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Abstract: To reduce greenhouse gas emissions, conserve the environment, and reduce dependency
on fossil fuels, the transition from fossil energy to renewable energy is deemed essential. Several
companies around the globe, especially big conglomerates, were pioneers in the use of renewable
energy. For sustainable growth, Pakistani businesses are growing increasingly interested in the use of
green sources in manufacturing and economic activities. In recent years, there has been a growth in the
number of companies that are eager to use renewable energies to produce products that correspond
to green standards, therefore boosting their competitiveness. Yet, the selection of an appropriate
energy source for any industrially complex project is not a simple task, as numerous qualitative
and quantitative characteristics must be considered. To arrive at a feasible conclusion, this research
provides a multi-criteria paradigm for sustainable energy selection in a single-valued neutrosophic
environment. This work developed an innovative aggregation operators approach that interprets the
input evaluation using single-valued neutrosophic numbers. For this, a “single-valued neutrosophic
prioritized interactive weighted averaging operator and single-valued neutrosophic prioritized
interactive weighted geometric operator” has been introduced. Several additional appealing features
of these aggregation operators are also discussed. The application of the recommended operators for
sustainable energy related to the industrial complex is discussed. A comparison analysis proves the
empirical existence of the suggested methodology’s consistency and superiority.

Keywords: sustainable energy; interactive relation; aggregation operators; prioritized relation

MSC: 03E72; 94D05; 90B50

1. Introduction

At the moment, developing countries have enormous challenges in adopting sus-
tainable energy policies. It raises a variety of issues, such as the creation and execution
of energy policy, the selection of energy sources, and the evaluation of energy delivery
technologies. Due to the critical, intricate, and subjective nature of the issues themselves,
several scientific discoveries are targeted at establishing objective models of decision assis-
tance. Furthermore, the concerns themselves have a shaky organisational structure. The
source of this phenomenon should be sought, given that modelling this class of challenges
necessitates the correct mapping of more than just the scenarios that have been analysed. In
such a case, experts must evaluate the implications of evaluating the decision dilemma from
a range of angles and points of view while taking into account a number of aspects that
are diametrically opposed to one another. A process for planning sustainable energy, for
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example, must entail taking into account a variety of factors, including those linked to the
environment, society, and the economy, while making decisions. The presence of interest
groups has a substantial influence on the shape of the final ranking; hence, the created
model must incorporate both objectification and correct mapping for this component. The
fact that the model’s measurement data are easily accessible, notwithstanding their intrinsic
imprecision, is not without significance. At the same time, it is a research issue that is
regularly raised and is still relevant.

Existing literature analyses verify, from a scientific standpoint, that an extension of
the selection support technique beyond the traditional simulation study of a single goal
function is generally accepted, and is characterized by a set of possible solutions. This can
be found in the following sentence. Because of this development, it is now feasible to tackle
multi-criteria issues, with the goal being to find a solution that meets a number of different,
and sometimes competing, objectives. The model of multi-criteria group decision making
(MCGDM) is characterized by the presence of several criteria, the occurrence of conflicts
between those criteria, and the nature of the decision issue itself, which is complicated,
subjective, and inadequately organized. Many different approaches to MCGDM have
been developed on the basis of these principles. The current state of the art in this field
makes it abundantly evident that MCGDM approaches are both practically and effectively
capable of handling the challenge that was discussed before. An examination of the relevant
published material reveals that MCGDM approaches are used in energy-related decision
making difficulties on a rather regular basis. Methods of MCGDM are utilised as effective
and practical instruments to tackle challenges linked to decision making on energy policy.

MCGDM is a cognitive approach used to select the best option among a limited set
of alternatives by utilizing the expert opinions of decision makers (DMs). The “Fuzzy
set” (FS) theory was pioneered by Zadeh [1] to address such problems by employing
mathematical models to describe ambiguity. Atanassov [2] extended the concept of FS
theory to “intuitionistic fuzzy set” (IFS) theory, which incorporates both membership and
non-membership qualities. While FS can be characterized in terms of membership features,
IFS is more comprehensive. Uncertainty is a critical factor when accurately evaluating
an object. Consider the following scenario: an authority voiced their viewpoint on a
certain problem; the chance of the claim being correct is 0.87, the likelihood of it being
incorrect is 0.75, and the possibility of it being either true or false is 0.29. Smarandache [3]
proposed neutrosophic sets (NSs) to address such issues. NSs contain variable degrees of
“truth membership degree (TMD), indeterminacy membership degree (IMD), and falsity
membership degree (FMD)” for each element, with values ranging from ]− 0, 1 + [.

When it comes to the representation of discordant information, NS is seen as a more
beneficial tool than IFS, according to philosophical perspectives. Yet, from the perspective
of scientific investigation, NS and the predefined operators that go along with it need to
be regarded as normative in order to put into practise practical applications. In order to
solve this problem, Wang et al. [4] developed the idea of a “single-valued neutrosophic
set” (SVNS), which possesses a variety of novel qualities and theorems. Ye [5] investigated
SVNS operations in great detail and described them as a streamlined neutrosophic set
(SNS). “Interval-valued neutrosophic sets” (IVNSs) were also established by Wang et al. [6]
in order to simplify the implementation of NSs.

Scientists are currently focusing on SVNSs to tackle complex and unpredictable issues
in real life. Several scholars have utilized these sets to develop selection processes based
on distance/similarity measures [7–10], entropy [11], correlation coefficients [12], and
score functions [13]. Ye [14] studied SVN similarity measurements based on the cotangent
function. Additionally, Ye proposed SVN clustering techniques based on similarity metrics
in [15]. Peng et al. [16] described an outranking approach for MCGDM issues that use
SNSs. Biswas et al. [17] developed the entropy-based “grey relational analysis” (GRA)
technique for MCGDM with SVNSs. Peng and Dai [18] conducted an exhaustive review
of NS research published in various domains. In addition, Karaaslan [19] developed a
number of similarity metrics that may function in an SVN refined as well as an interval
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neutrosophic refined environment. Kamacı [20] researched the soft extensions of linguistic
concepts and offered an application in game theory.

In recent decades, there has been a rising interest in creating ways to construct unique
aggregation operators (AOs) to integrate information in an effective and efficient man-
ner. This interest has been spurred on by a number of different factors. Because of the
many advantages they offer, AOs have developed into an essential component of the
decision-making process. These AOs rely, in many instances, on operational rules that were
developed with the intention of combining a restricted number of fuzzy numbers into a
single fuzzy number, as described in [21–25].

In order to carry out an analysis on the SVN-based data, numerous AOs that are
based on the operating rules of SVNS have been built. Ye [5] presented the basics of
AOs, Peng et al. [26] suggested some improved AOs, Nancy and Garg [27] utilized Frank
AOs, Han and Wei [28] introduced Choquet integral AOs, Li et al. [29] introduced Heronian
mean AOs, Liu and Wang [30] investigated the Bonferroni mean (BM) AOs, Wang et al. [31]
proposed a dual Bonferroni AO, Wei and Zhang [32] introduced Bonferroni power AOs,
Wu et al. [11] initiated the prioritized AOs, and Ji et al. [33] proved the Frank prioritized
BM in an SVN context.

Researchers have investigated various AOs for SVNSs, such as Dombi AOs, Einstein
AOs, Harmonic AOs, and Muirhead AOs, in several studies [34–37]. Liu initially pro-
posed the concept of AOs for SVNSs based on Archimedean t-norm and t-conorm, and
this concept was further developed by kamacı [38] and Liu et al. [39], who established
various AOs for SVNNs based on Hamacher operations and discussed their applications in
selection. The use of generalized hybrid weighted averaging AOs of SVNNs was proposed
by Zheng et al. [40] to develop MCGDM models, and Garg and Nancy [41] presented
new logarithmic operating rules on SVNSs and their applicability to MCGDM. Other re-
searchers focused on interdependent inputs of various kinds of SVNSs and developed
an MCGDM strategy, such as in the studies by authors in [42,43]. Liu and Luo proposed
correlated AOs for SNSs and a weighted distance measure-based MCGDM technique for
the neutrosophic framework [44,45], while other studies proposed SVN linguistic mean
AOs and their applications [46,47]. Lu and Ye developed exponential operations and their
corresponding AOs for SVNNs [48]. Some extensive work related to AOs can be found
in [49]. Entezari et al. [50] provided a bibliographic view of machine learning and artificial
intelligence in energy systems. Izanloo et al. [51] presented a machine learning evaluation
technique for sustainable energy investment choices, whereas Zahedi et al. [52] suggested
the development of novel simulations for reservoir hydropower generation. The motivation
and contribution of the current study are given as follows:

1. In line with the findings of previous research, one can conclude that the challenges
that arise in the process of decision making in today’s world are growing increas-
ingly complicated. It is essential to communicate the unknown particulars more
constructively to pick the best alternative for MCGDM problems.

2. In addition to this, it is absolutely necessary to have a solid understanding of how
to properly handle the hierarchical connection that exists between the numerous
criteria. According to Yager [53], while selecting an electric bike for a child based on
both affordability and safety considerations, one should not allow the advantage to
outweigh the loss of safety.

3. This is because of what Yager calls the “loss of protection paradox.” After that, there
is a relationship between these two criteria, but it is prioritized, with protection being
given priority. This is what is known as an aggregation issue, and it arises from the
fact that the characteristics have a priority connection.

4. Within the context of this situation, Yager presented prioritised AOs by providing
attribute prioritising from the perspective of criterion weights, which varied depend-
ing on the degree to which higher value characteristics were met [53]. It seems
that He et al. [54] are in the process of implementing interaction operational guide-
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lines that take into consideration the interactions that occur between the various
membership grades.

5. In light of the previous, hybridised AOs were conceived, which are a combination of
SVN interactive AOs and SVN prioritised AOs.

The remaining parts of the paper are organized in the following fashion: In Section 2,
you will find definitions not just for the SVNS but also for other key concepts. A number of
SVN prioritised interactive AOs are included in Section 3. In Section 4, we constructed an
MCGDM strategy by making use of the AOs that were given. In Section 5, the case study is
described in greater depth, including with numerical examples and a comparison to the
AOs that are currently in place. The most important findings of the research are outlined
and discussed in Section 6.

2. Certain Basic Concepts

In this section, some basic ideas about SVNSs over the universal set Θ have been dis-
cussed.

Definition 1 ([4]). A single-valued neutrosophic set (SVNS) in Θ is defined as

χ = {〈x, µχ(x), νχ(x), τχ(x)|x ∈ Θ〉} (1)

where µχ(x), νχ(x), τχ(x) ∈ [0, 1], and 0 ≤ µχ(x) + νχ(x) + τχ(x) ≤ 3 for all x ∈ Θ.
µχ(x), νχ(x), τχ(x) denote TMD, IMD, and FMD, respectively, for some x ∈ Θ.

