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Abstract: In this paper, we propose a system of equations containing two kernels. In our transfor-
mation of the system, we use the integrable dichotomy condition, where we extract the term of the
integration matrix from one of the kernels. We then use the fixed-point theory to prove that the
system has periodic solutions that are unique under sufficient conditions. An illustrative example at
the end of the article is given.
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1. Introduction

In actuarial science, Volterra integral equations are used in ruin theory, which analyzes
the risk of insolvency, and several researchers have directed their interest to equations
containing Volterra terms, see for instance [1–3].

In the applied sciences, neutral equations play an important role. A positive periodic
solution for two neutral functional differential equations was investigated by Luo et al. [4]
using Krasnoselskii’s fixed-point theorem. Various mathematical ecological and population
models are covered by these functional differential equations, including hematopoietic
models [5,6], the models of Nicholson’s blowflies [7,8] and the models of blood-cell produc-
tion [9].

The properties of exponential dichotomies and trichotomies have been studied by
many researchers over the last decades due to their importance in the theory of differential
and integro-differential equations. Some fundamental works on the theory of periodic
solutions related to this subject are here [10–19].

The differential system, including many delay terms (Sa Ngiamsunthorn [20]), has
been studied for the periodicity of solutions under an integrable dichotomy. Similar systems
have been studied in [21,22] under an exponential-type condition.

Motivated by the abovementioned references, a periodic solution to the following
nonlinear neutral differential equations interested us:(

y(ξ)−
∫ ξ

ξ−τ(ξ)
C(ξ, s)y(s)ds

)′
=
∫ ξ

ξ−σ(ξ)
B(ξ, s)y(s)ds + Q(ξ, y(ξ), y(ξ − σ(ξ))), (1)

in which y : R→ Rn, τ, σ : R→ R+, and Q : R×Rn×Rn → Rn are Υ-periodic continuous
functions on R, Υ > 0. C(·, ·) and B(·, ·) are Υ-periodic continuous matrix functions with
respect to ξ defined on R×R such that B(ξ, ξ) is nonsingular.
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This paper is arranged as follows: In the second part of our paper, we provide defini-
tions and fixed-point theorems for integrable dichotomies and previous results. In Section 3,
we establish some criteria for determining whether periodic solutions of the system (1)
exist and whether they are unique. Section 4 illustrates the main results with an example.
Finally, we end the paper with a conclusion.

2. Preliminaries

Several results and definitions of integrable dichotomies are presented in this section
and will be crucial for proving our results, see [13,14].

First, we recall some basic facts about integrable dichotomies. Consider the system

z′(ξ) = A(ξ)z(ξ), (2)

where A(ξ) is n× n continuous matrix function defined on R. Let Ψ(ξ) be the fundamental
matrix of (2) that satisfies Ψ(0) = I.

Let BC(R,Rn) be the set of continuous and bounded functions. Let P be the projection
matrix and Θ = ΘP, the Green matrix associated with P given by

Θ(ξ, s) =
{
−Ψ(ξ)(I − P)Ψ−1(ξ) for ξ < s,

Ψ(ξ)PΨ−1(ξ) for ξ ≥ s.

Definition 1 ([14] Definition 1, p. 3). We say that the linear system (2) has an integrable
dichotomy if there exists a constant µ > 0 and a projection matrix P such that the associated Green
matrix Θ = ΘP satisfies

µ = sup
ξ∈R

∫ ∞

−∞
‖Θ(ξ, s)‖ds.

Hence, under an integrable dichotomy condition, we consider the nonhomogeneous
linear system

z′(ξ) = A(ξ)z(ξ) + f (ξ), (3)

and we need the following results. See for instance [14].

Proposition 1 ([14] Proposition 1, p. 4). Assume that there is an integrable dichotomy of (2).
Then the trivial solution z(ξ) = 0 is the only bounded solution to (2).

