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Abstract: To solve the problem of crane anti-swing, fuzzy PID is a common method. However, the
parameter configuration of fuzzy PID requires a lot of time and effort from professionals. Based on
this, we introduce the LSO algorithm and add the stray operator, which effectively improves its global
search performance. By combining SLSO and fuzzy PID and comparing them with other methods,
this paper confirms that even without the targeted optimization by professionals, the optimization
algorithm can find the appropriate parameter configuration for fuzzy PID which can be effectively
used in the crane anti-swing problem.
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1. Introduction

Fuzzy logic control provides a system theory method for experts to construct lan-
guage information and convert it into control strategies, which can solve many complex
control problems that cannot establish accurate mathematical model systems, so it is an
effective method to deal with imprecision and uncertainty in reasoning system and control
systems [1–5]. Because of this, the parameter setting of fuzzy control has always depended
on the personal ability of experts.

PID control is widely used in various fields because of its advantages of simple struc-
ture, strong stability, and convenient adjustment [6–10]. As the core content of control
system design, PID parameter tuning is the key factor to determine the control effect.
In general, PID parameter tuning can be divided into theoretical calculation tuning and
engineering tuning. The former is mainly based on the mathematical model of the system
and determines the controller parameters through theoretical calculation, but it still needs
to be adjusted and modified on site. The latter mainly adjusts the parameters manually ac-
cording to field operation experience. Because operator experience is not easy to accurately
describe, various semaphores and evaluation indicators in the control process are not easy
to quantitatively express, the adjustment process is not controllable, and the optimization
effect is extremely dependent on personal ability.

Overhead cranes are indispensable in the construction of bridges, docks, and other
buildings. An overhead crane is a typical underactuated system. During the usage, because
the sling cannot fully control the load, the swing of the load may collide with other objects.
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At present, an overhead crane must be operated by experienced workers. However, due to
the inaccuracy of manual operation, it is still impossible to avoid safety accidents. Therefore,
the construction industry needs to design a stable and efficient anti-interference controller
for the bridge crane system and realize automatic control of the bridge crane system. There
are many studies in this field [11–14].

There are many examples of the combination of fuzzy control and PID [15–17], among
which Sun et al. applied it to anti-swing control of an overhead crane, and achieved good
control results [18]. This avoids the problem of the parameter optimization of PID, but
also ushers in new problems. The parameter optimization of fuzzy control is more difficult
than PID. This not only requires optimization personnel to have rich practical experience
but also requires certain knowledge of fuzzy mathematics, which undoubtedly raises the
application threshold of fuzzy control.

In 2016, the lion swarm optimization algorithm was proposed [19]. The lion swarm
optimization algorithm is a nature-inspired algorithm based on the special lifestyle of lions
and their cooperative behaviors [20]. Compared with some algorithms, the lion swarm
optimization algorithm is a new meta-heuristic algorithm, which has the characteristics of
simple operation, fast convergence speed, and a small amount of calculation. Subsequently,
LSO has been continuously optimized or applied in various fields [21–24]. Although LSO
has the characteristics of fast convergence speed and a small amount of calculation, it is
still easy to fall into local optimization to a certain extent. Strengthening the algorithm is
very important for the optimization performance of complex systems, and there are many
papers worthy of reference in this regard [25–29].

PID does not perform well in the control of overhead cranes due to the difficulty in
handling the control of nonlinear systems. After the introduction of fuzzy PID, although
the x-performance is improved, the dependence of fuzzy PID on expert experience limits
its control performance and generalization capability. To improve the performance of
the fuzzy PID controller, we proposed an SLSO algorithm-based fuzzy PID controller
for overhead crane systems. The contribution can be summarized as follows: (1) a stray
operation is introduced to improve the LSO algorithm, which can enhance the population
diversity and further reduce the risk of falling into local optimization, to improve the
convergence accuracy of the algorithm. (2) Adaptive parameter adjustment based on
the SLSO algorithm is designed to eliminate the dependency on experts. In addition,
the effectiveness of adaptive fuzzy parameter configuration was verified via anti-swing
experiments of the overhead crane.

