNE problem in Equation (2). Also, we provide a plot
of the absolute errors at t = 0.2 and N = 100 for Example 3 in Figure 4; the CPU time in
seconds that the computer used to obtain this figure using the ETHBM is 1.7343. This figure
shows that the proposed ETHBM method yields significantly smaller errors.

Table 4. Comparison of L∞ for Example 2 at t = 0.5 with λ = 0.2, N = 100.

η L∞ for ETHBM L∞ for CFDBT L∞ for NFDM

0.5 5.0804 × 10−12 1.6401 × 10−8 4.1322 × 10−6

1.0 2.6857 × 10−11 1.0738 × 10−7 2.4227 × 10−5

2.0 1.2253 × 10−9 6.4360 × 10−7 1.5759 × 10−4

Table 5. Comparison of L∞ for Example 3 with λ = 0.75, N = 100.

t L∞ for ETHBM L∞ for DGM L∞ for PDQM

0.2 7.0474 × 10−11 1.1228 × 10−5 1.2350 × 10−5

0.5 8.0531 × 10−11 7.5845 × 10−5 5.1986 × 10−4

1.0 1.4813 × 10−10 9.1278 × 10−5 6.3283 × 10−4

1.5 2.9014 × 10−10 9.2423 × 10−5 8.5383 × 10−4

2.0 5.5413 × 10−10 1.7724 × 10−5 9.9123 × 10−4

3.0 7.5484 × 10−10 1.4609 × 10−4 1.7904 × 10−3

6. Conclusions

This paper presents an efficient two-step hybrid block method (ETHBM) to obtain an
approximate solution to non-linear FitzHugh–Nagumo equations (NFNE). The proposed
method’s efficiency is demonstrated by its successful application to three different NFNEs,
including the stiff type of NFNE problem. ETHBM results are compared with some existing
numerical methods to determine its effectiveness. A comparison of numerical results
in Tables 2–4 and the plots of absolute errors in Figures 2–5 show that the proposed
ETHBM method outperforms several other numerical methods. These results highlight
the effectiveness of ETHBM in accurately approximating solutions to NFNE presented in
Equations (1) and (2).
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Figure 5. Plot of absolute errors with N = 100 on (x, t) ∈ [−10, 10]× [0, 0.2] for Example 3.
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