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Abstract: This paper focuses on the asymptotic behavior of nonautonomous neural networks with
delays. We establish criteria for analyzing the asymptotic behavior of nonautonomous recurrent
neural networks with delays by means of constructing some new generalized Halanay inequalities.
We do not require to constructi any complicated Lyapunov function and our results improve some
existing works. Lastly, we provide some illustrative examples to demonstrate the effectiveness of the
obtained results.
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1. Introduction

Recently, neural networks (NNs) have garnered significant attention and have found
extensive applications across various domains, including image restoration [1], pattern
recognition [2] and associative memory [3]. In practical applications, time delays are
an unavoidable factor stemming from the finite switching speed of amplifiers. It’s well-
established that time delays can potentially induce oscillations and instability in systems.
Consequently, the asymptotic behavior of NNs with delays has been a focal point of
research for numerous authors.

The study of asymptotic behavior such as dissipativity [4–7] attracting sets [8], stabi-
lization [9–11] and stability offers potent tools for addressing the problem of controlling
dynamics systems. In the asymptotic behavior analysis, one powerful tool is Lyapunov
function or functional. Wang and Zhu [12] used a novel Lyapunov–Krasovskill functional
to consider the stability of discrete-time semi-Markov jump linear systems with time delay.
Fan et al. [13] using multiple Lyapunov-Krasovskii functionals to investigate the stability
of switched stochastic nonlinear systems. Xu et al. [14] used the improved Lyapunov Razu-
mikhin method to consider exponential stability of stochastic nonlinear delay systems. Zhu
and Zhu [15] constructed the Lyapunov-Krasovskii functional to the stability of stochastic
Highly Nonlinear Systems.

Especially, Cao and Zhou [16], Cao [17], Mohanmad and Gopalsamy [18], Sun et al. [19],
Zeng et al. [7], Zeng et al. [20], Zhang et al. [21], Zhang et al. [22], Zhao and Cao [23], Zheng
and Zhang [24], and Zhou and Zhang [25] used the Lypunov functional to investigate
the stability of delayed cellular NNs with constant coefficient, respectively. Jiang and
Cao [26], Jiang and Teng [27,28], Long et al. [29], Rehim et al. [30], Song and Zhao [6], Yu
et al. [31], Zhang et al. [32], Zhang et al. [33] investigated the stability of recurrent NNs with
variable coefficient by constructing Lyapunov function or functional, respectively. Through
the construction of Lyapunov functions or functionals, one can find some interesting re-
sults. Nevertheless, constructing an appropriate Lyapunov function or functional can be
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a challenging task, particularly in the context of nonautonomous NNs with unbounded
delays [34].

On the other hand, Halanay inequalities can be also used to consider the asymptotic
behavior of NNs [5,29,34–38]. It should be noted that only [5,35,38] considered the un-
bounded coefficient functions, and unbounded delay functions. Hien et al. [35] considered
the generalized exponential stability of one-dimensional Halalay inequalities and gave
application to nonautonomous NNs. Later, Lu et al. [38] studied the global generalized
exponential stability of nonautonomous NNs by multi-dimensional generalized Halanay
inequalities which extended the results in [35]. However, when the coefficient functions
are constants and the delay functions are infinite the works in [35,38] do not work. Hien
et al. [5] considered the global dissipativity of nonautonomous NNs with delays. Howerer,
their delay functions are required to be proportional.

Inspired by the preceding discussion, in this paper, we propose some generalized
Halanay inequalities to investigate the asymptotic behaviour of neural networks with
unbounded variable coefficients and infinite delay, and our assumptions are less restrictive
than most of existing works. Our results not only enhance but also extend the results
initially presented in [5,35,38].

The structure of this paper unfolds as follows. Section 2 provides an introduction
to some preliminaries, definitions and model descriptions. Section 3 investigates the
asymptotic behavior of NNs with delays by means of constructing some generalized
Halanay inequalities. Section 4 offers some examples and simulations to exemplify the
practical utility of our theoretical results. Finally, this paper concludes in the Section 5.

Notations: let Nn = {1, 2, . . . , n} and AT denotes the transpose of matrix A. Rn

is the n-dimensional Euclidean space equipped with the norm ∥q∥ = max
i∈Nn

{|qi|} for

q = (q1, q2, . . . , qn)T ∈ Rn. For t0 ≥ 0, BC((−∞, t0],Rn) stands for the space of all bounded
and continuous functions ψ : (−∞, t0] → Rn equipped with the norm ∥ψ∥∞ := sup

θ≤t0

∥ψ(θ)∥.

For any sets D and E, define D − E := {x|x ∈ D, x /∈ E}. b+ = max {0, b}.

2. Preliminaries and Model Description

This paper investigates the following NNs with delays
dqi(t)

dt = −αi(t)qi(t) +
n
∑

j=1
[βij(t) f j(qj(t)) + γij(t)gj(qj(t − τij(t)))] + hi(t), t ≥ t0,

qi(t) = ψi(t), t ∈ (−∞, t0], i ∈ Nn,
(1)

where qi(t) is the neuron state variable of the neural network, ψ(t) = (ψ1(t), . . . , ψn(t))
is the initial value, q(t, ψ) = (q1(t), . . . , qn(t))T ∈ BC((−∞, t0] denotes the solution (1)
with initial value ψ, sometimes we write q(t) for short. αi(t) stands for self-feedback
coefficient, βij(t) and γij(t) stand for neuron connect weight. τij(t) ≥ 0 represents the
transmission delay. hi(t) is the external bias, f j and gj stand for the activation functions. If
the initial value of qj(t) defined on [min

t≥t0
{t − τij(t)}, t0], define qj(t) = qj(min

t≥t0
{t − τij(t)})

for t < min
t≥t0

{t − τij(t)} , then (1) is clearly defined.