The pair ℵχ = (µℵχ , νℵχ , τℵχ) throughout this article is called an SVNN with the conditions
µℵχ , νℵχ , τℵχ ∈ [0, 1] and µℵχ + νℵχ + τℵχ ≤ 3.

Definition 2 ([4]). Let ℵχ
1 = 〈µχ

1, νχ
1, τχ

1〉 and ℵχ
2 = 〈µχ

2, νχ
2, τχ

2〉 be SVNNs, then

ℵχc
1 = 〈τχ

1, νχ
1, µχ

1〉 (2)

ℵχ
1 ∨ ℵχ

2 = 〈max{µχ
1, µχ

2}, min{νχ
1, νχ

2}, min{τχ
1, τχ

2}〉 (3)

ℵχ
1 ∧ ℵχ

2 = 〈min{µχ
1, µχ

2}, max{νχ
1, νχ

2}, max{τχ
1, τχ

2}〉 (4)

ℵχ
1 ⊕ ℵχ

2 = 〈µχ
1 + µχ

2 − µχ
1µχ

2, νχ
1νχ

2, τχ
1τχ

2〉 (5)

ℵχ
1 ⊗ ℵχ

2 = 〈µχ
1µχ

2, νχ
1 + νχ

2 − νχ
1νχ

2, τχ
1 + τχ

2 − τχ
1τχ

2〉 (6)

σℵχ
1 = 〈1− (1− µχ

1)
σ, νχσ

1 , τχσ
1 〉 (7)

ℵχσ
1 = 〈µχσ

1 , 1− (1− νχ
1)

σ, 1− (1− τχ
1)

σ〉 (8)

Definition 3 ([11]). Let ℵχ = 〈µχ
ℵχ , νχ

ℵχ , τχ
ℵχ〉 be the SVNN, the score function (SF) can be

characterized as given below.

λג(ℵχ) =
µχ
ℵχ + 1− νχ

ℵχ + 1− τχ
ℵχ

3

Consider two SVNNs, ℵχ and β, if λג(ℵχ) > λג(β), then ℵχ > β.

For more basic definitions, ∑e
h=1 = ih for the sake of convenience.

Definition 4 ([11]). Let ℵχ
h = 〈µχ

h, νχ
h, τχ

h〉 be the accumulation of SVNNs, and SVNPWA
Pn → P be the mapping, if
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SVNPWA(ℵχ
1,ℵχ

2, . . . ℵχ
e) =

(
q̆1

ihq̆h
ℵχ

1 ⊕
q̆2

ihq̆h
ℵχ

2 ⊕ . . . ,⊕ q̆e

ihq̆h
ℵχ

e

)
(9)

then the mapping SVNPWA is called a “single-valued neutrosophic prioritized weighted averaging
(SVNPWA) operator”, where q̆h = ∏

g−1
h=1 λג(ℵχ

h) (k = 2 . . . , e), q̆1 = 1, and λג(ℵχ
h) is the

score of the hth SVNN.

Theorem 1 ([11]). Let ℵχ
h = 〈µχ

h, νχ
h, τχ

h〉 be the accumulation of SVNNs, then

SVNPWA(ℵχ
1,ℵχ

2, . . . ,ℵχ
e) =

(
1−

e

∏
h=1

(1− µχ
h)

q̆h
ih q̆h ,

e

∏
h=1

(νχ
h)

q̆h
ih q̆h ,

e

∏
h=1

(τχ
h)

q̆h
ih q̆h

)
(10)

Definition 5 ([11]). Let ℵχ
h = 〈µχ

h, νχ
h, τχ

h〉 be the accumulation of SVNNs, and SVNPWG
Pn → P be the mapping. If

SVNPWG(ℵχ
1,ℵχ

2, . . . ℵχ
e) =

ℵχ

q̆1
ihq̆h
1 ⊗ ℵχ

q̆2
ihq̆h
2 ⊗ . . . ,⊗ℵχ

q̆e
ihq̆h
e

 (11)

then the mapping SVNPWG is called a “single-valued neutrosophic prioritized weighted geometric
(SVNPWG) operator”, where q̆h = ∏

g−1
h=1 λג(ℵχ

h) (k = 2 . . . , e), q̆1 = 1 and λג(ℵχ
h) is the

score of the hth SVNN.

Theorem 2 ([11]). Let ℵχ
h = 〈µχ

h, νχ
h, τχ

h〉 be the accumulation of SVNNs, then

SVNPWG(ℵχ
1,ℵχ

2, . . . ,ℵχ
e) =

(
e

∏
h=1

(µχ
h)

q̆h
ih q̆h , 1−

e

∏
h=1

(1− νχ
h)

q̆h
ih q̆h , 1−

e

∏
h=1

(1− τχ
h)

q̆h
ih q̆h

)
(12)

SVN Interactive Operations

Definition 6. Let ℵχ, ℵχ
1, and ℵχ

2 be the two SVNNs; the interactive operations for SVNNs are
given below:

1. ℵχ
1 ⊕ ℵχ

2 = (µχ
1 + µχ

2 − µχ
1µχ

2, νχ
1 + νχ

2 − νχ
1νχ

2 − νχ
1µχ

2 − µχ
1νχ

2,
τχ

1 + τχ
2 − τχ

1τχ
2 − τχ

1µχ
2 − µχ

1τχ
2)

2. ℵχ
1 ⊗ ℵχ

2 = (µχ
1 + µχ

2 − µχ
1µχ

2 − µχ
1νχ

2 − νχ
1µχ

2, νχ
1 + νχ

2 − νχ
1νχ

2,
τχ

1 + τχ
2 − τχ

1τχ
2)

3. λℵχ = (1− (1− µχ)λ, (1− µχ)λ − (1− (µχ + νχ))λ, (1− µχ)λ − (1− (µχ + τχ))λ),
λ > 0

4. ℵχλ =
(
(1− νχ)λ − (1− (νχ + µχ))λ, 1− (1− νχ)λ, 1− (1− τχ)λ

)
, λ > 0

Definition 7. Let ℵχ
r = 〈µχ

r, νχ
r, τχ

r〉 be the accumulation of SVNNs, and SVNIWA : $̆
n → $̆

is the mapping,

SVNIWA(ℵχ
1,ℵχ

2, . . . ℵχ
r) =

r⊕
k=1

ωkℵχ
k (13)

then the mapping SVNIWA is called a “single-valued neutrosophic interactive weighted averaging
operator”, where (ω1, ω2, . . . ωr) is the WV, with the constraints ωj > 0, ωk ∈ [0, 1] and
∑r
k=1 ωk = 1.

Theorem 3. Consider ℵχ
r = 〈µχ

r, νχ
r, τχ

r〉 as the accumulation of SVNNs, then
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SVNIWA(ℵχ
1,ℵχ

2, . . . ℵχ
r) =

r⊕
k=1

ωkℵχ
k

=

(
1−

r

∏
k=1

(
1− (µχ

k)

)ωk
,

r

∏
k=1

(
1− (µχ

k)

)ωk
−

r

∏
k=1

(
1− ((µχ

k) + (νχ
k))

)ωk
,

r

∏
k=1

(
1− (µχ

k)

)ωk
−

r

∏
k=1

(
1− ((µχ

k) + (τχ
k))

)ωk
)

(14)

Definition 8. Assume ℵχ
r = 〈µχ

r, νχ
r, τχ

r〉 is the accumulation of SVNNs, and SVNIWG :
$̆

n → $̆ is a mapping,

SVNIWG(ℵχ
1,ℵχ

2, . . . ℵχ
r) =

r⊗
k=1

(ℵχ
k)

ωk (15)

then the mapping SVNIWG is called a “single-valued neutrosophic fuzzy interactive weighted
geometric operator”, where (ω1, ω2, . . . ωr) is the WV of the considered SVNNs with the condition
that ωj > 0, ωk ∈ [0, 1], and ∑r

k=1 ωk = 1

Theorem 4. Consider ℵχ
r = 〈µχ

r, νχ
r, τχ

r〉 as the accumulation of SVNNs, then

SVNIWG(ℵχ
1,ℵχ

2, . . . ℵχ
r) =

r⊗
k=1

(ℵχ
k)

ωk

=

(
r

∏
k=1

(
1− (νχ

k)

)ωk
−

r

∏
k=1

(
1− ((νχ

k) + (µχ
k))

)ωk
,

1−
r

∏
k=1

(
1− (νχ

k)

)ωk
, 1−

r

∏
k=1

(
1− (τχ

k)

)ωk
)

(16)

3. SVN Prioritised Interactive AOs

In this part, we will introduce a type of hybrid AOs called SVN prioritised interactive AOs.

3.1. SVNPIWA Operator

Definition 9. Consider ℵχ
r = 〈µχ

r, νχ
r, τχ

r〉 as the accumulation of SVNNs, and SVNPIWA :
$̆

n → $̆ is a mapping,

SVNPIWA(ℵχ
1,ℵχ

2, . . . ℵχ
r) =

ζη
1

∑r
k=1 ζη

k
ℵχ

1 ⊕
ζη

2

∑r
k=1 ζη

k
ℵχ

2 ⊕ . . . ,⊕ ζη
r

∑r
k=1 ζη

k
ℵχ

r (17)

then the mapping SVNPIWA is called a “single-valued neutrosophic prioritized interactive weighted
averaging (SVNPIWA) operator”, where ζη

j = ∏
j−1
k=1 ẑ(ℵχ

k) (j = 2 . . . , n), ζη
1 = 1, and

ẑ(ℵχ
k) is the score of the kth SVNN.

Based on SVN interactive operations we have the following theorem. By this theorem,
we can easily find the value of the SVNPIWA operator.

Theorem 5. Consider ℵχ
r = 〈µχ

r, νχ
r, τχ

r〉 as the accumulation of SVNNs, then
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SVNIPWA(ℵχ
1,ℵχ

2, . . . ℵχ
r)

=

1−
r

∏
k=1

(
1− (µχ

k)

) ζη
k

∑r
k=1 ζη

k ,

r

∏
k=1

(
1− (µχ

k)

) ζη
k

∑r
k=1 ζη

k −
r

∏
k=1

(
1− ((µχ

k) + (νχ
k))

) ζη
k

∑r
k=1 ζη

k ,

r

∏
k=1

(
1− (µχ

k)

) ζη
k

∑r
k=1 ζη

k −
r

∏
k=1

(
1− ((µχ

k) + (τχ
k))

) ζη
k

∑r
k=1 ζη

k

 (18)

Proof. This is given in Appendix A.1.