Proposition 2 ([14] Proposition 2, p. 4). Suppose that there is an integrable dichotomy for
the homogeneous system (2). If f ∈ BC(R,Rn), then system (3) has a bounded unique solution
z ∈ BC(R,Rn). Furthermore,

z(ξ) =
∫ ∞

−∞
Θ(ξ, s) f (s)ds. (4)

Proposition 3 ([14] Propositions 4 and 5, p. 5). Assume that there is an integrable dichotomy
for the system (2) such that Ψ(ξ)PΨ−1(ξ) is bounded. If A(ξ + Υ) = A(ξ), then Ψ(ξ)PΨ−1(ξ)
is also Υ-periodic. Furthermore, if f ∈ BC(R,Rn) is Υ-periodic, then (3) has a unique periodic
solution satisfying (4).

Our objective is to demonstrate the existence and uniqueness of periodic solutions for
system (1) by using the following fixed point theorems; see [2,23].

Theorem 1 (Banach). For any complete metric space (Y, ρ) and S : Y → Y. If there is a constant
γ ∈ (0, 1) such that for a, b ∈ Y,

ρ(Sa,Sb) ≤ γρ(a, b),

then there a unique point z ∈ Y with Sz = z.
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Theorem 2 (Krasnoselskii). Let Λ be a nonempty bounded, convex and closed subset of a Banach
space Y. Suppose that S1 and S2 map Λ into Y such that

(1) S1 is a contraction mapping on Λ,
(2) S2 is completely continuous on Λ, and
(3) a, b ∈ Λ, gives S1a + S2b ∈ Λ.

Then there is z ∈ Λ , which satisfies z = S1z + S2z.

Let a constant M > 0 and denote

Λ = {u ∈ BC(R,Rn) : u(ξ + Υ) = u(ξ) and ‖u‖ ≤ M ∀ξ ∈ R},

it is easily seen that Λ is a nonempty-bounded, convex and closed subset of BC(R,Rn).
Assume that for all u, v ∈ Λ, there exists q1, q2 > 0 such that the function Q satisfies

|Q(ξ, u(ξ), u(ξ − σ(ξ)))−Q(ξ, v(ξ), v(ξ − σ(ξ)))|
≤ q1|u(ξ)− v(ξ)|+ q2|u(ξ − σ(ξ))− v(ξ − σ(ξ))|. (5)

Let
sup

ξ∈[0,Υ]
|τ(ξ)| = α, sup

ξ∈[0,Υ]
|σ(ξ)| = β, sup

ξ∈[0,Υ]
|Q(ξ, 0, 0)| = γ,

sup
ξ,s∈[0,Υ]

‖C(ξ, s)‖ = c, sup
ξ,s∈[0,Υ]

‖B(ξ, s)‖ = b,

and assume
αcM + µ((αbc + b + βb + q1 + q2)M + γ) ≤ M. (6)

3. Main Results

Under the conditions stated previously, we will show in this section the existence and
the uniqueness of the solution for (1), which can then be written as

z′(ξ) = B(ξ, ξ)z(ξ)− B(ξ, ξ)z(ξ)

+
∫ ξ

ξ−σ(ξ)
B(ξ, s)y(s)ds + Q(ξ, y(ξ), y(ξ − σ(ξ))),

where

z(ξ) = y(ξ)−
∫ ξ

ξ−τ(ξ)
C(ξ, s)y(s)ds.