This paper is divided into six sections. The Section 1 is a general introduction. Sec-
tion 2 elaborates on the theoretical model and control formulation of an overhead crane.
Section 3 introduces the LSO algorithm and our improvement, and conducts a comparison
experiment with other algorithms on the test function. Section 4 describes how the SLSO
algorithm is combined with fuzzy PID and applied to the control of overhead cranes.
Section 5 gives the results and analysis of the simulation experiments. Section 6 provides a
summary of this paper and an outlook for future work.

2. Introduction of the Overhead Crane System Model

As shown in Figure 1, the control system controls the horizontal movement of the
trolley on the bridge, and the movement and swing of the load can only be indirectly
controlled by controlling the movement of the trolley.

According to Euler Lagrange method, the dynamic model of an overhead crane is as
follows:

(ml + mc)
..
x + ml l(

..
θ cos θ −

.
θ

2
sin θ) = u (1)

ml cos θ + ml l
..
θ + ml g sin θ = 0 (2)
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where x and θ denote the displacement of the trolley and the swing angle of the load, ml
and mc, respectively, represent the mass of the load and the trolley, l is the length of the
sling, u is the control force exerted on the trolley, and g is the acceleration of gravity.

Setting
.
x = x1,

..
x = x2,

.
θ = x3,

..
θ = x4, the following differential equations can be

obtained by transformation:

.
x1 = x2
.
x2 = ml g cos x3 sin x3+ml l

.
x2

3 sin x3+u
ml+mc−ml cos2 x3.

x3 = x4
.
x4 = ml l

.
x2

3 cos x3 sin x3+(ml+mc)g sin x3+u cos x3
l(ml+mc−ml cos2 x3)

(3)Mathematics 2023, 11, x FOR PEER REVIEW 3 of 19 
 

 

 
Figure 1. The structure diagram of an overhead crane. 
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Figure 1. The structure diagram of an overhead crane.

3. The Stray Lion Swarm Optimization Algorithm

This section will employ many symbols, and their meanings are shown in Table 1.

Table 1. The nomenclature list.

Symbols/Abbreviations Meaning

xk
i the i-th individual in the k-th generation population

pk
i the historical best position of the i-th individual from the 1st to the k-th generation

gk the best position of the k-th generation population
pk

c the individual randomly selected from the k-th generation lioness group
pk

m the individual randomly selected from the k-th generation lion group
q,γ random value, q ∼ N(0, 1), γ ∼ U(0, 1)

α f ,αc disturbance factor
f k[i] the value of the stray individual at the i-th dimension in the k-th generation

3.1. Standard Lion Swarm Optimization Algorithm

In order to search for better solutions, the Lion King will conduct a range search based
on the historical optimal solution. The formula for updating the position is as follows:

xk+1
i = gk(1 + γ‖pk

i − gk‖) (4)

A lioness randomly selects another lioness to cooperate with, and the formula for
updating the position is as follows:

xk+1
i =

pk
i + pk

c
2

(1 + α f γ) (5)
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There are three updating strategies for young lions, namely follow the lioness, follow
the lion king, or leave the location of the group to search for the updated location in reverse.
The formula is as follows:

xk+1
i =


gk+pk

i
2 (1 + αcγ), 0 ≤ q ≤ 1

3
pk

m+pk
i

2 (1 + αcγ), 1
3 < q ≤ 2

3
gk+pk

i
2 (1 + αcγ), 2

3 < q ≤ 1

(6)

where xk
i refers to the i-th individual in the k-th generation population; γ is a random

number generated according to the normal distribution N(0, 1); pk
i is the historical best

position of the i-th individual from the 1st to the k-th generation; gk is the best position of the
k-th generation population; pk

c is randomly selected from the k-th generation lioness group;
pk

m is randomly selected from the k-th generation lion group; q is the uniform random value
generated according to the uniform distribution U [0, 1]; gk = low + up− gk; low and up
are the minimum value and maximum value of each dimension within the range of lion
activity space; α f and αc are the disturbance factor. The calculation method is as follows:

α f = 0.1(up− low)× exp (−30t
T

)
10

(7)

αc = 0.1(up− low)× (
T − t

T
) (8)

where t is the current number of iterations and T is the maximum number of iterations.