Below are several highly appealing traits of the SVNPIWA operator that have been iden-
tified.

Theorem 6. Assume ℵχ
r = 〈µχ

r, νχ
r, τχ

r〉 is the accumulation of SVNNs, where ζη
q =

∏
q−1
k=1 ẑ(ℵχ

k) (q = 2 . . . , n), ζη
1 = 1, and ẑ(ℵχ

k) is the score of the gth SVNN. If all ℵχ
r

are equal, i.e., ℵχ
r = ℵχ for all q, then

SVNPIWA(ℵχ
1,ℵχ

2, . . . ℵχ
r) = ℵχ

Proof. This is given in Appendix A.2.

By Theorem 6, if all SVNNs are identical, then the output of the SVNPIWA operator
will also be identical.

Corollary 1. If ℵχ
r = 〈µχ

r, νχ
r, τχ

r〉 is the accumulation of the largest SVNNs, i.e., ℵχ
r =

(1, 0, 0) for all j, then
SVNPIWA(ℵχ

1,ℵχ
2, . . . ℵχ

r) = (1, 0, 0)

Proof. Proof of this corollary can be readily obtained by utilizing Theorem 6.

Corollary 2. If ℵχ
1 = 〈µχ

1, νχ
1, τχ

1〉 is the smallest SVNN, i.e., ℵχ
1 = (0, 0, 1), then

SVNPIWA(ℵχ
1,ℵχ

2, . . . ℵχ
r) = (0, 0, 1)

Proof. This is given in Appendix A.3.

Corollary 2 states that when the highest priority attribute is the smallest SVNN, even
if other criteria are satisfied, no rewards will be obtained.

Theorem 7. Consider ℵχ
r = 〈µχ

r, νχ
r, τχ

r〉, and ℵχ∗
r = 〈µχ∗

r , νχ∗
r , τχ∗

r 〉 as the accumulations of
SVNNs, where ζη

q = ∏
q−1
k=1 ẑ(ℵχ

k), ζη∗
q = ∏

q−1
k=1 ẑ(ℵχ∗

k) (k = 2 . . . , n), ζη
1 = 1, ζη∗

1 = 1,
ẑ(ℵχ

k) is the score of ℵχ
k SVNN, and ẑ(ℵχ∗

k) is the score of ℵχ∗
k SVNN. If µχ∗

r ≥ µχ
r,

νχ∗
r ≤ νχ

r, and τχ∗
r ≤ τχ

r for all r, then

SVNPIWA(ℵχ
1,ℵχ

2, . . . ℵχ
r) ≤ SVNPIWA(ℵχ∗

1 ,ℵχ∗
2 , . . . ℵχ∗

r )

Proof. This is given in Appendix A.4.

By Theorem 7, if we have two collections of SVNNs and one collection is entirely
larger than the other, we can conclude that the aggregate output is also greater than the
other collection.
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Theorem 8. (Boundary) Consider ℵχ
r = 〈µχ

r, νχ
r, τχ

r〉 as the family of SVNNs, and

ℵχ− = (minq (µ
χ

r), maxq (ν
χ

r)) and ℵχ+ = (maxq (µ
χ

r), minq (ν
χ

r))

Then,
ℵχ− ≤ SVNPIWA(ℵχ

1,ℵχ
2, . . . ℵχ

r) ≤ ℵχ+

where ζη
k = ∏

q−1
k=1 ẑ(ℵχ

k) (q = 2 . . . , r), ζη
1 = 1 and ẑ(ℵχ

k) is the score of the gth SVNN.

By Theorem 8, we have the upper and lower bounds of the proposed SVNPIWA op-
erator.

Theorem 9. Consider ℵχ
r = 〈µχ

r, νχ
r, τχ

r〉 and rג$̆˘ = 〈σr, ξr, δr〉 as two accumulations of
SVNNs, where ζη

k = ∏r−1
k=1 ẑ(ℵχ

k) (k = 2 . . . , r), ζη
1 = 1, and ẑ(ℵχ

k) is the score of the jth

SVNN. If R > 0 and ג$̆˘ = 〈µχ
ג$̆˘

, νχ
ג$̆˘

, τχ
ג$̆˘
〉 is an SVNN, then

1. SVNPIWA(ℵχ
1 ⊕ ℵχ,ג$̆˘

2 ⊕ ,ג$̆˘ . . . ℵχ
r ⊕ (ג$̆˘ = SVNPIWA(ℵχ

1,ℵχ
2, . . . ℵχ

r)⊕ ג$̆˘

2. SVNPIWA(Rℵχ
1, Rℵχ

2, . . . Rℵχ
r) = R SVNPIWA(ℵχ

1,ℵχ
2, . . . ℵχ

r)

3. SVNPIWA(ℵχ
1 ⊕ ℵχ,1ג$̆˘

2 ⊕ ,2ג$̆˘ . . . ℵχ
r ⊕ (nג$̆˘ = SVNPIWA(ℵχ

1,ℵχ
2, . . . ℵχ

r)⊕
SVNPIWA( ,1ג$̆˘ ,2ג$̆˘ . . . (rג$̆˘

4. SVNPIWA Rℵχ
1 ⊕ ,ג$̆˘ Rℵχ

2 ⊕ ,ג$̆˘ . . .⊕ Rℵχ
r ⊕ (ג$̆˘ = R SVNPIWA(ℵχ

1,ℵχ
2, . . . ℵχ

r)⊕ ג$̆˘

Proof. This is given in Appendix A.5.

Theorem 9 indicated some algebraic properties of the SVNPIWA operator.

3.2. SVN Prioritized Interactive Geometric AOs

Definition 10. Consider ℵχ
r = 〈µχ

r, νχ
r, τχ

r〉 as the accumulation of SVNNs, and SVNPIWG :
$̆

n → $̆ as a mapping. If

SVNPIWG(ℵχ
1,ℵχ

2, . . . ℵχ
r) = ℵχ

ζη
1

∑r
k=1 ζη

k
1 ⊗ ℵχ

ζη
2

∑r
k=1 ζη

k
2 ⊗ . . . ,⊗ℵχ

ζη
r

∑r
k=1 ζη

k
r (19)

then the mapping SVNPIWG is called a “single-valued neutrosophic prioritized interactive weighted
geometric (SVNPIWG) operator”, where ζη

j = ∏
j−1
k=1 ẑ(ℵχ

k) (j = 2 . . . , n), ζη
1 = 1, and

ẑ(ℵχ
k) is the score of the kth SVNN.

The following theorem is derived from SVN interactive operations.

Theorem 10. Consider ℵχ
r = 〈µχ

r, νχ
r, τχ

r〉 as the accumulation of SVNNs, then

SVNIPWG(ℵχ
1,ℵχ

2, . . . ℵχ
r)

=

 r

∏
k=1

(
1− (νχ

k)

) ζη
k

∑r
k=1 ζη

k −
r

∏
k=1

(
1− ((νχ

k) + (µχ
k))

) ζη
k

∑r
k=1 ζη

k ,

1−
r

∏
k=1

(
1− (νχ

k)

) ζη
k

∑r
k=1 ζη

k , 1−
r

∏
k=1

(
1− (τχ

k)

) ζη
k

∑r
k=1 ζη

k

 (20)

Proof. This is given in Appendix B.1.

Below are several highly appealing traits of the SVNPIWG operator that have been iden-
tified.
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Theorem 11. Consider ℵχ
r = 〈µχ

r, νχ
r, τχ

r〉 as the accumulation of SVNNs, where ζη
q =

∏
q−1
k=1 ẑ(ℵχ

k) (q = 2 . . . , n), ζη
1 = 1, and ẑ(ℵχ

k) is the score of the gth SVNN. If all ℵχ
r are

equal, i.e., ℵχ
r = ℵχ for all q, then

SVNPIWG(ℵχ
1,ℵχ

2, . . . ℵχ
r) = ℵχ

Proof. This is given in Appendix B.2.

Corollary 3. If ℵχ
r = 〈µχ

r, νχ
r, τχ

r〉 q = (1, 2, . . . n) is the accumulation of the largest SVNNs,
i.e., ℵχ

r = (1, 0, 0) for all j, then

SVNPIWG(ℵχ
1,ℵχ

2, . . . ℵχ
r) = (1, 0, 0)

Proof. A corollary similar to Theorem 6 can be readily derived.

Corollary 4. (Non-compensatory) If ℵχ
1 = 〈µχ

1, νχ
1〉 is the smallest SVNN, i.e., ℵχ

1 = (0, 0, 1),
then

SVNPIWG(ℵχ
1,ℵχ

2, . . . ℵχ
r) = (0, 0, 1)

Proof. This is given in Appendix B.3.

The implication of Corollary 4 is that when the minimum SVNN satisfies the more
important criteria, the other criteria will not receive any rewards even if they are also met.

Theorem 12. (Monotonicity) Consider ℵχ
r = 〈µχ

r, νχ
r, τχ

r〉 and ℵχ∗
r = 〈µχ∗

r , νχ∗
r , τχ∗

r 〉 as the
accumulations of SVNNs, where ζη

q = ∏
q−1
k=1 ẑ(ℵχ

k), ζη∗
q = ∏

q−1
k=1 ẑ(ℵχ∗

k) (k = 2 . . . , n),
ζη

1 = 1, ζη∗
1 = 1, ẑ(ℵχ

k) is the score of ℵχ
k SVNN, and ẑ(ℵχ∗

k) is the score of ℵχ∗
k SVNN. If

µχ∗
r ≥ µχ

r, νχ∗
r ≤ νχ

r and τχ∗
r ≤ τχ

r for all q, then

SVNPIWG(ℵχ
1,ℵχ

2, . . . ℵχ
r) ≤ SVNPIWG(ℵχ∗

1 ,ℵχ∗
2 , . . . ℵχ∗

r )

Theorem 13. Consider ℵχ
r = 〈µχ

r, νχ
r, τχ

r〉 and rג$̆˘ = 〈σr, ξr, δr〉 as two accumulations of
SVNNs, where ζη

k = ∏r−1
k=1 ẑ(ℵχ

k) (k = 2 . . . , r), ζη
1 = 1, and ẑ(ℵχ

k) is the score of the jth

SVNN. If R > 0 and ג$̆˘ = 〈µχ
ג$̆˘

, νχ
ג$̆˘

, τχ
ג$̆˘
〉 is an SVNN, then

1. SVNPIWG(ℵχ
1 ⊗ ℵχ,ג$̆˘

2 ⊗ ,ג$̆˘ . . . ℵχ
r ⊗ (ג$̆˘ = SVNPIWG(ℵχ

1,ℵχ
2, . . . ℵχ

r)⊗ ג$̆˘

2. SVNPIWG(Rℵχ
1, Rℵχ

2, . . . Rℵχ
r) = R SVNPIWG(ℵχ

1,ℵχ
2, . . . ℵχ

r)