Now, we introduce four definitions of asymptotic behavior.

Definition 1 ([5]). A compact set Ω ⊂ Rn is called to be a global attracting set of (1), provided
lim sup

t→+∞
d(q(t, ψ), Ω) = 0, where d(q, Ω) := inf

x∈Ω
∥q − x∥ represents the distance between q

and Ω.

Definition 2 ([5]). A compact set Ω ⊂ Rn is called to be a global generalized exponential attracting
set of (1), provided there exists a ρ(ψ) ≥ 0 satisfies that

d(q(t, ψ), Ω) ≤ ρ(ψ)e−λ(t), t ≥ t0, (2)
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where λ(t) ≥ 0 is a nondecreasing function satisfies that lim
t→+∞

λ(t) = +∞.

Remark 1. Substituting λ(t) with λ(t − t0), λ ln(t − t0 + 1), and λ ln(ln(t − t0 + e)), (λ > 0),
respectively, results in Ω becoming a global exponential, polynomial as well as logarithmic attracting
set of system (1), correspondingly.

Definition 3 ([5]). System (1) is called to be globally dissipative, provided there is a bounded set
B ⊂ Rn satisfies that for any bounded set Ψ ⊂ Rn, there exists a time tB = tB(Ψ) satisfies that
for any initial value ψ ∈ Ψ, q(t) = q(t, ψ) ∈ B for t ≥ tB(Ψ). Then B is called an absorbing set
of (1).

Remark 2. If Ω is a global generalized exponential attracting set of (1), this implies (1) is globally
dissipative. For any bounded set Ψ ⊂ Rn, there exists an absorbing set of (1) such that Bε = {x ∈
Rn : d(x, Ω) ≤ ε}.

Definition 4 ([38]). System (1) is called to be globally generalized exponential stable, provided
for any two solutions q(1)(t) = (q(1)1 (t), . . . , q(1)n (t))T and q(2)(t) = (q(2)1 (t), . . . , q(2)n (t))T , each
having distinct initial values ψ(1), ψ(2) ∈ BC((−∞, t0],Rn), there exists a non-negative function
ϱ(ψ(1) − ψ(2)) and a non-decreasing function λ(t) ≥ 0 with property lim

t→+∞
λ(t) = +∞ such that

|q(1)(t)− q(2)(t)| ≤ ϱ(ψ(1) − ψ(2))e−λ(t), t ≥ t0,

where λ(t) represents the decay rate.

3. Main Results

In this section, the asymptotic behavior of (1) is discussed by means of generalized
Halanay inequalities.

Theorem 1. Let the following conditions hold

(C.1) For i, j ∈ Nn and t ≥ t0, αi(t) ≥ 0, βij(t), γij(t), hi(t) are all integrable functions.
(C.2) For j ∈ Nn and q1, q2 ∈ R, there exist constants Fj, Gj such that

| f j(q1)− f j(q2)| ≤ Fj|q1 − q2|, |gj(q1)− gj(q2)| ≤ Gj|q1 − q2|.

(C.3) For each i ∈ Nn, there exist positive constants η1, η2, . . . , ηn, (max{η1, η2, . . . , ηn} = 1)
and non-negative constants µi such that

ηiαi(t)−
n

∑
j=1

(|βij(t)|Fj + |γij(t)|Gj)ηj ≥ 0, t ≥ t0,

and

sup
{t|t≥t0}−D

{ n
∑

j=1
(|βij(t) f j(0)|+ |γij(t)gj(0)|) + |hi(t)|

ηiαi(t)−
n
∑

j=1
(|βij(t)|Fj + |γij(t)|Gj)ηj

}
:= µi,

where

D =

{
t|ηiαi(t)−

n

∑
j=1

(|βij(t)|Fj + |γij(t)|Gj)ηj =
n

∑
j=1

(|βij(t) f j(0)|+ |γij(t)gj(0)|) + |hi(t)| = 0
}

,

n

∑
j=1

(|βij(t) f j(0)|+ |γij(t)gj(0)|) + |hi(t)| := µi(t).
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Then systems (1) is globally dissipative and max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk
, µk

}
is an absorbing set of (1).

Remark 3. Conditions (C.1)–(C.3) imply the local Lipschitz condition and local linear growth
condition. So the existence and uniqueness of solution can be guaranteed.

Proof. Assume q(t) = (q1(t), . . . , qn(t))T is the solution of (1) with initial value ψ =
(ψ1, . . . , ψn)T . Let

z(t) = (z1(t), . . . , zn(t))T = (η−1
1 q1(t), . . . , η−1

n qn(t))T , (3)

then
dzi(t)

dt = −αi(t)zi(t) + η−1
i

n
∑

j=1
[βij(t) f j(qj(t)) + γij(t)gj(qj(t − τij(t)))] + η−1

i hi(t), t ≥ t0,

zi(t) = η−1
i ψi(t), t ∈ (−∞, t0].