3.2. Stray Lion Swarm Optimization Algorithm

Although LSO has the advantages of high search efficiency and fast convergence
speed, it still cannot solve the problem where swarm intelligence can easily fall into local
optimization. In the LSO, most individuals will iterate with the lion king as the core, so it is
difficult to escape when they fall into the local optimal solution.

In this paper, a stray individual is introduced as optimization interference, which can
effectively avoid falling into local optimal solutions and obtain better optimization results
on the premise of ensuring the population size.

3.2.1. Stray Operation in SLSO

The stray individual introduced in this paper deviates from the algorithm as far as
possible in scope. At the same time, to avoid the individual falling into an extremely bad
state, it is necessary to introduce a certain random quantity to ensure the effect. The formula
for each generation of the stray individual is as follows:

f k[i] = ((up[i]− low[i])× γ + 2low[i] + up[i]− gk[i])/2 (9)

where f k[i] is the value of the stray individual at the i-th dimension in the k-th generation.
up[i]/low[i] is the upper/lower limit at the i-th dimension. gk[i] is the value of the lion
king at the i-th dimension in the k-th generation.

3.2.2. Iteration Strategy of the Lion Swarm in SLSO

To avoid the negative impact of dissociated individuals on the population, this paper
sets a participation probability. When the probability is met, the cubs and females will be
updated according to the new formula. In general, this probability is set to 0.1. Formula (11)
is the new iterative strategy of the female lion, and Formula (12) is the new iterative strategy
of the young lion.

xk+1
i =

pk
i + f k

2
(10)
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xk+1
i =


gk+ f k

2 , 0 ≤ q ≤ 1
3

xk
i + f k

2 , 1
3 < q ≤ 2

3
xk

i + f k

2 , 2
3 < q ≤ 1

(11)

where f k is the stray individual in the k-th generation. xk+1
i = low + up− xk

i .

3.2.3. Convergence Proof of SLSO

The SLSO algorithm is improved based on the LSO algorithm, and this paper first
makes a proof of the convergence of the LSO algorithm. The proof refers to reference [30].

(1) Markov chain model of the LSO algorithm

The position update of each individual is obtained by Gaussian sampling, where the
position update distribution of the lion king is xi(t + 1) ∼ N(g, |pi, g|2) .

The position update distribution of the lioness is xi(t + 1) ∼ N( Pi+Pc
2 , α2

f ).
The position update distribution of the young lion is as follows:

xi(t + 1) ∼


N( g+pi

2 , α2
c ), q < 1/3

N( pc+pi
2 , α2

c ), 1/3 ≤ q < 2/3
N( g+pi

2 , α2
c ), 2/3 ≤ q < 1

In which q = rand [0,1).
To illustrate the Markov chain model of the LSO algorithm, the following definitions

and mathematical descriptions are given.

Definition 1. Lion swarm state and state space. The set of all states in the pride constitutes the
state space of the pride, denoted as follows:

|s = (x1, x2, · · · , xi, · · · xN)|xi = (xi1, xi2, · · · , xid, · · · , xiD), 1 ≤ i ≤ N, 1 ≤ d ≤ D

Definition 2. State transfer of individuals, For ∀xi ∈ s, xj ∈ s, the lion is transferred from
state xi to state xj in one step, denoted as Ts(xi) = xj.

Theorem 1. Transfer probability of the LSO algorithm:

P(Ts(xi) = xj) =


Pm(Ts(xi) = xj), lion− king
Pf (Ts(xi) = xj), lioness
Pc(Ts(xi) = xj), young− lion

Proof. The corresponding one-step transfer probabilities are different because of the
different ways to update the positions of the three lions. The lions’ positions can be
viewed as a set of points in the hyperspace, and the position update process is a point set
transformation in the hyperspace. For computational convenience, let the changed point
set obey a uniform distribution U(−1,1) so that the transfer probability of the male lion can
be obtained. The transfer probability of the lion king is shown as follows:

Pm(Ts(xi) = xj) =

{
1

2(|g−pi |)
, xj ∈ [g−

∣∣∣g− pi

∣∣∣, g+
∣∣∣g− pi

∣∣∣]
0, esle

(12)
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The transfer probability of the lioness is shown as follows:

Pm(Ts(xi) = xj) = 1
2α f (|pc−pi|) , xj ∈ [ pi+pc

2 − α f

∣∣∣∣pc − pi

∣∣∣∣, pi+pc
2 + α f

∣∣∣∣pc − pi

∣∣∣∣]
0, esle

(13)

The transfer probability of the young lion is shown as follows:

Pc(Ts(xi) = xj) =
1

2αc(|g−pi |)
, xj ∈ [ pi+g

2 − αc

∣∣∣g− pi

∣∣∣, pi+g
2 + αc

∣∣∣g− pi

∣∣∣]
1

2αc(|pm−pi |)
, xj ∈ [ pi+g

2 − αc

∣∣∣pm − pi

∣∣∣, pi+g
2 + αc

∣∣∣pm − pi

∣∣∣]
1

2(|g−pi |)
, xj ∈ [ pi+g

2 −
∣∣∣g− pi

∣∣∣, pi+g
2 +

∣∣∣g− pi

∣∣∣]
(14)

�

Definition 3. State transfer probabilities of lion swarm. For ∀si ∈ S and ∀sj ∈ S, S is the set of
lion pride states, and the probability of a lion pride transferring from si to sj in one step, denoted

as Ts(si) = sj, is P(Ts(si) = sj) =
N
∏
i=1

P(Ts(si) = xi
j).

where N is the number of individuals in the pride, and xi
j is the state corresponding to

individual xi. The one-step transfer probability of the pride state in the LSO algorithm is
the simultaneous transfer of the states of all lions in the pride.

(2) Convergence analysis of the LSO algorithm

According to the authors in [31], the definitions of Markov chain, finite Markov chain,
and chi-square Markov chain are no longer given in this paper; see [31] for details.

Theorem 2. The population sequence generated by the LSO algorithm {s(t), t ≥ 0} is a finite
chi-square Markov chain, where t is the number of iterations.

Proof.

1. According to Definition 3, in the population sequence {s(t), t ≥ 0}, ∀s(t) ∈ S and
∀s(t + 1) ∈ S, the transfer probability P(Ts(s(t)) = s(t + 1)) is determined by the
transfer probability P(Ts(x(t)) = x(t + 1)) of all lions.

2. According to Theorem 1, the state transfer probability of any lion in the pride is
only related to the state at moment t and other randomly selected individuals in the
population at moment t. Therefore, P(Ts(x(t)) = x(t + 1)) is only related to the state
at moment t, but not to t.

3. According to 1 and 2, it can be seen that the population sequence generated by the
LSO algorithm has Markov property, and because the state space {s(t), t ≥ 0} of
the lion population is finite, according to the definition of finite Markov chain, the
population sequence {s(t), t ≥ 0} generated by the LSO algorithm constitutes a finite
Markov chain.

4. According to Theorem 1, P(Ts(s(t)) = s(t + 1)) is also only related to the state at
moment t of s, but not to t. Therefore, the population sequence produced by the LSO
algorithm {s(t), t ≥ 0} is a finite chi-square Markov chain.

�

According to the authors in [32], it is known that the stochastic algorithm converges
globally, and the LSO algorithm is a stochastic search algorithm, so this paper will deter-
mine the convergence of the LSO algorithm according to the convergence criterion of the
stochastic algorithm.
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(3) Convergence proof of LSO algorithm

Definition 4. The set of optimal states of the lion population is G. Let the optimal solution of the
optimization problem < A, f > be g∗, and define the set of optimal states of the lion swarm as
follows: G = {s = (x1, x2, · · · xi, · · · , xN)| f (xi = f (g∗), xi ∈ S, s ∈ S)}. If G = S, then every
solution in the feasible space is not only a feasible solution, but also an optimal solution. At this
point, the iteration is meaningless, the following discussion of G ⊂ S.

Theorem 3. The optimal set of lion states G of the lion group algorithm is a closed set on the state
space S.