3. SVNPIWG(ℵχ
1 ⊗ ℵχ,1ג$̆˘

2 ⊗ ,2ג$̆˘ . . . ℵχ
r ⊗ (nג$̆˘ = SVNPIWG(ℵχ

1,ℵχ
2, . . . ℵχ

r)⊗
SVNPIWG( ,1ג$̆˘ ,2ג$̆˘ . . . (rג$̆˘

4. SVNPIWG (Rℵχ
1⊗ ,ג$̆˘ Rℵχ

2⊗ ,ג$̆˘ . . .⊗Rℵχ
r⊗ (ג$̆˘ = R SVNPIWG(ℵχ

1,ℵχ
2, . . . ℵχ

r)⊗ ג$̆˘

4. Methodology for MCGDM Using Proposed AOs

Consider a set of alternatives denoted by L ג = {L ג
1 , L ג

2 , . . . , L ג
m} and a collection of

criteria denoted by κγ = {κγ
1, κγ

2, . . . , κγ
n}, where the priority between the criteria is de-

termined using a linear orientation. Specifically, κγ
1 � κγ

2 � κγ
3 . . . κγ

n indicates that crite-
rion κγ

j is assigned a higher priority than criterion κγ
i if j > i. Let τζ = {τζ

1, τζ
2, . . . , τζ

p}
denote the decision makers, where the prioritization between the decision makers is
given by τζ

1 � τζ
2 � τζ

3 . . . τζ
p. In this setting, each decision maker provides a matrix

D(p) = (B
(p)
ij )m× n representing their own perspective on the alternatives with respect to

the attributes.
If all performance parameters are of the same type, no normalization is necessary.

However, in the case of MCGDM where there are two types of assessment criteria (benefit
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criteria τ
χ
b and cost criteria τ

χ
c ), the matrix D(p) is normalized using the formula Y(p) =

(P(p)ij)m× n to produce a normalized matrix.

(P
(p)
ij )m×n =

(B
(p)
ij )c; j ∈ τχ

c

B
(p)
ij ; j ∈ τχ

b.
(21)

where (B
(p)
ij )c shows the compliment of B

(p)
ij .

The suggested operators will be implemented to the MCGDM, which will require the
preceding steps (Algorithm 1).

Algorithm 1 Decision-making algorithm
Step 1: The decision matrix D(p) = (B(p) ij)m× n can be obtained into SVNN format from the DMs.
Step 2: Find the normalization matrix Y(p) = (P

(p)
ij )m×n using Equation (21).

Step 3: Evaluate the values of v̆
(p)
ij by given formula.

v̆
(p)
ij = ∏

p−1

k=1 f̄(P
(k)
ij ) (p = 2 . . . , n), (22)

v̆
(1)
ij = 1

Step 4: Use one of the provided AOs to combine all of the independent SVN decision matrices Y(p) = (P
(p)
ij )m×n into one

combined evaluation matrix of the alternatives W(p) = (Eij)m×n .

Eij = SVNPIWA(P
(1)
ij , P(2)

ij , . . . P(p)
ij )

=

1−
p

∏
z=1

(
1− ((µχ z

ij)

) v̆z
j

∑n
j=1 v̆z

j ,
p

∏
z=1

(
1− (µχ z

ij)

) v̆z
j

∑n
j=1 v̆z

j −
p

∏
z=1

(
1− ((µχz

ij) + (νχz
ij))

) v̆z
j

∑n
j=1 v̆z

j ,

p

∏
z=1

(
1− (µχz

ij)

) v̆z
j

∑n
j=1 v̆z

j −
p

∏
z=1

(
1− ((µχz

ij) + (τχz
ij))

) v̆z
j

∑n
j=1 v̆z

j

 (23)

or

Eij = SVNPIWG(P
(1)
ij , P(2)

ij , . . . P(p)
ij )

=

 p

∏
z=1

(
1− (νχ z

ij)

) v̆z
j

∑n
j=1 v̆z

j −
p

∏
z=1

(
1− ((νχz

ij) + (µχz
ij))

) v̆z
j

∑n
j=1 v̆z

j , 1−
p

∏
z=1

(
1− ((νχz

ij)

) v̆z
j

∑n
j=1 v̆z

j ,

1−
p

∏
z=1

(
1− ((τχ z

ij)

) v̆z
j

∑n
j=1 v̆z

j

 (24)

Step 5: Calculate the values of v̆ij by the following formula:

v̆ij = ∏
j−1

k=1f̄(Eik) (j = 2 . . . , n), (25)

v̆i1 = 1
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Algorithm 1 Cont.
Step 6: Aggregate the SVN values Eij for each alternative L ג

i by the SVNPIWA (or SVNPIWG) operator.

Eij = SVNPIWA(Pi1, Pi2, . . . Pin)

=

1−
n

∏
j=1

(
1− µχ

ij

) v̆j
∑n

j=1 v̆j ,
n

∏
j=1

(
1− µχ

ij

) v̆j
∑n

j=1 v̆j −
n

∏
j=1

(
1− (µχ

ij + νχ
ij)

) v̆j
∑n

j=1 v̆j ,

n

∏
j=1

(
1− µχ

ij

) v̆j
∑n

j=1 v̆j −
n

∏
j=1

(
1− (µχ

ij + τχ
ij)

) v̆j
∑n

j=1 v̆j

 (26)

or

Eij = SVNPIWG(Pi1, Pi2, . . . Pin)

=

 n

∏
j=1

(
1− νχ

ij

) v̆j
∑n

j=1 v̆j −
n

∏
j=1

(
1− (νχ

ij + µχ
ij)

) v̆j
∑n

j=1 v̆j , 1−
n

∏
j=1

(
1− νχ

ij

) v̆j
∑n

j=1 v̆j , (27)

1−
n

∏
j=1

(
1− τχ

ij

) v̆j
∑n

j=1 v̆j


Step 7: Analyze the score for all cumulative alternative assessments.

Step 8: The alternatives were classified by the SF and, eventually, the most suitable alternative was selected.

5. Case Study

It is widely accepted that a transition away from fossil hydrocarbons and toward
renewable sources of energy will inevitably take place in order to curtail gas emissions,
mitigate environmental impacts, and lessen reliance on fossil fuels. As a result of this
trend, numerous businesses all over the world, particularly multinational enterprises with
a significant amount of power, have been pioneers in the use of renewable energy. The fact
that an increasing number of businesses are declaring their support for renewable energy
and taking concrete steps to expedite the transition to clean energy sources is regarded
as a positive indicator in the context of the global community’s collective efforts to cre-
ate a greener future. Gas consumption by industry in Pakistan can be seen in Figure 1,
oil/petroleum consumption by industry in Pakistan can be seen in Figure 2, and electricity
consumption by industry in Pakistan can be seen in Figure 3 [55]. The sustainable industry
is very important to the growth and improvement of a nation’s economy. In past few
decades, there has been a phenomenal rise in the amount of energy that is required. The
rise in economic activity, population expansion, and the fast technological revolution that is
occurring across the globe are the main primary drivers of the development related to the
need for energy. Corporations in Pakistan are paying considerable attention to the usage
of green sources in manufacturing as well as commercial operations for the purpose of
achieving environmental sustainability. Recently, a growing number of companies have
taken a keen interest in adopting the use of alternative energy options. These companies
are looking for eco-friendly alternatives to develop goods that are compliant with green
requirements in order to increase their market competition. However, choosing an ap-
propriate energy supply for any industrial complex project is not an easy process since it
involves a number of qualitative and quantitative standards [56,57].

The amount of oil that Pakistan is manufacturing is only a very small fraction of
what the country needs to fulfil its total demand. The development of indigenous oil
is hampered by scientific, managerial, and economical limitations. Because of this, a
considerable portion of the overall demand must be satisfied by importing substantial
volumes of petroleum and other forms of crude oil. The most recent information suggests
that the cost of importing oil climbed by 95.9 percent during the first four months of the
fiscal year 2022, reaching USD 17.03 billion compared to USD 8.69 billion during the same
time period in the previous year. Oil is becoming more costly as a result of higher oil prices
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on the worldwide market as well as the enormous devaluation of the Pakistani rupee. This
is leading to pressure on Pakistan’s external sector and a widening trade imbalance for
the country. The rise in the cost of importing oil may be ascribed to two factors: first, an
increase in the value of imported oil; second, an increase in the amount of imported oil.
The value of imported petroleum products increased by 121.15 percent while the quantity
increased by 24.18 percent. During the time period under consideration, the value of the
country’s crude oil imports increased by 75.34 percent, while the quantity increased by
1.4 percent. During the same time period, the value of imports of liquefied natural gas
increased by 82.90 percent, while imports of liquefied petroleum gas (LPG) increased by
39.86 percent. Both of these increases occurred during the first four months of the 2022 fiscal
year [55].
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Figure 1. Gas consumption by industry in Pakistan.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
0

0.5

1

1.5

2

·106

O
il/

pe
tr

ol
eu

m
(t

on
s)

Figure 2. Oil/petroleum consumption by industry in Pakistan.
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Figure 3. Electricity consumption by industry in Pakistan.

There has been a significant huge potential market for gas, which is placing enormous
burden on the meager gas reserves that the country has available. As a result, the country’s
finite natural gas reserves are swiftly running out. The government is seeking reasonable
options that may be implemented either in the near term or over a lengthy period in order
to efficiently meet the enormous energy demand. The administration is putting a lot of
effort into developing new boreholes in order to enhance the amount of national gas that
is available to meet the growing demand for electricity. In addition to it, natural gas in
the form of LNG and piped gas is being brought in. During the 2021 fiscal year, around
373 million MMBTU of LNG gas with a value of approximately USD 34 billion was brought
in. This accounts for perhaps around 30 percent of the total natural gas use across the
nation. Domestic production of gas accounts for 75.64 percent of the total during the first
two months of the 2022 fiscal year, while imports account for 24.36 percent of the total [55].