(4)

For each i ∈ Nn and t ≥ t0, from (C.2), (3) and (4), we have

D+|zi(t)| ≤ −αi(t)|zi(t)|+ η−1
i

n

∑
j=1

|βij(t)|(Fjηj|zj(t)|+ | f j(0)|)

+ η−1
i

n

∑
j=1

|γij(t)|( sup
t−τij(t)≤s≤t

(Gjηj|zj(s)|+ |gj(0)|) + η−1
i |hi(t)|

= −αi(t)|zi(t)|+ η−1
i

n

∑
j=1

|βij(t)|Fjηj|zj(t)|+ η−1
i

n

∑
j=1

|γij(t)|Gjηj sup
t−τij(t)≤s≤t

|zj(s)|

+ η−1
i

[ n

∑
j=1

(|βij(t) f j(0)|+ |γij(t)gj(0)|) + |hi(t)|
]

, (5)

where D+ is the upper-right Dini derivative. Define M := max
k∈Nn

{
sup
t≤t0

|ψk(θ)|
ηk

, µk
}

. It is clear

that |zi(t)| ≤ M for t ≤ t0 and i ∈ Nn. Suppose there exist i1 ∈ Nn, ϵ1 > 0 and t1 > t0
such that |zi1(t1)| = M + ϵ1, and |zj(t)| ≤ M + ϵ1 for t ≤ t1 and j ∈ Nn. Then we get

D+|zi1(t)|
∣∣∣∣
t=t1

> 0. In contrast

D+|zi1(t)|
∣∣∣∣
t=t1

≤ −αi1(t1)|zi1(t1)|+ η−1
i1

n

∑
j=1

|βi1 j(t1)|Fjηj|zj(t1)|

+ η−1
i1

n

∑
j=1

|γi1 j(t1)|Gjηj sup
t1−τi1 j(t1)≤s≤t1

|zj(s)|+ η−1
i µi1(t1)

≤ −αi1(t1)(M + ϵ1) + η−1
i1

n

∑
j=1

|βi1 j(t1)|Fjηj(M + ϵ1) + η−1
i

n

∑
j=1

|γi1 j(t1)|Gjηj(M + ϵ1)

+ µi1

[
αi1(t1)− η−1

i

n

∑
j=1

|βi1 j(t1)|Fjηj − η−1
i

n

∑
j=1

|γi1 j(t1)|Gjηj

]

= −
[

αi1(t1)− η−1
i1

n

∑
j=1

|βi1 j(t1)|Fjηj − η−1
i

n

∑
j=1

|γi1 j(t1)|Gjηj

]
(M − µi1 + ϵ1) ≤ 0.

This signifies a contradiction, implying that



Mathematics 2024, 12, 155 5 of 19

|zi(t)| ≤ max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk
, µk

}
, t ≥ t0, i ∈ Nn.

So we get

|qi(t)| ≤ max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk
, µk

}
ηi, t ≥ t0, i ∈ Nn.

Then

∥q(t)∥ ≤ max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk
, µk

}
, t ≥ t0.

This completes the proof.

Remark 4. Condition (max{η1, η2, . . . , ηn} = 1) can be omitted, but in order to see our main
results clearly, so we reserve it.

Theorem 2. Assume (C.1)–(C.3) and the following conditions hold:

(C.4) For i, j ∈ Nn, there exist constants αi > 0 and α(t) such that

0 ≤ αiα(t) ≤ αi(t) for t ≥ t0, lim
t→+∞

∫ t

t0

α(s)ds → +∞, sup
t≥t0

{ ∫ t

t−τij(t)
α∗(s)ds

}
:= τij < +∞,

where

α∗(t) :=
{

α(t), t ≥ t0,
0, t < t0.

(C.5) For i, j ∈ Nn,

sup
{t|t≥t0}−{t|αi(t)=|βij(t)|Fj=0}

{ |βij(t)|Fj

αi(t)

}
:= ρ

(1)
ij , sup

{t|t≥t0}−{t|αi(t)=|γij(t)|Gj=0}

{ |γij(t)|Gj

αi(t)

}
:= ρ

(2)
ij ,

and

−ηi +
n

∑
j=1

(ρ
(1)
ij + ρ

(2)
ij )ηj < 0,

where, η1, η2, . . . , ηn were introduced in Theorem 1.

Then we have the following assertions:

(1) For i ∈ Nn,

|qi(t)| ≤
[(

max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
− max

k∈Nn
{µk}

)
+

e−λ∗ ∫ t
t0

α(s)ds
+ max

k∈Nn
{µk}

]
ηi, t ≥ t0.

where λ∗ represents the smallest solution to the following equations

λ

αi
+

n
∑

i=1
(ρ

(1)
ij + ρ

(2)
ij eλτij)ηj

ηi
− 1 = 0, i ∈ Nn.

(2) The set

Ω :=
{

u ∈ Rn : ∥u∥ ≤ max
k∈Nn

{µk}
}

is a global generalized exponential attracting set of (1).
(3) System (1) is globally dissipative.
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Proof. When max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
≤ max

k∈Nn
{µk}, the proof is deduce from Theorem (1). Now,

suppose max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
> max

k∈Nn
{µk} and define

Ki(λ) :=
λ

αi
+ η−1

i

n

∑
j=1

(ρ
(1)
ij + ρ

(2)
ij eλτij)ηj − 1, λ ∈ [0,+∞).