By Proposition 2, system (1) holds the integral equation

z(ξ) =
∫ ∞

−∞
Θ(ξ, s)B(s, s)

(∫ s

s−τ(s)
C(s, r)y(r)dr− y(s)

)
ds

+
∫ ∞

−∞
Θ(ξ, s)

(∫ s

s−σ(s)
B(s, r)y(r)dr + Q(s, y(s), y(s− σ(s)))

)
ds,

which is

y(ξ) =
∫ ξ

ξ−τ(ξ)
C(ξ, s)y(s)ds

+
∫ ∞

−∞
Θ(ξ, s)B(s, s)

(∫ s

s−τ(s)
C(s, r)y(r)dr− y(s)

)
ds

+
∫ ∞

−∞
Θ(ξ, s)

(∫ s

s−σ(s)
B(s, r)y(r)dr + Q(s, y(s), y(s− σ(s)))

)
ds. (7)
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We define the operators S1 and S2 by

(S1u)(ξ) =
∫ ξ

ξ−τ(ξ)
C(ξ, s)u(s)ds, (8)

and

(S2u)(ξ) =
∫ ∞

−∞
Θ(ξ, s)B(s, s)

(∫ s

s−τ(s)
C(s, r)u(r)dr− u(s)

)
ds

+
∫ ∞

−∞
Θ(ξ, s)

(∫ s

s−σ(s)
B(s, r)u(r)dr + Q(s, u(s), u(s− σ(s)))

)
ds, (9)

for u ∈ BC(R,Rn). Clearly, if the operator S1 + S2 has a fixed point, then it is a periodic
solution of (1).

Lemma 1. The operators S1 and S2 defined by (8) and (9) are, respectively, from Λ into BC(R,Rn);
that is, S1,S2 : Λ→ BC(R,Rn).

Proof. Let u ∈ Λ, we have

|(S1u)(ξ)| =

∣∣∣∣∫ ξ

ξ−τ(ξ)
C(ξ, s)u(s)ds

∣∣∣∣ ≤ ∫ ξ

ξ−τ(ξ)
‖C(ξ, s)‖|u(s)|ds

≤ αc‖u‖
≤ αcM.

Secondly, for u ∈ Λ, we get

|(S2u)(ξ)| ≤
∫ ∞

−∞
‖Θ(ξ, s)‖‖B(s, s)‖

(∫ s

s−τ(s)
‖C(s, r)‖|u(r)|dr + |u(s)|

)
ds

+
∫ ∞

−∞
‖Θ(ξ, s)‖

∫ s

s−σ(s)
‖B(s, r)‖‖u(r)‖drds

+
∫ ∞

−∞
‖Θ(ξ, s)‖(q1|u(s)|+ q2|u(s− σ(s))|+ |Q(s, 0, 0)|)ds

≤ ((αbc + b + βb + q1 + q2)M + γ)
∫ ∞

−∞
‖Θ(ξ, s)‖ds

= µ((αbc + b + βb + q1 + q2)M + γ). (10)

Since all quantities in S1 and S2 are periodic, then S1,S2 : Λ→ BC(R,Rn).

Lemma 2. The operator S1 : Λ→ BC(R,Rn) given by (8) is a contraction if αc ∈ (0, 1).

Proof. Let u, v ∈ Λ, we get

|(S1u)(ξ)− (S1v)(ξ)| =

∣∣∣∣∫ ξ

ξ−τ(ξ)
C(ξ, s)u(s)ds−

∫ ξ

ξ−τ(ξ)
C(ξ, s)v(s)ds

∣∣∣∣
≤

∫ ξ

ξ−τ(ξ)
‖C(ξ, s)‖|u(s)− v(s)|ds

≤ αc‖u− v‖.

Then
‖S1u− S1v‖ ≤ αc‖u− v‖.

Therefore, S1 is a contraction.

Lemma 3. If we assume (5) holds, then the operator S2 : Λ→ BC(R,Rn) is completely continuous.
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Proof. We need to prove S2 is continuous, so let un ∈ Λ such that un → u as n→ ∞ with
n as a positive integer. Hence, by condition (5) we have

|(S2un)(ξ)− (S2u)(ξ)|

≤
∫ ∞

−∞
‖Θ(ξ, s)‖‖B(s, s)‖

(∫ s

s−τ(s)
‖C(s, r)‖|un(r)− u(r)|dr + |un(s)− u(s)|

)
ds

+
∫ ∞

−∞
‖Θ(ξ, s)‖

∫ s

s−σ(s)
‖B(s, r)‖|un(r)− u(r)|ds

+
∫ ∞

−∞
‖Θ(ξ, s)‖(q1|un(s)− u(s)|+ q2|un(s− σ(s))− u(s− σ(s))|)ds

≤ µ(αbc + b + βb + q1 + q2)‖un − u‖.