Wind corridors can be found throughout Pakistan, and the country has an enormous
capacity to produce energy from windmill power. It is anticipated that Pakistan can
produce 50,000 MW through wind. Wind energy accounts for 4.8 percent of the total
generation capacity and now stands at 1985 MW as its contribution. There is a significant
immense capacity for solar electricity in Pakistan. Nearly the whole nation is bathed in
copious natural light all day long. According to the Independent and Renewable Energy
Policy 2019, the capacity share of these renewable resources is rather low at the moment,
but the policy anticipates that it will significantly expand over the next several years. In
total, 600 megawatts (MW) of solar panels have been installed, which is approximately
1.4 percent of the total installed capacity. The potential for Pakistan to generate energy
from water is great, and the country is extremely wealthy in hydroelectric resources. It is
predicted that Pakistan has a total hydropower potential of around 60,000 MW. The country
is not utilising its full potential and is utilising almost 16 percent of the overall hydropower
capacity. The significant initial investment required for the construction of hydropower
facilities, the establishment of an energy transmission network, and the relocation of the
people who would be displaced are only a few of the reasons why hydropower is not being
utilised to its full potential. Hydroelectricity accounts for about 25 percent of the total
installed capacity, with its current installed capacity of 10,251 MW [58].

This demonstrates that Pakistan has an immense capability for the expansion of
renewable energy sources, as well as an abundance of space for future growth. However,
the execution of sustainable electricity projects is today confronted with additional obstacles,
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such as grid infrastructure and power system dispatching procedures, as a direct result of
the requirement to maximise the integration of new electricity sources into the sector.

To illustrate the suggested MCGDM technique, we will choose the optimal renewable
energy sources for industrial complex utilizing SVNNs based on a variety of attributes.

5.1. Numerical Example

There are five alternatives L ג
i (i = 1, 2, 3, 4, 5), where L ג

1 = solar energy, L ג
2 =

solid waste energy, L ג
3 = biomass energy, L ג

4 = wind energy, and L ג
5 = nuclear energy.

Here, κγ
1 = social factor (social benefits, social acceptance), κγ

2 = technical factor (national
energy security, national economic benefits), κγ

3 = economic factor (technical maturity,
grid availability, efficiency), κγ

4 = environmental factor (carbon emissions), and κγ
5 =

political factor (investment cost, management cost ) are attributes. Priorities are assigned
betwixt the criteria provided by the linear orientation in this case. κγ

1 � κγ
2 � κγ

3 . . . κγ
5

indicates criteria κγ
J has a high priority than κγ

i if j > i. In this example, we use SVNNs as
input data for ranking the given alternatives under the given attributes. Here, three DMs
are involved, i.e., τζ

1, τζ
2, and τζ

3. DMs are not given the same priority. Prioritization is
provided by a linear pattern betwixt the DMs, given as τζ

1 � τζ
2 � τζ

3, which shows that
DM τζ

ζ has a higher importance than τζ
$ if ζ > $.

Using SVNPIWA Operator

Step 1: Obtain the decision matrix D(p) = (B
(p)
ij )m×n in the format of SVNNs by the

DMs, given in Tables 1–3.

Table 1. SVN decision matrix from τζ
1.

κγ
1 κγ

2 κγ
3 κγ

4 κγ
5

L ג
1 (0.961, 0.754, 0.431) (0.675, 0.253, 0.435) (0.285, 0.213, 0.237) (0.723, 0.311, 0.322) (0.237, 0.342, 0.543)

L ג
2 (0.543, 0.135, 0.533) (0.545, 0.355, 0.532) (0.154, 0.745, 0.432) (0.567, 0.435, 0.422) (0.345, 0.345, 0.421)

L ג
3 (0.745, 0.435, 0.432) (0.335, 0.321, 0.542) (0.422, 0.243, 0.532) (0.321, 0.342, 0.533) (0.432, 0.423, 0.543)

L ג
4 (0.454, 0.332, 0.432) (0.723, 0.456, 0.643) (0.426, 0.163, 0.543) (0.432, 0.223, 0.543) (0.345, 0.353, 0.432)

L ג
5 (0.732, 0.323, 0.543) (0.543, 0.765, 0.654) (0.234, 0.764, 0.543) (0.543, 0.554, 0.435) (0.542, 0.265, 0.542)

Table 2. SVN decision matrix from τζ
2.

κγ
1 κγ

2 κγ
3 κγ

4 κγ
5

L ג
1 (0.342, 0.342, 0.675) (0.342, 0.346, 0.435) (0.342, 0.434, 0.564) (0.564, 0.134, 0.543) (0.453, 0.234, 0.534)

L ג
2 (0.432, 0.654, 0.342) (0.542, 0.342, 0.762) (0.453, 0.654, 0.453) (0.432, 0.654, 0.453) (0.773, 0.342, 0.654)

L ג
3 (0.854, 0.632, 0.321) (0.513, 0.243, 0.432) (0.321, 0.524, 0.432) (0.621, 0.455, 0.542) (0.232, 0.234, 0.543)

L ג
4 (0.432, 0.323, 0.432) (0.532, 0.432, 0.451) (0.322, 0.134, 0.543) (0.321, 0.234, 0.532) (0.321, 0.671, 0.572)

L ג
5 (0.369, 0.542, 0.441) (0.624, 0.342, 0.431) (0.521, 0.127, 0.579) (0.343, 0.334, 0.431) (0.342, 0.331, 0.348)

Table 3. SVN decision matrix from τζ
3.

κγ
1 κγ

2 κγ
3 κγ

4 κγ
5

L ג
1 (0.532, 0.112, 0.332) (0.752, 0.223, 0.436) (0.843, 0.432, 0.649) (0.462, 0.345, 0.431) (0.745, 0.253, 0.524)

L ג
2 (0.454, 0.245, 0.422) (0.354, 0.135, 0.422) (0.531, 0.335, 0.421) (0.432, 0.343, 0.521) (0.532, 0.323, 0.321)

L ג
3 (0.431, 0.135, 0.457) (0.575, 0.243, 0.632) (0.555, 0.532, 0.522) (0.434, 0.356, 0.632) (0.342, 0.324, 0.527)

L ג
4 (0.642, 0.354, 0.521) (0.441, 0.521, 0.539) (0.531, 0.349, 0.531) (0.353, 0.531, 0.451) (0.183, 0.223, 0.451)

L ג
5 (0.541, 0.231, 0.432) (0.531, 0.153, 0.522) (0.434, 0.254, 0.522) (0.335, 0.254, 0.529) (0.535, 0.585, 0.234)
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Step 2: Using Equation (21), normalize the decision matrices gained by DMs. κγ
2 is a

cost-type criterion and others are benefit-type criterions, given in Tables 4–6.

Table 4. Normalized SVN decision matrix from τζ
1.

κγ
1 κγ

2 κγ
3 κγ

4 κγ
5

L ג
1 (0.461, 0.254, 0.431) (0.435, 0.253, 0.275) (0.285, 0.213, 0.237) (0.123, 0.311, 0.322) (0.237, 0.342, 0.543)

L ג
2 (0.343, 0.135, 0.533) (0.532, 0.355, 0.145) (0.154, 0.745, 0.432) (0.167, 0.435, 0.422) (0.345, 0.345, 0.421)

L ג
3 (0.345, 0.435, 0.432) (0.542, 0.321, 0.335) (0.422, 0.243, 0.532) (0.121, 0.342, 0.533) (0.232, 0.423, 0.543)

L ג
4 (0.354, 0.332, 0.132) (0.143, 0.456, 0.123) (0.226, 0.163, 0.143) (0.432, 0.223, 0.543) (0.345, 0.353, 0.432)

L ג
5 (0.132, 0.323, 0.143) (0.654, 0.165, 0.243) (0.234, 0.164, 0.243) (0.143, 0.554, 0.435) (0.142, 0.265, 0.542)

Table 5. Normalized SVN decision matrix from τζ
2.

κγ
1 κγ

2 κγ
3 κγ

4 κγ
5

L ג
1 (0.342, 0.342, 0.475) (0.435, 0.346, 0.342) (0.342, 0.134, 0.264) (0.164, 0.134, 0.543) (0.453, 0.234, 0.534)

L ג
2 (0.432, 0.354, 0.342) (0.262, 0.342, 0.142) (0.153, 0.654, 0.453) (0.132, 0.154, 0.453) (0.173, 0.342, 0.654)

L ג
3 (0.854, 0.332, 0.321) (0.432, 0.243, 0.113) (0.321, 0.324, 0.432) (0.121, 0.455, 0.542) (0.232, 0.234, 0.543)

L ג
4 (0.332, 0.323, 0.432) (0.451, 0.432, 0.132) (0.322, 0.134, 0.125) (0.321, 0.234, 0.532) (0.321, 0.671, 0.572)

L ג
5 (0.369, 0.542, 0.441) (0.431, 0.342, 0.224) (0.121, 0.127, 0.279) (0.343, 0.334, 0.431) (0.342, 0.331, 0.348)

Table 6. Normalized SVN decision matrix from τζ
3.

κγ
1 κγ

2 κγ
3 κγ

4 κγ
5

L ג
1 (0.432, 0.112, 0.232) (0.436, 0.223, 0.152) (0.143, 0.432, 0.369) (0.162, 0.345, 0.431) (0.745, 0.253, 0.524)

L ג
2 (0.454, 0.245, 0.422) (0.422, 0.135, 0.354) (0.131, 0.335, 0.421) (0.132, 0.343, 0.521) (0.132, 0.323, 0.321)

L ג
3 (0.431, 0.135, 0.457) (0.632, 0.243, 0.175) (0.155, 0.132, 0.522) (0.134, 0.356, 0.632) (0.342, 0.324, 0.527)

L ג
4 (0.242, 0.354, 0.521) (0.239, 0.521, 0.441) (0.131, 0.149, 0.531) (0.353, 0.531, 0.451) (0.183, 0.223, 0.451)

L ג
5 (0.181, 0.231, 0.432) (0.522, 0.153, 0.131) (0.434, 0.254, 0.222) (0.335, 0.254, 0.529) (0.135, 0.585, 0.234)

Step 3: Determine the v̆
(p)
ij values using Equation (22).

v̆
(1)
ij =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1



v̆
(2)
ij =


0.592 0.502 0.612 0.697 0.451
0.625 0.544 0.326 0.570 0.526
0.626 0.629 0.549 0.482 0.489
0.563 0.488 0.573 0.555 0.520
0.622 0.449 0.309 0.518 0.578



v̆
(3)
ij =


0.261 0.292 0.274 0.438 0.296
0.299 0.341 0.146 0.252 0.311
0.397 0.352 0.249 0.261 0.237
0.315 0.242 0.314 0.287 0.187
0.287 0.219 0.187 0.272 0.320
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Step 4: Use SVNPIWA to aggregate all individual SVN decision matrices Y(p) =

(P
(p)
ij )m×n into one cumulative assessments matrix of the alternatives W(p) = (Eij)m×n

using Equation (23) given in Table 7.