Note that, for each i ∈ Nn, Ki(λ) is continuous on [0,+∞), Ki(0) = η−1
i

n
∑

j=1
(ρ

(1)
ij + ρ

(2)
ij )ηj −

1 < 0,

K′
i(λ) =

1
αi

+ η−1
i

n

∑
j=1

τijηjρ
(2)
ij eλτij > 0,

and lim
λ→+∞

Ki(λ) = +∞. So for i ∈ Nn, equation Ki(λ) = 0 has an unique solution

λi ∈ (0,+∞). Define λ∗ := min
k∈Nn

{λk}, then

λ∗

αi
+ η−1

i

n

∑
j=1

(ρ
(1)
ij + ρ

(2)
ij eλ∗τij)ηj − 1 ≤ 0, i ∈ Nn. (6)

Multiply both sides of (6) by αi(t), we get

λ∗αi(t)
αi

+ η−1
i

n

∑
j=1

(ρ
(1)
ij + ρ

(2)
ij eλ∗τij)ηjαi(t)− αi(t) ≤ 0, t ≥ t0, i ∈ Nn. (7)

From (C.4), (C.5) and (7), we have

η−1
i

n

∑
j=1

(ρ
(1)
ij + ρ

(2)
ij eλ∗τij)ηjαi(t)− αi(t) ≤ −λ∗α(t), t ≥ t0, i ∈ Nn (8)

and

η−1
i

n

∑
j=1

(|βij(t)|Fj + |γij(t)|Gje
λ∗τij)ηj − αi(t) ≤ −λ∗α(t), t ≥ t0, i ∈ Nn. (9)

For t ∈ R, define

v(t) :=
(

max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
− max

k∈Nn
{µk}

)
e−λ∗ ∫ t

t0
α∗(s)ds

+ max
k∈Nn

{µk}. (10)

Then

(v(s)− max
k∈Nn

{µk}) = (v(t)− max
k∈Nn

{µk})eλ∗ ∫ t
s α∗(u)du

≤ (v(t)− max
k∈Nn

{µk})e
λ∗ ∫ t

t−τij(t)
α∗(u)du

, i, j ∈ Nn, s ∈ [t − τij(t), t].

Hence

sup
t−τij(t)≤s≤t

{v(s)− max
k∈Nn

{µk}} ≤ (v(t)− max
k∈Nn

{µk})e
λ∗ ∫ t

t−τij(t)
α∗(u)du

, t ≥ t0, i, j ∈ Nn. (11)
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By (11) and the definition of τij, we get

sup
t−τij(t)≤s≤t

{v(s)− max
k∈Nn

{µk}} ≤ (v(t)− max
k∈Nn

{µk})eλ∗τij , t ≥ t0, i, j ∈ Nn. (12)

Thus, for t ≥ t0 and i ∈ Nn, from (C.3)–(C.5), (8)–(10) and (12), we get

dv(t)
dt

= −λ∗α(t)
(

max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
− max

k∈Nn
{µk}

)
e−λ∗ ∫ t

t0
α∗(s)ds

= −λ∗α(t)(v(t)− max
k∈Nn

{µk})

≥ −
[

1 − η−1
i

n

∑
j=1

(
ρ
(1)
ij + ρ

(2)
ij eλ∗τij

)
ηj

]
αi(t)(v(t)− max

k∈Nn
{µk})

≥ −αi(t)v(t) + η−1
i

n

∑
j=1

ρ
(1)
ij αi(t)ηjv(t) + η−1

i

n

∑
j=1

ρ
(2)
ij αi(t)(t)e

λ∗τij ηjv(t)

+

[
αi(t)− η−1

i

n

∑
j=1

(
|βij(t)|Fjηj + |γij(t)|Gjηj

)]
max
k∈Nn

{µk}

≥ −αi(t)v(t) + η−1
i

n

∑
j=1

|βij(t)|Fjηjv(t) + η−1
i

n

∑
j=1

|γij(t)|Gjηj sup
t−τij(t)≤s≤t

v(s) + η−1
i µi(t). (13)

At last, we show when max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
> max

k∈Nn
{µk}, |zi(t)| ≤ v(t) for t ≥ t0 and i ∈ Nn

by reduction to absurdity. Clearly, |zi(t)| ≤ v(t) for t ∈ (−∞, t0]. Suppose there exist
i2 ∈ Nn, ε2 > 0 and t2 > t0 such that |zi2(t2)| = v(t2) + ϵ2, and |zj(t)| ≤ v(t) + ϵ2 for

t ∈ (−∞, t2] and j ∈ Nn, then we get D+

(
|zi2(t)| −

dv(t)
dt

)∣∣∣∣
t=t2

> 0. In contrast, from (5)

and (13), we get

D+

(
|zi2(t)| −

dv(t)
dt

)∣∣∣∣
t=t2

≤ −αi2(t2)(|zi2(t2)| − v(t2)) + η−1
i2

n

∑
j=1

|βi2 j(t2)|Fjηj(|zj(t2)| − v(t2))

+ η−1
i2

n

∑
j=1

|γi2 j(t2)|Gjηj sup
t2−τi2 j(t2)≤s≤t2

(|zj(s)| − v(s))

= −
[

αi2(t2)− η−1
i2

n

∑
j=1

|βi2 j(t2)|Fjηj − η−1
i

n

∑
j=1

|γi2 j(t2)|Gjηj

]
ϵ2 ≤ 0.

This is a contradiction, the proof is completed. So for each i ∈ Nn, we get

|qi(t)| ≤
[(

max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
− max

k∈Nn
{µk}

)
+

e−λ∗ ∫ t
t0

α(s)ds
+ max

k∈Nn
{µk}

]
ηi, t ≥ t0.

and

∥q(t)∥ ≤
(

max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
− max

k∈Nn
{µk}

)
+

e−λ∗ ∫ t
t0

α(s)ds
+ max

k∈Nn
{µk}, t ≥ t0. (14)
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Now, we proof the assertion (2). Define

ρ

(
max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

})
:=


max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
− max

k∈Nn
{µk}, max

k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
≥ max

k∈Nn
{µk},

0, max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
< max

k∈Nn
{µk}.

By (14), we get

d(q(t), Ω) ≤ ρ

(
max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

})
e−λ∗ ∫ t

t0
α(s)ds, t ≥ t0.