Therefore, we have

lim
n→∞
|(S2un)(ξ)− (S2u)(ξ)| = 0

and by the Dominated Convergence Theorem, we conclude the continuity of S2.
Next we will prove that the image of the operator S2 is relatively compact. For any

un ∈ Λ, by (10) we have

‖S2un‖ ≤ µ((αbc + b + βb + q1 + q2)M + γ).

A simple calculation of (S2un)
′(ξ) gives

(S2un)
′(ξ) =

(∫ ∞

−∞
Θ(ξ, s)B(s, s)

(∫ s

s−τ(s)
C(s, r)un(r)dr− un(s)

)
ds
)′

+

(∫ ∞

−∞
Θ(ξ, s)

(∫ s

s−σ(s)
B(s, r)un(r)dr + Q(s, un(s), un(s− σ(s)))

)
ds
)′

=

(
un(ξ)−

∫ ξ

ξ−τ(ξ)
C(ξ, s)un(s)ds

)′
=
∫ ξ

ξ−σ(ξ)
B(ξ, s)un(s)ds + Q(ξ, un(ξ), un(ξ − σ(ξ))).

Then ∥∥∥(S2un)
′
∥∥∥ ≤ (βb + q1 + q2)M + γ.

Hence, (S2un) is equicontinuous and uniformly bounded. According to the Ascoli–
Arzela theorem S2(Λ) is relatively compact.

In the following Lemma, we prove for any u, v ∈ Λ that S1u + S2v ∈ Λ.

Lemma 4. For any u, v ∈ Λ, we have S1u + S2v ∈ Λ since (5) and (6) hold.

Proof. Let u, v ∈ Λ. Then ‖u‖, ‖v‖ ≤ M. By conditions (5) and (6), we have

|(S1u)(ξ) + (S2v)(ξ)| ≤ αcM + µ((αbc + b + βb + q1 + q2)M + γ)

≤ M,

it follows that
‖S1u + S2v‖ ≤ M

for all u, v ∈ Λ. Hence S1u + S2v ∈ Λ.

Theorem 3. Assume that there is an integrable dichotomy for the system z′(ξ) = B(ξ, ξ)z(ξ),
and suppose conditions (5) and (6) hold. Then (1) has a Υ-periodic solution.
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Proof. The assumptions in the Krasnoselskii theorem are satisfied by Lemmas 1–4, so there
exists a fixed point x ∈ Λ, which is a solution of (1) such that x = S1x + S2x. Hence, (1)
has a Υ-periodic solution.

Theorem 4. Assume that system z′(ξ) = B(ξ, ξ)z(ξ) has an integrable dichotomy. If

αc + µ(b(αc + β + 1) + q1 + q2) < 1, (11)

then system (1) has a unique Υ-periodic solution.

Proof. Consider the operator S as the following

(Su)(ξ) =
∫ ξ

ξ−τ(ξ)
C(ξ, s)u(s)ds

+
∫ ∞

−∞
Θ(ξ, s)B(s, s)

(∫ s

s−τ(s)
C(s, r)u(r)dr− u(s)

)
ds

+
∫ ∞

−∞
Θ(ξ, s)

(∫ s

s−σ(s)
B(s, r)u(r)dr + Q(s, u(s), u(s− σ(s)))

)
ds.