Table 7. Collective SVN decision matrix.

κγ
1 κγ

2 κγ
3 κγ

4 κγ
5

L ג
1

(0.421324, 0.263951,
0.428712)

(0.418807, 0.27189,
0.273659)

(0.285225, 0.217551,
0.264106)

(0.144484, 0.264965,
0.432365)

(0.200718, 0.306102,
0.540719)

L ג
2

(0.391077, 0.250206,
0.458212)

(0.445786, 0.346762,
0.193779)

(0.151387, 0.71087,
0.435542)

(0.151393, 0.508091,
0.501523)

(0.265399, 0.346564,
0.486485)

L ג
3

(0.365273, 0.35376,
0.415507)

(0.528653, 0.294306,
0.269752)

(0.359884, 0.261262,
0.539298)

(0.135601, 0.398085,
0.584573)

(0.247895, 0.36302,
0.542863)

L ג
4

(0.361542, 0.334378,
0.335592)

(0.256165, 0.47959,
0.279706)

(0.242114, 0.15179,
0.211368)

(0.388347, 0.302402,
0.552899)

(0.321625, 0.570959,
0.490232)

L ג
5

(0.224492, 0.470171,
0.349079)

(0.586917, 0.205028,
0.245532)

(0.235804, 0.177498,
0.250159)

(0.224411, 0.438496,
0.462201)

(0.20775, 0.356832,
0.43955)

Step 5: Determine the values of v̆ij by using Equation (25).

v̆ij =


1 0.576 0.359 0.216 0.104
1 0.561 0.356 0.119 0.045
1 0.532 0.348 0.181 0.069
1 0.564 0.276 0.173 0.088
1 0.468 0.333 0.201 0.089


Step 6: Aggregate the SVN values Eij for each alternative L ג

i by the SVNPIWA
operator using Equation (26) given in Table 8.

Table 8. SVN aggregated values Ei.

E1 (0.372423, 0.266908, 0.388898)
E2 (0.356465, 0.380501, 0.402695)
E3 (0.390243, 0.331658, 0.416333)
E4 (0.320105, 0.381764, 0.365156)
E5 (0.249393, 0.313219, 0.289075)

Step 7: Compute the score for all SVN aggregated values Ei.

ẑ(E1) = 0.572206

ẑ(E2) = 0.524423

ẑ(E3) = 0.547417

ẑ(E4) = 0.524395

ẑ(E5) = 0.549033

Step 8: Rank according to score values.

E1 � E5 � E3 � E2 � E4

So,
L ג

1 � L ג
5 � L ג

3 � L ג
2 � L ג

4

L ג
1 is the best alternative among all other alternatives.
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5.2. Comparison Analysis

In this section, we compare our proposed AOs with several existing AOs. By applying
our proposed AOs to the data and obtaining comparable optimal solutions, we demonstrate
their validity and durability. Our technique is advantageous over some existing AOs
because it operates in a fair and neutral manner for SVNNs, making it more practical.
After applying our proposed AOs, we obtain the ranking L ג

4 � L ג
3 � L ג

2 � L ג
1 �

L ג
5. To validate our optimal solution, we also run the problem through other existing

operators. The fact that we reach the same optimum conclusion using both our proposed
AOs and other existing AOs demonstrates the validity of our proposed AOs. Table 9
provides a comparison of our suggested AOs with some current operators.

Table 9. Comparison of proposed AOs with some existing operators.

Authors AOs Ranking of Alternatives The Optimal Alternative

Wu at el. [11] SNNPWA L ג
1 � L ג

5 � L ג
3 � L ג

2 � L ג
4 L ג

1

Garg and Nancy [37] SVNPMM L ג
1 � L ג

5 � L ג
3 � L ג

2 � L ג
4 L ג

1

Wei snd Wei [36] SVNDPWA L ג
1 � L ג

5 � L ג
3 � L ג

2 � L ג
4 L ג

1

Liu [59] SVNNWA L ג
1 � L ג

5 � L ג
3 � L ג

2 � L ג
4 L ג

1

Li at el. [34] SNNEWA L ג
1 � L ג

5 � L ג
3 � L ג

2 � L ג
4 L ג

1

Nancy and Garg [27] SVNFWA L ג
1 � L ג

5 � L ג
3 � L ג

2 � L ג
4 L ג

1

Li at el. [29] IGWHM L ג
1 � L ג

5 � L ג
3 � L ג

2 � L ג
4 L ג

1

Wei and Zhang [32] SVNWBPM L ג
1 � L ג

5 � L ג
3 � L ג

2 � L ג
4 L ג

1

Wei and Wei [36] SVNDPWA L ג
1 � L ג

5 � L ג
3 � L ג

2 � L ג
4 L ג

1

Garg and Nancy [41] L-SVNWA L ג
1 � L ג

5 � L ג
3 � L ג

2 � L ג
4 L ג

1

Peng at el. [26] SNNWA L ג
1 � L ג

5 � L ג
3 � L ג

2 � L ג
4 L ג

1

Proposed Algorithm SVNPIWA L ג
1 � L ג

5 � L ג
3 � L ג

2 � L ג
4 L ג

1

6. Conclusions

To address the challenges of reducing greenhouse gas emissions, conserving the
environment, and decreasing reliance on fossil fuels, it is essential to transition from fossil
energy to renewable energy sources. Numerous multinational corporations, especially
large conglomerates, have taken the initiative to incorporate renewable energy technologies.
Businesses in Pakistan are becoming increasingly aware of the significance of incorporating
renewable energy sources into their manufacturing and economic activities in order to
achieve sustainable growth. In recent years, there has been a significant increase in the
number of companies actively pursuing the use of renewable energies to satisfy ecological
standards and increase their market competitiveness. However, choosing a suitable energy
source for industrially complex projects is not a straightforward endeavour. It requires a
thorough consideration of various qualitative and quantitative characteristics to ensure that
the renewable energy source selected meets the project’s specific needs and requirements.
Failure to perceive attribute relationships in an uncertain environment might affect the
conclusions of various MCGDM issues. To overcome these challenges, we proposed a
unique method for selecting the ideal sustainable energy alternative using SVN data, in
which the SVNNs accounted for the viewpoint of the decision maker. The judgements of
decision makers were communicated through SVNNs, and the ambiguity and inadequacy
of information were effectively managed. Due to the importance of AOs in decision making,
this paper offers two hybrid AOs: the “single-valued neutrosophic prioritised interactive
weighted averaging (SVNPIWA) operator and the single-valued neutrosophic prioritised
interactive weighted geometric (SVNPIWG) operator”. Some essential characteristics of
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the developed operators were highlighted. Lastly, a comprehensive illustration of the
technique’s possible uses was presented.

In the future, the theoretical framework will be improved by merging several rankings
resulting from different multi-criteria techniques with metamethods. In addition, the
established processes for ranking sustainable energy alternatives will be modified to allow
for estimating uncertainty by employing a range of fuzzy set types. In addition, we want
to develop new hybrid methods for assessing sustainable energy systems by combining
algorithms for calculating weights with MCGDM methodology.
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Appendix A

Appendix A.1

The initial statement enables a straightforward derivation of Definition 9 and Theorem 5,
which we demonstrate in the subsequent section.

SVNPIWA(ℵχ
1,ℵχ

2, . . . ℵχ
r)

=
ζη

1

∑r
k=1 ζη

k
ℵχ

1 ⊕
ζη

2

∑r
k=1 ζη

k
ℵχ

2 ⊕ . . . ,⊕ ζη
r

∑r
k=1 ζη

k
ℵχ

r

=

1−
r

∏
k=1

(
1− (µχ

k)

) ζη
k
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k ,
r

∏
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(
1− (µχ

k)

) ζη
k
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k −
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k
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k ,
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(
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k)
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k
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k −
r
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k=1

(
1− ((µχ

k) + (τχ
k))

) ζη
k

∑r
k=1 ζη

k


The proof of this theorem utilizes mathematical induction to establish its validity.
When k = 2

SVNPIWA(ℵχ
1,ℵχ

2) =
ζη

1

∑r
k=1 ζη

k
ℵχ

1 ⊕
ζη

2

∑r
k=1 ζη

k
ℵχ

2

By interactive laws of SVNNs, we have

ζη
1

∑r
k=1 ζη

k
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1 =

1−
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1− µχ
1
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ζη
2
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k
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Suppose the result holds for k = d
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Now, we shall prove it for k = d + 1
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∏
k=1

(
1− ((µχ

k) + (τχ
k))

) ζη
k

∑r
k=1 ζη

k

.

Appendix A.2

From Definition 9, we have

SVNPIWA(ℵχ
1,ℵχ

2, . . . ℵχ
r) =

ζη
1

∑r
k=1 ζη

k
ℵχ

1 ⊕
ζη

2

∑r
k=1 ζη

k
ℵχ

2 ⊕ . . . ,⊕ ζη
r

∑r
k=1 ζη

k
ℵχ

r

=
ζη

1

∑r
k=1 ζη

k
ℵχ ⊕ ζη

2

∑r
k=1 ζη

k
ℵχ ⊕ . . . ,⊕ ζη

r
∑r
k=1 ζη

k
ℵχ

=
∑r
k=1 ζη

k
∑r
k=1 ζη

k
ℵχ

= ℵχ
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Appendix A.3

Here, ℵχ
1 = (0, 0, 1), then by the SF we have

ẑ(ℵχ
1) = 0

Since,

ζη
q =

q−1

∏
k=1

ẑ(ℵχ
k) (q = 2 . . . , n), and ζη

1 = 1

ẑ(ℵχ
k) is the score of gth SVNN.

Then,

ζη
q = ∏

q−1
k=1 ẑ(ℵχ

k) = ẑ(ℵχ
1)× ẑ(ℵχ

2)× . . .× ẑ(ℵχ
q−1) = 0× ẑ(ℵχ

2)× . . .× ẑ(ℵχ
q−1), (q = 2 . . . , n)∏k=1 ζη

k = 1

From Definition 9, we have

SVNPIWA(ℵχ
1,ℵχ

2, . . . ℵχ
r) =

ζη
1

∑r
k=1 ζη

k
ℵχ

1 ⊕
ζη

2

∑r
k=1 ζη

k
ℵχ

2 ⊕ . . . ,⊕ ζη
r

∑r
k=1 ζη

k
ℵχ

r

=
1
1
ℵχ

1 ⊕
0
1
ℵχ

2 ⊕ . . .
0
1
ℵχ

r

= ℵχ
1 = (0, 0, 1)

Appendix A.4

Here, µχ∗
k ≥ µχ

k, ∀g
If µχ∗

k ≥ µχ
k.