This means that Ω =

{
u ∈ Rn : ∥u∥ ≤ max

k∈Nn
{µk}

}
is the global generalized exponential

attracting set of (1). Now, we prove the assertion (3). Obvious, the ball B(0, max
k∈Nn

{µk}+

ε) :=
{

u ∈ Rn : ∥u∥ ≤ max
k∈Nn

{µk} + ε

}
is an absorbing set of (1) for any ε > 0. This

completes the proof.

Remark 5. Hien et al. [5] investigated the dissipativity of the specific instance of the system (1),
namely, the delay functions are proportional. Under condition (C.2) and the following conditions

(C.4′) For i, j ∈ Nn, there exist constants αi > 0 and α(t) such that

0 < αiα(t) ≤ αi(t) for t ≥ 0, lim
t→+∞

∫ t

0
α(s)ds → +∞, sup

t≥0

{ ∫ t

qijt
α(s)ds

}
< +∞.

(C.5′) For i, j ∈ Nn, there exist constants β̂ij, γ̂ij and ĥi such that

|βij(t)|
αi(t)

≤ β̂ij,
|γij(t)|
αi(t)

≤ γ̂ij,
|hi(t)|
αi(t)

≤ ĥi, t ≥ t0.

and for each i ∈ Nn, there exist positive constants η1, η2, . . . , ηn, (max{η1, η2, . . . , ηn} = 1) such
that

−ηi +
n

∑
j=1

(Fj β̂ij + Gjγ̂ij)ηj < 0.

They got the following results

|qi(t)| ≤
[(

∥ψ∥∞

min{η1, . . . , ηn}
− γ̂

m̂

)
+

eλ∗ ∫ t
t0

α(s)ds
+

γ̂

m̂

)]
ηi,

and the global generalized exponential attracting set is

Ω1 =

{
q ∈ Rn : ∥q∥ ≤ γ̂

m̂

}
,

where γ̂ = max
k∈Nn

{
ĥk +

n
∑

j=1
(b̂kj| f j(0)| + ĉkj|gj(0)|)

}
and m̂ = min

k∈Nn

{
ηk −

n
∑

j=1
(b̂kj| f j(0)| +

ĉkj|gj(0)|)ηj

}
.

We mention here that our conditions are less restrictive, i.e., αi(t) can be zero at some
time and the delay functions can be other types of delay functions. Besides our results also
improve the results in [5]. Especially when condtions (C.4′) and (C.5′) hold, obvious,
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max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
≤ ∥ψ∥∞

min{η1, . . . , ηn}
,

and for each i ∈ Nn, we get

sup
{t|t≥t0}

{ n
∑

j=1
(|βij(t) f j(0)|+ |γij(t)gj(0)|) + |hi(t)|

ηiαi(t)−
n
∑

j=1
(|βij(t)|Fj + |γij(t)|Gj)ηj

}
= sup

{t|t≥t0}

{ n
∑

j=1

(
|βij(t) f j(0)|

αi(t)
+

|γij(t)gj(0)|
αi(t)

)
+ |hi(t)|

αi(t)

ηi −
n
∑

j=1

(
|βij(t)|Fj

αi(t)
+

|γij(t)|Gj
αi(t)

)
ηj

}

≤
ĥi +

n
∑

j=1
(β̂ij| f j(0)|+ γ̂ij|gj(0)|)

ηi −
n
∑

j=1
(b̂ij| f j(0)|+ γ̂ij|gj(0)|)ηj

≤ γ̂

m̂
.

So we have max
k∈Nn

{µk} ≤ γ̂
m̂ , this means that our estimate is sharper than [5]. The above

discussion shows that this paper improves and extends the results in [5].

Theorem 3. Let q(1)(t) = (q(1)1 (t), . . . , q(1)n (t))T and q(2)(t) = (q(2)1 (t), . . . , q(2)n (t))T denote
two solutions of (1) with distinct initial values ψ(1), ψ(2) ∈ BC((−∞, t0],Rn). Assume that
conditions (C.1), (C.2), and the following conditions are satisfied:

(C.6) For i ∈ Nn, there exist positive constants η1, η2, . . . , ηn, (max{η1, η2, . . . , ηn} = 1) such
that

n

∑
j=1

(|βij(t)|Fj + |γij(t)|Gj)ηj ≤ ηiαi(t), t ∈ [t0,+∞),

and there exists T ≥ t0 such that

sup
{t|t≥T}−{t|ηiαi(t)=

n
∑

j=1
(|βij(t)|Fj+|γij(t)|Gj)ηj=0}

{ n
∑

j=1
(|βij(t)|Fj + |γij(t)|Gj)ηj

ηiαi(t)

}
:= ρ < 1.

(C.7) For i, j ∈ Nn, there exist constants αi > 0 and α(t) such that

0 ≤ αiα(t) ≤ αi(t) for t ≥ T, lim
t→+∞

∫ t

T
α(s)ds → +∞, sup

t−τij(t)≥T

{ ∫ t

t−τij(t)
α(s)ds

}
:= τij < +∞.