For u1, u2 ∈ BC(R,Rn), we obtain

|(Su1)(ξ)− (Su2)(ξ)|

≤
∫ ξ

ξ−τ(ξ)
‖C(ξ, s)‖|u1(s)− u2(s)|ds

+
∫ ∞

−∞
‖Θ(ξ, s)‖‖B(s, s)‖

(∫ s

s−τ(s)
|C(s, r)||u1(r)− u2(r)|dr + |u1(s)− u2(s)|ds

)
+
∫ ∞

−∞
‖Θ(ξ, s)‖

∫ s

s−σ(s)
‖B(s, r)‖|u1(r)− u2(r)|drds

+
∫ ∞

−∞
‖Θ(ξ, s)‖(q1|u1(s)− u2(s)|+ q2|u1(s− σ(s))− u2(s− σ(s))|)

= (αc + µ(b(αc + β + 1) + q1 + q2))‖u1 − u2‖.

Since (11) holds, then S is contraction. Therefore, system (1) has a unique Υ-periodic
solution.

4. An Example

Consider the system(
y(ξ)−

∫ ξ

ξ− 1
2 sin ξ

2

C(ξ, s)y(s)ds
)′

=
∫ ξ

ξ− 1
3 cos ξ

4

B(ξ, s)y(s)ds + Q(ξ, y(ξ), y(ξ − σ(ξ))) (12)

with n = 2, Υ = 2π, y = (y1, y2)
ξ ,

Q(ξ, y(ξ), y(ξ − σ(ξ))) =

( 1
5
0

)
+

(
y2

1(ξ)
y2

2(ξ)

)
+

1
15

 y1

(
ξ − 1

3 cos ξ
4

)
y2

(
ξ − 1

3 cos ξ
4

) ,

B(ξ, s) =
( 1

5 sin(s) sin(ξ) 1
7 cos(ξ) cos(s)

1
5 − 1

7

)
,

and

C(ξ, s) =
( 1

2
1
3

1
2 sin(ξ − s) 1

3 cos(ξ − s)

)
.
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If we take the set

Λ = {u ∈ BC(R,Rn) : ‖u‖ ≤ 3, u(ξ + 2π) = u(ξ) for all ξ ∈ R}.

Then, we have α = 1
2 , β = 1

3 , γ = 1
5 , q1 = 6, q2 = 1

15 , and we use ‖A‖ =

max1≤j≤2 ∑2
i=1
∣∣aij
∣∣ to get

‖C(ξ, s)‖ =

∥∥∥∥ 1
2

1
3

1
2 sin(ξ − s) 1

3 cos(ξ − s)

∥∥∥∥
= max

{∣∣∣∣13 cos(ξ)
∣∣∣∣+ 1

3
,
∣∣∣∣12 sin(ξ)

∣∣∣∣+ 1
2

}
≤ 1.

‖B(ξ, s)‖ =

∥∥∥∥( 1
5 sin(s) sin(ξ) 1

7 cos(ξ) cos(s)
1
5 − 1

7

)∥∥∥∥
= max

{∣∣∣∣15 sin(s) sin(ξ)
∣∣∣∣+ 1

5
,
∣∣∣∣17 cos(ξ) cos(s)

∣∣∣∣+ 1
7

}
≤ 2

5
.

Then c = 1 and b = 2
5 .

For µ ≤ 13
204 , Theorem 3 give us 2π-periodic solution not necessarily unique for the

system (12).
Now, if µ < 15

204 , then condition (11) holds, and Theorem 3 gives us the uniqueness of
a 2π periodic solution for the system (12).

5. Conclusions

This manuscript dealt with the study of neutral systems containing Volterra terms.
The notable thing is that there is no explicit term that we use for an integrable dichotomy,
so the kernel B(ξ, ξ) has been assumed to be nonsingular for this purpose. The fixed point
theorems of Banach and Krasnoselskii played a pivotal role in proving the existence and
uniqueness of periodic solutions.

By the analysis in this paper, our work generalized some previous papers such as [24].
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