⇔ (µχ∗
k) ≥ (µχ

k)⇔ (µχ∗
k) ≥ (µχ

k)⇔ 1− (µχ∗
k) ≤ 1− (µχ

k)

⇔ (1− (µχ∗
k))

ζη
k

∑r
k=1 ζη

k ≤ (1− (µχ
k))

ζη
k

∑r
k=1 ζη

k

⇔ ∏r
k=1(1− (µχ∗

k))
ζη

k
∑r
k=1 ζη

k ≤ ∏r
k=1(1− (µχ

k))
ζη

k
∑r
k=1 ζη

k

⇔ 1−∏r
k=1(1− (µχ

k))
ζη

k
∑r
k=1 ζη

k ≤ 1−∏r
k=1(1− (µχ∗

k))
ζη

k
∑r
k=1 ζη

k

Now, we take
µχ∗

k ≥ µχ
k and νχ∗

k ≤ νχ
k, ∀g

If µχ∗
k ≥ µχ

k.
⇔ (µχ∗

k) ≥ (µχ
k)⇔ (µχ∗

k) ≥ (µχ
k)⇔ 1− (µχ∗

k) ≤ 1− (µχ
k)

⇔ (1− (µχ∗
k))

ζη
k

∑r
k=1 ζη

k ≤ (1− (µχ
k))

ζη
k

∑r
k=1 ζη

k

⇔ ∏r
k=1(1− (µχ∗

k))
ζη

k
∑r
k=1 ζη

k −∏r
k=1

(
1− ((µχ∗

k) + (νχ∗
k))

) ζη
k

∑r
k=1 ζη

k ≤

∏r
k=1(1− (µχ

k))
ζη

k
∑r
k=1 ζη

k −∏r
k=1

(
1− ((µχ

k) + (νχ
k))

) ζη
k

∑r
k=1 ζη

k

Now, again we take
µχ∗

k ≥ µχ
k and τχ∗

k ≤ τχ
k, ∀g

If µχ∗
k ≥ µχ

k.
⇔ (µχ∗

k) ≥ (µχ
k)⇔ (µχ∗

k) ≥ (µχ
k)⇔ 1− (µχ∗

k) ≤ 1− (µχ
k)

⇔ (1− (µχ∗
k))

ζη
k

∑r
k=1 ζη

k ≤ (1− (µχ
k))

ζη
k

∑r
k=1 ζη

k

⇔ ∏r
k=1(1− (µχ∗

k))
ζη

k
∑r
k=1 ζη

k −∏r
k=1

(
1− ((µχ∗

k) + (τχ∗
k))

) ζη
k

∑r
k=1 ζη

k ≤
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∏r
k=1(1− (µχ

k))
ζη

k
∑r
k=1 ζη

k −∏r
k=1

(
1− ((µχ

k) + (τχ
k))

) ζη
k

∑r
k=1 ζη

k

Let
ℵχ = SVNPIWA(ℵχ

1,ℵχ
2, . . . ℵχ

r)

and
ℵχ∗ = SVNPIWA(ℵχ∗

1 ,ℵχ∗
2 , . . . ℵχ∗

r )

One can obtain that ℵχ∗ ≥ ℵχ. So,

SVNPIWA(ℵχ
1,ℵχ

2, . . . ℵχ
r) ≤ SVNPIWA(ℵχ∗

1 ,ℵχ∗
2 , . . . ℵχ∗

r )

Appendix A.5

Here, we provide proof of part 1 and part 3,
1. By Theorem 5,

SVNPIWA(ℵχ
1 ⊕ ℵχ,ג$̆˘

2 ⊕ ,ג$̆˘ . . . ℵχ
r ⊕ (ג$̆˘

=

(
(1−

r

∏
k=1

(
(1− µχ

k)(1− (µχ
ג$̆˘
))
) ζη

k
∑r
k=1 ζη

k ,

r

∏
k=1

(
(1− µχ

k)(1− (µχ
ג$̆˘
))
) ζη

k
∑r
k=1 ζη

k−
r

∏
k=1

(
(1− ((µχ

k) + (νχ
k))(1− ((µχ

$ג̆˘
) + (νχ

$ג̆˘
))))

) ζη
k

∑r
k=1 ζη

k ,

r

∏
k=1

(
(1− µχ

k)(1− (µχ
ג$̆˘
))
) ζη

k
∑r
k=1 ζη

k−
r

∏
k=1

(
(1− ((µχ

k) + (τχ
k))(1− ((µχ

ג$̆˘
) + (τχ

ג$̆˘
))))

) ζη
k

∑r
k=1 ζη

k

)

=

(
(1−

(
1− (µχ

ג$̆˘
)
) ζη

k
∑r
k=1 ζη

k
r

∏
k=1

(
1− (µχ

k)
) ζη

k
∑r
k=1 ζη

k ,
(
(1− (µχ

ג$̆˘
))
) ζη

k
∑r
k=1 ζη

k

r

∏
k=1

(
(1− µχ

k)
) ζη

k
∑r
k=1 ζη

k−
(

1− ((µχ
ג$̆˘
) + (νχ

ג$̆˘
))
) ζη

k
∑r
k=1 ζη

k
r

∏
k=1

(1− ((µχ
k) + (νχ

k)))
ζη

k
∑r
k=1 ζη

k ,

(
(1− (µχ

ג$̆˘
))
) ζη

k
∑r
k=1 ζη

k
r

∏
k=1

(
(1− µχ

k)
) ζη

k
∑r
k=1 ζη

k −
(

1− ((µχ
ג$̆˘
) + (τχ

ג$̆˘
)

))
ζη

k
∑r
k=1 ζη

k ∏ r
k=1(1− ((µχ

k) + (τχ
k)))

ζη
k

∑r
k=1 ζη

k

=

(
(1−

(
1− (µχ

ג$̆˘
)
) r

∏
k=1

(
1− (µχ

k)
) ζη

k
∑r
k=1 ζη

k ,
(
(1− (µχ

ג$̆˘
))
) r

∏
k=1

(
(1− µχ

k)
) ζη

k
∑r
k=1 ζη

k

−
(

1− ((µχ
ג$̆˘
) + (νχ

ג$̆˘
))
) r

∏
k=1

(1− ((µχ
k) + (νχ

k)))
ζη

k
∑r
k=1 ζη

k ,

(
(1− (µχ

ג$̆˘
))
) r

∏
k=1

(
(1− µχ

k)
) ζη

k
∑r
k=1 ζη

k

−
(

1− ((µχ
ג$̆˘
) + (τχ

ג$̆˘
))
) r

∏
k=1

(1− ((µχ
k) + (τχ

k)))
ζη

k
∑r
k=1 ζη

k

)

Now, by operational laws of SVNNs,
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SVNPIWA(ℵχ
1,ℵχ

2, . . . ℵχ
r)⊕ ג$̆˘

=

1−
r

∏
k=1

(
1− (µχ

k)

) ζη
k

∑r
k=1 ζη

k ,
r

∏
k=1

(
1− (µχ

k)

) ζη
k

∑r
k=1 ζη

k −
r

∏
k=1

(
1− ((µχ

k) + (νχ
k))

) ζη
k

∑r
k=1 ζη

k ,

r

∏
k=1

(
1− (τχ

k)

) ζη
k

∑r
k=1 ζη

k −
r

∏
k=1

(
1− ((τχ

k) + (νχ
k))

) ζη
k

∑r
k=1 ζη

k

⊕ 〈µχ
ג$̆˘

, νχ
ג$̆˘

, τχ
ג$̆˘
〉

=

(
(1−

(
1− (µχ

ג$̆˘
)
) r

∏
k=1

(
1− (µχ

k)
) ζη

k
∑r
k=1 ζη

k ,

(
(1− (µχ

ג$̆˘
))
) r

∏
k=1

(
(1− µχ

k)
) ζη

k
∑r
k=1 ζη

k−
(

1− ((µχ
ג$̆˘
) + (νχ

ג$̆˘
))
) r

∏
k=1

(1− ((µχ
k) + (νχ

k)))
ζη

k
∑r
k=1 ζη

k ,

(
(1− (µχ

ג$̆˘
))
) r

∏
k=1

(
(1− µχ

k)
) ζη

k
∑r
k=1 ζη

k−
(

1− ((µχ
ג$̆˘
) + (τχ

ג$̆˘
))
) r

∏
k=1

(1− ((µχ
k) + (τχ

k)))
ζη

k
∑r
k=1 ζη

k

)

Thus,
SVNPIWA(ℵχ

1 ⊕ ℵχ,ג$̆˘
2 ⊕ ,ג$̆˘ . . . ℵχ

r ⊕ (ג$̆˘ = SVNPIWA(ℵχ
1,ℵχ

2, . . . ℵχ
r)⊕ ג$̆˘

3. According to Theorem 5,

SVNPIWA(ℵχ
1 ⊕ ℵχ,1ג$̆˘

2 ⊕ ,2ג$̆˘ . . . ℵχ
r ⊕ (nג$̆˘

=

(
(1−

r

∏
k=1

(
(1− µχ

k)(1− (σk))
) ζη

k
∑r
k=1 ζη

k ,

r

∏
k=1

(
(1− µχ

k)(1− (σk))
) ζη

k
∑r
k=1 ζη

k −
r

∏
k=1

((1− ((µχ
k) + (νχ

k))(1− ((σk) + (ξk)))))
ζη

k
∑r
k=1 ζη

k ,

r

∏
k=1

(
(1− µχ

k)(1− (σk))
) ζη

k
∑r
k=1 ζη

k

−
r

∏
k=1

((1− ((µχ
k) + (τχ

k))(1− ((σk) + (δk)))))
ζη

k
∑r
k=1 ζη

k

)

=

(
(1−

r

∏
k=1

(
1− (σk)

) ζη
k

∑r
k=1 ζη

k
r

∏
k=1

(
1− µχ

k

) ζη
k

∑r
k=1 ζη

k ,

r

∏
k=1

(
(1− µχ

k)
) ζη

k
∑r
k=1 ζη

k
r

∏
k=1

(
(1− (σk))

) ζη
k

∑r
k=1 ζη

k

−
r

∏
k=1

((1− ((µχ
k) + (νχ

k)))
ζη

k
∑r
k=1 ζη

k
r

∏
k=1

((1− ((σk) + (ξk)))))
ζη

k
∑r
k=1 ζη

k ,

r

∏
k=1

(
(1− µχ

k)
) ζη

k
∑r
k=1 ζη

k
r

∏
k=1

(
(1− (σk))