Then,

|q(1)i (t)− q(2)i (t)| ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
ηi, t ∈ [t0, T],

and

|q(1)i (t)− q(2)i (t)| ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
ηie−λ∗ ∫ t

T α(s)ds, t ≥ T.
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Proof. For each i ∈ Nn and t ∈ R, define li(t) :=
∣∣∣∣ q(1)i (t)−q(2)i (t)

ηi

∣∣∣∣. Then for each i ∈ Nn and

t ≥ t0, we get

D+li(t) ≤ −αi(t)li(t) + η−1
i

( n

∑
j=1

|βij(t)|Fjηjlj(t) +
n

∑
j=1

|γij(t)|Gjηj sup
t−τij(t)≤s≤t

lj(s)
)

≤ −αi(t)li(t) + η−1
i

n

∑
j=1

(|βij(t)|Fj + |γij(t)|Gj)ηj sup
t−τij(t)≤s≤t

lj(s). (15)

Firstly, we prove

li(t) ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
, t ≥ t0, i ∈ Nn.

Obviously, li(t) ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)−ψ

(2)
k (θ)|

ηk

}
for t ≤ t0 and i ∈ Nn. Suppose there ex-

ist i3 ∈ Nn, ϵ3 > 0 and t3 > t0 such that li3(t3) = max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)−ψ

(2)
k (θ)|

ηk

}
+ ϵ3, and

lj(t) ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)−ψ

(2)
k (θ)|

ηk

}
+ ϵ3 for t ∈ (−∞, t3] and j ∈ Nn, then D+li3(t)

∣∣∣∣
t=t3

> 0.

In contrast

D+li3(t)
∣∣∣∣
t=t3

≤ −αi3(t3)li3(t3) + η−1
i3

n

∑
j=1

|βi3 j(t3)| f jηjlj(t3) + η−1
i3

n

∑
j=1

|γi3 j(t3)|Gjηj sup
t3−τi3 j(t3)≤s≤t3

lj(s)

= −αi3(t3)

(
max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
+ ϵ3

)

+ η−1
i3

n

∑
j=1

|βi3 j(t3)|Fjηj

(
max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
+ ϵ3

)

+ η−1
i3

n

∑
j=1

|γi3 j(t3)|Gjηj

(
max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
+ ϵ3

)

= −
[

αi3(t3)− η−1
i3

n

∑
j=1

(|βi3 j(t3)|Fj + |γi3 j(t3)|Gj)ηj

](
max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
+ ϵ3

)
≤ 0,

This is a contradiction. Then we get li(t) ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)−ψ

(2)
k (θ)|

ηk

}
for t ≥ t0 and i ∈ Nn.

Construct the following inequalities:
D+li(t) ≤ −αi(t)li(t) + η−1

i

n
∑

j=1
|βij(t)|Fjηjlj(t) + η−1

i

n
∑

j=1
|γij(t)|Gjηj sup

t−τij(t)≤s≤t
lj(s), t ≥ T,

li(t) = li(t), t ∈ (−∞, T],

and define

Γi(λ) :=
λ

αi
+

n

∑
j=1

ρeλτij − 1.



Mathematics 2024, 12, 155 11 of 19

Similar to the proof of Theorem 2, one can find a λ > 0 such that

li(t) ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
e−λ

∫ t
T α(u)du, t ∈ [T,+∞).

then we have following estimates

|q(1)i (t)− q(2)i (t)| ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
ηi, t ∈ [t0, T],

and

|q(1)i (t)− q(2)i (t)| ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
ηie−λ∗ ∫ t

T α(s)ds, t ≥ T.

This completes the proof.

Remark 6. Theorem 3 implies system (1) is globally generalized exponential stable. In fact that for
t ∈ [t0, T), from the nonnegativity of α(u), we get

∥q(1)(t)− q(2)(t)∥ ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
e−λ

∫ t
t0

α(u)dueλ
∫ t

t0
α(u)du

= CT max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
e−λ

∫ t
t0

α(u)du,

where CT = eλ∗ ∫ T
t0

α(s)ds. For t ≥ T, we get

∥q(1)(t)− q(2)(t)∥ ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
e−λ

∫ t
t0

α(u)dueλ
∫ T

t0
α(u)du

= CT max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
e−λ

∫ t
t0

α(u)du.

So from the above, we get

∥q(1)(t)− q(2)(t)∥ ≤ CT max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
e−λ

∫ t
t0

α(u)du, t ≥ t0.

Then system (1) is globally generalized exponential stable.

Remark 7. Lu et al. [38] considered the globally generalized exponential stability of (1). Under
condition (C.2) and the following conditions

(C.1′) For each i, j ∈ Nn, αi(s) > 0, βij(s), γij(s) and Ii(s) are all continuous functions defined
on [t0,+∞).

(C.6′) For each i ∈ Nn,
n

∑
j=1

(|βij(t)|Fj + |γij(t)|Gj) ≤ αi(t), t ∈ [t0,+∞),
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and

lim sup
t→+∞

{ n
∑

j=1
(|βij(t)|Fj + |γij(t)|Gj)

αi(t)

}
< 1.

(C.7′) For i, j ∈ Nn, there exists a l ∈ Nn such that

lim
t→+∞

∫ t

0
αl(s)ds → +∞, sup

t−τij(t)≥0

{ ∫ t

t−τij(t)
αl(s)ds

}
< +∞, and sup

t≥t0

{
αl(s)
αi(s)

}
< ∞.

Then, system (1) is globally generalized exponential stable. We mention here that if we choose
η1 = η2 = . . . = ηn = 1, then our condtions are similar to the conditions in [38], but less conserva-

tive, the results in [38] do not work if αi(t) = 0 at some time, or sup
t−τij(t)≥t0

{ ∫ t
t−τij(t)

αi(s)ds
}

=

+∞ for all i ∈ Nn. Besides, sup
t−τij(t)≥t0

{ ∫ t
t−τij(t)

αi(s)ds
}

= +∞ is quite restrictive. For instance,

when αi(t) = c > 0, and the delay functions are infinite, then the condition

sup
t−τij(t)≥t0

{ ∫ t
t−τij(t)

αi(s)ds
}

= +∞ is not satisfied. However, in such cases, we have the flexibility

to select a suitable α(t) that aligns with our condtions. so this paper enhances and broadens the
results in [38].