) ζη
k

∑r
k=1 ζη

k

−
r

∏
k=1

((1− ((µχ
k) + (τχ

k)))
ζη

k
∑r
k=1 ζη

k
r

∏
k=1

((1− ((σk) + (δk)))))
ζη

k
∑r
k=1 ζη

k

)

Now,
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SVNPIWA(ℵχ
1,ℵχ

2, . . . ℵχ
r)⊕ SVNPIWA( ,1ג$̆˘ ,2ג$̆˘ . . . (rג$̆˘

=

1−
r

∏
k=1

(
1− (µχ

k)

) ζη
k

∑r
k=1 ζη

k ,
r

∏
k=1

(
1− (µχ

k)

) ζη
k

∑r
k=1 ζη

k −
r

∏
k=1

(
1− ((µχ

k) + (νχ
k))

) ζη
k

∑r
k=1 ζη

k ,

r

∏
k=1

(
1− (µχ

k)

) ζη
k

∑r
k=1 ζη

k −
r

∏
k=1

(
1− ((µχ

k) + (τχ
k))

) ζη
k

∑r
k=1 ζη

k


⊕1−

r

∏
k=1

(
1− (σk)

) ζη
k

∑r
k=1 ζη

k ,
r

∏
k=1

(
1− (σk)

) ζη
k

∑r
k=1 ζη

k −
r

∏
k=1

(
1− ((σk) + (ξk))

) ζη
k

∑r
k=1 ζη

k ,

r

∏
k=1

(
1− (σk)

) ζη
k

∑r
k=1 ζη

k −
r

∏
k=1

(
1− ((σk) + (δk))

) ζη
k

∑r
k=1 ζη

k


=

(
(1−

r

∏
k=1

(
1− (σk)

) ζη
k

∑r
k=1 ζη

k
r

∏
k=1

(
1− µχ

k

) ζη
k

∑r
k=1 ζη

k ,

r

∏
k=1

(
(1− µχ

k)
) ζη

k
∑r
k=1 ζη

k
r

∏
k=1

(
(1− (σk))

) ζη
k

∑r
k=1 ζη

k −
r

∏
k=1

((1− ((µχ
k) + (νχ

k)))
ζη

k
∑r
k=1 ζη

k

r

∏
k=1

((1− ((σk) + (ξk)))))
ζη

k
∑r
k=1 ζη

k ,
r

∏
k=1

(
(1− µχ

k)
) ζη

k
∑r
k=1 ζη

k
r

∏
k=1

(
(1− (σk))

) ζη
k

∑r
k=1 ζη

k

−
r

∏
k=1

((1− ((µχ
k) + (τχ

k)))
ζη

k
∑r
k=1 ζη

k
r

∏
k=1

((1− ((σk) + (δk)))))
ζη

k
∑r
k=1 ζη

k

)

Thus, SVNPIWA(ℵχ
1⊕ ℵχ,2ג$̆˘

2⊕ ,2ג$̆˘ . . . ℵχ
r⊕ (rג$̆˘ = SVNPIWA(ℵχ

1,ℵχ
2, . . . ℵχ

r)⊕
SVNPIWA( ,1ג$̆˘ ,2ג$̆˘ . . . (rג$̆˘

Appendix B

Appendix B.1

Definition 10 and Theorem 10 are easily preceded by the first statement. This is shown
in the following parts.

SVNPIWG(ℵχ
1,ℵχ

2, . . . ℵχ
r)

=ℵχ

ζη
1

∑r
k=1 ζη

k
1 ⊗ ℵχ

ζη
2

∑r
k=1 ζη

k
2 ⊗ . . . ,⊗ℵχ

ζη
r

∑r
k=1 ζη

k
r

=

 r

∏
k=1

(
1− (νχ

k)

) ζη
k

∑r
k=1 ζη

k −
r

∏
k=1

(
1− ((νχ

k) + (µχ
k))

) ζη
k

∑r
k=1 ζη

k ,

1−
r

∏
k=1

(
1− (νχ

k)

) ζη
k

∑r
k=1 ζη

k , 1−
r

∏
k=1

(
1− (τχ

k)

) ζη
k

∑r
k=1 ζη

k

.

The validity of this theorem is established through the use of mathematical induction.
when k = 2

SVNPIWG(ℵχ
1,ℵχ

2) = ℵχ

ζη
1

∑r
k=1 ζη

k
1 ⊗ ℵχ

ζη
2

∑r
k=1 ζη

k
2

By interactive laws of SVNS, we have
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ℵχ

ζη
1

∑r
k=1 ζη

k
1

=

(1− νχ
1

) ζη
1

∑r
k=1 ζη

k −
(

1− (νχ
1 + µχ

1)

) ζη
1

∑r
k=1 ζη

k , 1−
(

1− νχ
1

) ζη
1

∑r
k=1 ζη

k , 1−
(

1− τχ
1

) ζη
1

∑r
k=1 ζη

k


ℵχ

ζη
2

∑r
k=1 ζη

k
2

=

(1− νχ
2

) ζη
2

∑r
k=1 ζη

k −
(

1− (νχ
2 + µχ

2)

) ζη
2

∑r
k=1 ζη

k , 1−
(

1− νχ
2

) ζη
2

∑r
k=1 ζη

k , 1−
(

1− τχ
2

) ζη
2

∑r
k=1 ζη

k


Then,

SVNPIWG(ℵχ
1,ℵχ

2)

= ℵχ

ζη
1

∑r
k=1 ζη

k
1 ⊗ ℵχ

ζη
2

∑r
k=1 ζη

k
2

=

(1− νχ
1

) ζη
1

∑r
k=1 ζη

k −
(

1− (νχ
1 + µχ

1)

) ζη
1

∑r
k=1 ζη

k , 1−
(

1− νχ
1

) ζη
1

∑r
k=1 ζη

k , 1−
(

1− τχ
1

) ζη
1

∑r
k=1 ζη

k


⊗

(1− νχ
2

) ζη
2

∑r
k=1 ζη

k −
(

1− (νχ
2 + µχ

2)

) ζη
2

∑r
k=1 ζη

k , 1−
(

1− νχ
2

) ζη
2

∑r
k=1 ζη

k , 1−
(

1− τχ
2

) ζη
2

∑r
k=1 ζη

k


=

(1− νχ
1

) ζη
1

∑r
k=1 ζη

k
(

1− νχ
2

) ζη
2

∑r
k=1 ζη

k −
(

1− (νχ
1 + µχ

1)

) ζη
1

∑r
k=1 ζη

k
(

1− (νχ
2 + µχ

2)

) ζη
2

∑r
k=1 ζη

k ,

1−
(

1− νχ
1

) ζη
1

∑r
k=1 ζη

k
(

1− νχ
2

) ζη
2

∑r
k=1 ζη

k , 1−
(

1− τχ
1

) ζη
1

∑r
k=1 ζη

k
(

1− τχ
2

) ζη
2

∑r
k=1 ζη

k


=

 2

∏
k=1

(
1− (νχ

k)

) ζη
k

∑r
k=1 ζη

k −
2

∏
k=1

(
1− (νχ

k + µχ
k)

) ζη
k

∑r
k=1 ζη

k , 1−
2

∏
k=1

(
1− (νχ

k)

) ζη
k

∑r
k=1 ζη

k ,

1−
2

∏
k=1
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k

∑r
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k

.

Assume that the result holds for k = d

SVNPIWG(ℵχ
1,ℵχ

2, . . . ℵχ
d)

=
d⊗

k=1

ℵχ

ζη
k

∑r
k=1 ζη

k
k

= (
d

∏
k=1

(
1− (νχ

k)

) ζη
k

∑r
k=1 ζη

k −
d

∏
k=1

(
1− ((νχ

k) + (µχ
k))

) ζη
k

∑r
k=1 ζη

k ,

1−
d

∏
k=1

(
1− (νχ

k)

) ζη
k

∑r
k=1 ζη

k , 1−
d

∏
k=1

(
1− (τχ

k)

) ζη
k

∑r
k=1 ζη

k
)

Now, we shall prove it for k = d + 1
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SVNPIWG(ℵχ
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2, . . . ℵχ
d,ℵχ

d+1)
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d⊗
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ζη
k

∑r
k=1 ζη

k
k ⊗ ℵχ

ζη
d+1

∑r
k=1 ζη

k
d+1

=

 d

∏
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(
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k)

) ζη
k

∑r
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k −
d

∏
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) ζη
k

∑r
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d
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(
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) ζη
k
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k ,

1−
d

∏
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(
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k

∑r
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k −
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d+1

∑r
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(
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k ,

1−
(

1− τχ
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k


=
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(
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k)
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k −
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k

.

Appendix B.2

From Definition 10, we have

SVNPIWG(ℵχ
1,ℵχ

2, . . . ℵχ
r) = ℵχ

ζη
1

∑r
k=1 ζη

k
1 ⊗ ℵχ

ζη
2

∑r
k=1 ζη

k
2 ⊗ . . . ,⊗ℵχ

ζη
r

∑r
k=1 ζη

k
r

= ℵχ
ζη

1
∑r
k=1 ζη

k ⊗ ℵχ
ζη

2
∑r
k=1 ζη

k ⊗ . . . ,⊗ℵχ
ζη

r
∑r
k=1 ζη

k

= ℵχ
∑r
k=1 ζη

k
∑r
k=1 ζη

k

= ℵχ

Appendix B.3

Here, ℵχ
1 = (0, 0, 1), then by definition of the SF we have

ẑ(ℵχ
1) = 0

Since,

ζη
q =

q−1

∏
k=1

ẑ(ℵχ
k) (q = 2 . . . , n), and ζη

1 = 1

ẑ(ℵχ
k) is the score of gth SVNN.

Then,

ζη
q =

q−1

∏
k=1

ẑ(ℵχ
k) = ẑ(ℵχ

1)× ẑ(ℵχ
2)× . . .× ẑ(ℵχ

q−1) = 0× ẑ(ℵχ
2)× . . .× ẑ(ℵχ

q−1)(q = 2 . . . , n) ∏
k=1

ζη
k = 1

From Definition 9, we have
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SVNPIWG(ℵχ
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2, . . . ℵχ
r) = ℵχ

ζη
1

∑r
k=1 ζη

k
1 ⊗ ℵχ

ζη
2

∑r
k=1 ζη

k
2 ⊗ . . . ,⊗ℵχ

ζη
r

∑r
k=1 ζη

k
r

= ℵχ
1
1
1 ⊗ ℵ

χ
0
1
2 ⊗ . . . ℵχ

0
1
r

= ℵχ
1 = (0, 0, 1)
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