4. Examples

This section gives four illustrative examples to demonstrate the practical applicability
of the theoretical results. To enhance the clarity of the obtained results, we employ a linear
representation instead of a nonlinear one.

Example 1. Consider the following NNs with proportional delays:

dqi(t)
dt

=− αi(t)qi(t) +
2

∑
j=1

[
βij(t) f j(qj(t)) + γij(t)gj(qj(0.5t))

]
+ hi(t), i = 1, 2, t ∈ [0,+∞), (16)

where α1(t) = 6(t2 + 3t + 1), α2(t) = 4(t2 + 4t + 1), β11(t) = t2 + 4t + 1, β12(t) = 2(t2 +
2t+ 1), β21(t) = t2 + 6t+ 1, β22(t) = t2 + 5t+ 1, γ11(t) = 2(t2 + t+ 1), γ12(t) = t2 + 5t+ 1,
γ21(t) = t2 + 3t + 1, γ22(t) = t2 + 1, h1(t) = 60t, h2(t) = 60t, τ11(t) = τ21(t) = τ12(t) =
τ22(t) = 0.5t, f1(q1) = f2(q1) = g1(q1) = g2(q1) = |q1|, ψ(0) = (15, 15). It can be verified
that, F1 = F2 = G1 = G2 = 1. Obviously, η1 = η2 = 1, µ1 = 20 and µ2 = 20. we can find
conditions (C.1)–(C.3) are satisfied, from Theorem 1, we get

|q1(t)| ≤ 20, |q2(t)| ≤ 20, t ≥ 0.

Then system (16) is dissipative, while the ball B(0, 20) serves as both a globally attracting and an
absorbing set, as depicted in Figure 1.

Remark 8. All the coefficient and delay functions of Example (1) are unbounded.

Example 2. Consider the following NNs with proportional delays:

dqi(t)
dt

=− αi(t)qi(t) +
2

∑
j=1

[
βij(t) f j(qj(t)) + γij(t)gj(qj(0.5t))

]
+ hi(t), i = 1, 2, t ∈ [0,+∞), (17)

where α1(t) = 8(t + 1), α2(t) = 6(t + 2), β11(t) = t + 1, β12(t) = 4(t + 1), β21(t) =
0.5(t + 2), β22(t) = t + 2, γ11(t) = t + 1, γ12(t) = 2(t + 1), γ21(t) = 0.25(t + 2), γ22(t) =
t + 2, h1(t) = 60(t + 1), h2(t) = 25(t + 2), τ11(t) = τ21(t) = τ12(t) = τ22(t) = 0.5t,
f1(q1) = f2(q1) = g1(q1) = g2(q1) = |q1| and ψ(1)(0) = (40, 20) and ψ(2)(0) = (10, 10).
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It can be verified that, F1 = F2 = G1 = G2 = 1, ρ
(1)
11 = 1

8 , ρ
(1)
12 = 1

2 , ρ
(1)
21 = 1

12 , ρ
(1)
22 = 1

6 ,

ρ
(2)
11 = 1

8 , ρ
(2)
12 = 1

4 , ρ
(2)
21 = 1

24 , ρ
(2)
22 = 1

6 .

Choose η1 = 1, η2 = 0.5 and α(t) = 1
t+1 , then sup

t≥0

{ ∫ t
0.5t

1
s+1 ds

}
= ln 2, α1 = 8 and

α2 = 6. One can find λ1 = λ2 = 1, and µ1 = µ2 = 20. Then conditions of (C.1)–(C.5) are
satisfied, for different initial values ψ(1) and ψ(2), from Theorem 2, we get

|q(1)1 (t)| ≤ 20
t + 1

+ 20, |q(1)2 (t)| ≤ 10
t + 1

+ 10,

|q(2)1 (t)| ≤ 20, |q(2)2 (t)| ≤ 10,

|q(1)1 (t)− q(2)1 (t)| = 30
t + 1

, |q(1)2 (t)− q(2)2 (t)| = 15
t + 1

,

which are shown in Figures 2–4, respectively.

Figure 1. q1(t) and q2(t) of Example 1.

Figure 2. q(1)1 (t) and q(1)2 (t) of Example 2 and their estimates.
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Figure 3. q(2)1 (t) and q(2)2 (t) of Example 2.

Figure 4. |q(1)1 (t)− q(2)1 (t)| and |q(1)2 (t)− q(2)2 (t)| of Example 2 and their estimates.

Remark 9. All the coefficient, activation and delay functions in Example 2 are unbounded, and
sup
t≥0

∫ t
0.5t αi(s)ds = +∞, for i = 1, 2, which means that the results in [22,26,27,32,33,35–38] can

not solve this case.

Example 3. Consider the following 2-dimensional NNs with time-varying delays:

dqi(t)
dt

=− αi(t)qi(t) +
2

∑
j=1

[
βij(t) f j(qj(t)) + γij(t)gj(qj(t − τij(t)))

]
+ hi(t), i = 1, 2, t ∈ [0,+∞), (18)

where, α1(t) = 5(1 − sin t), α2(t) = 7(1 − sin t), β11(t) = 1 − sin t, β12(t) = 5(1 − sin t),
β21(t) = 0.4(1 − sin t), β22(t) = 2(1 − sin t), γ11(t) = (1 − sin t)e−π−2, γ12(t) = 5(1 −
sin t)e−π−2, γ21(t) = 0.4(1 − sin t)e−π−2, γ22(t) = (1 − sin t)e−π−2, h1(t) = 20(1 −
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sin t)(3 − 2e−π−2), h2(t) = 12(1 − sin t)(1 − e−π−2), τ11(t) = τ21(t) = τ12(t) = τ22(t) =
π| cos t|, f1(q1) = f2(q1) = g1(q1) = g2(q1) = |q1|, ψ(1)(0) = (40, 8) and ψ(2)(0) = (1, 1).

It can be verified that, F1 = F2 = G1 = G2 = 1, ρ
(1)
11 = 1

5 , ρ
(1)
12 = 1, ρ

(1)
21 = 2

35 , ρ
(1)
22 = 2

7 ,

ρ
(2)
11 = 1

5eπ+2 , ρ
(2)
12 = 1

eπ+2 , ρ
(2)
21 = 2

35eπ+2 , ρ
(2)
22 = 1

7eπ+2 .

Choose η1 = 1, η2 = 0.2 and α(t) = 1 − sin t, then sup
t≥0

∫ t
t−τij(t)

(
1 − sin s

)∗
ds = π + 2,

α1 = 5 and α2 = 7. We can find λ1 = λ2 = 1, and µ1 = µ2 = 20. Then conditions (C.1)–(C.5)
are satisfied, for different initial values ψ(1) and ψ(2), from Theorem 2, we get

|q(1)1 (t)| ≤ 20e−t+1−cost + 20, |q(1)2 (t)| ≤ 4e−t+1−cost + 4,

|q(2)1 (t)| ≤ 20, |q(2)2 (t)| ≤ 4,

|q(1)1 (t)− q(2)1 (t)| = 39e−t+1−cost, |q(1)2 (t)− q(2)2 (t)| = 7.8e−t+1−cost,

which are shown by Figures 5–7, respectively.

Figure 5. q(1)1 (t) and q(1)2 (t) of Example 3 and their estimates.

Figure 6. q(2)1 (t) and q(2)2 (t) of Example 3.
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Figure 7. |q(1)1 (t)− q(2)1 (t)| and |q(1)2 (t)− q(2)2 (t)| of Example 3 and their estimates.

Remark 10. It is worth noting that αi(t) = 0, for t = π
2 + 2kπ, k ∈ N and i = 1, 2 as well as the

delay functions π| cos t| lack differentiability at points where t = kπ + π
2 for k ∈ N, which make

the results in [22,26,28,32,33,36,37] be invalid.

Example 4. Consider the following 2-dimensional NNs with proportional delays:

dqi(t)
dt

=− αi(t)qi(t) +
2

∑
j=1

[
βij(t) f j(qj(t)) + γij(t)gj(qj(t − τij(t)))

]
+ hi(t), i = 1, 2, t ∈ [0,+∞), (19)

where α1(t) = 8, α2(t) = 6, β11(t) = β12(t) = β21(t) = γ11(t) = γ12(t) = γ21(t) = 2
for t ∈ [0, 5), β11(t) = β12(t) = β21(t) = γ11(t) = γ12(t) = γ21(t) = 1 for t ≥ 5,
β12(t) = γ22(t) = 1 for t ∈ [0, 5), β12(t) = γ22(t) = 0.5 for t ≥ 10, h1(t) = 5, h2(t) = 6,
τ11(t) = τ21(t) = τ12(t) = τ22(t) =

√
t + 1, f1(q1) = f2(q1) = g1(q1) = g2(q1) = |q1|,

ψ(1)(t) = (40, 8) and ψ(2)(t) = (1, 1) for t ∈ [−1, 0].
It can be verified that, F1 = F2 = G1 = G2 = 1. Obviously, η1 = η2 = 1, then

n

∑
j=1

(|βij(t)|Fj + |γij(t)|Gj) ≤ αi(t), t ∈ [0,+∞),

and

sup
{t|t≥5}−{t|ηiαi(t)=

n
∑

j=1
(|βij(t)|Fj+|γij(t)|Gj)ηj=0}

{ n
∑

j=1
(|βij(t)|Fj + |γij(t)|Gj)ηj

ηiαi(t)

}
= 0.5 < 1.

Choose α(t) =
√

5
t , t ≥ 5, then α1 = 8, α2 = 6 and sup

t−
√

t+1≥5

{ ∫ t
t−

√
t+1

√
5
s

}
= 4

√
10 − 10.

We can find λ∗ ≤ 0.245. Then conditions of (C.1), (C.2), (C.6) and (C.7) are satisfied, from
Theorem 3, we get the following estimate

∥q(1)(t)− q(2)(t)∥ ≤ e1(t) :=

{
20, t ∈ [0, 5],
20e−0.245(2

√
5t−10), t ∈ (5,+∞),
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which are illustrated by Figure 8.

Figure 8. q1(t) and q2(t) of Example 4 and their estimate.

Remark 11. We note that sup
t≥0

∫ t
t−

√
t+1 αi(s)ds = +∞, for i = 1, 2, which makes the results

in [38] be invalid.

5. Conclusions

In this paper, we obtained some criteria on dissipativity and globally generalized
exponential stability of a class of NNs with delays by constructing some generalized
Halanay inequalities. We mention here that our coefficient functions and delay functions
can be all unbounded, and our results improve and generalize some existing works [5,35,38].
At last, four numerical examples have shown the effectiveness of our main results.

Our method has its limitations, when the αi(t) is oscillation, such as αi(t) = 0.5 + sint,
our method is invalid in this case. The author will investigate this case in the future.
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