Proof. ∀si ∈ G, sj /∈ G, sj ∈ S, the transfer probability of Ts(si) = sj is P(Ts(si) = sj) =
N
∏
i=1

P(Ts(si) = xi
j).

At least one lion state in G is optimal, and let g∗ ∼ xi0k be the optimal state, i.e., at
least ∃xi0k ∈ G, P(TS(xi0k) = xjk) = 0.

At this point, P(Ts(si) = sj) = 0, so the set of optimal lion swarm states G is a closed
set on the state space S. �

Theorem 4. There is no nonempty closed set M in the state space S of the lion population such
that M ∩ G = ϕ.

Proof. Suppose there exists a nonempty closed set M in the state space S, and M ∩ G = ϕ,
let si = s(g∗, g∗, · · · , g∗) ∈ G, sj = (xj1,xj2, · · · , xjd) ∈ M, and we have f (xj) > f (g∗).

According to the Chapman–Kolmogorov equation, we can obtain the result as follows:

Pl
sj ,si

= ∑
sr1∈S
· · · ∑

srl−1∈S
P(TS(sj) = sr1)P(TS(sr1) = sr2) · · · P(TS(srl−1) = sri) (15)

The algorithm will satisfy the conditions (12)–(14) in Theorem 1 after finitely many
iterations of m. Therefore, the one-step transfer probability of each term of the expansion
in Equation (15) satisfies P(Ts(src+j) = src+j+1) > 0 when the step size is large enough.

Therefore, Pl
sj ,si

> 0, which yields that M is not a closed set. Thus, the Markov chain of
lion group states is not approximately separable, and the z-state space S does not contain
closed sets other than G. �

Theorem 5. Assume that the Markov chain has a nonempty closed set E and there does not exist
another nonempty closed set O, such that E ∩O = ϕ, when j ∈ E, there is lim

k→∞
P(xk = j) = πj.

When j /∈ E, there is lim
k→∞

P(xk = j) = 0.

Proof. For the proof process, please refer to [33]. �

Theorem 6. When the iterations within the lion group tend to infinity, the lion group state must
enter the optimal set of states G.

Proof. From Theorems 3–5, Theorem 6 holds. �

Theorem 7. The LSO algorithm can converge to the global optimum.

Proof. The LSO algorithm is stochastic, so the LSO algorithm satisfies the condition of
global convergence of stochastic algorithms H1 [33], and we know from Theorem 6 that the
probability that the LSO algorithm does not search for the global optimal solution for an

infinite number of consecutive times is 0. Then, we have
∞
∏

k=0
(1− uk[B]) = 0.
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where uk[B] is the probability measure of the k-th iteration of the LSO algorithm to
search for a solution to the set B, which satisfies the global convergence condition of the
most taboo algorithm H2 [33]. For the LSO algorithm at each iteration, the update of the
individual historical optimum takes the retention mechanism of the optimal individual,
when the iteration tends to infinity. lim

k→∞
P(xk ∈ Rε,M) = 1. {xk}∞

k=0 is the sequence

generated by the iteration of the LSO algorithm, according to the global convergence of
the stochastic search algorithm. It can be concluded that the LSO algorithm is globally
convergent. �

Theorem 8. The SLSO algorithm is globally convergent.

Proof. The dissociation operator only sets up a stray individual outside the population
and jointly searches for non-optimal solutions within the population at low probability
(probability = 0.1). This means that the population sequence convergence of the SLSO
algorithm with size n is equivalent to the population sequence convergence of the LSO
algorithm with size 10n/9. The SLSO algorithm proposed in this article still meets the
following requirements:

1. The population evolution direction in the SLSO algorithm is monotonic, i.e., F(X(n +
1)) ≤ F(X(n))

2. The population sequence of the SLSO algorithm {X(n), n /∈ N+} is a homogeneous
Markov chain

3. The Markov chain of the SLSO algorithm {X(n), n /∈ N+} converges with probability 1

to a subset of the satisfactory population M M0 = M∗0 =
{

Y = (y1, . . . , yNp)
∣∣∣yi ∈ M∗

}
in the solution space, i.e., lim

n→∞
P(X(n) ∈ M∗0

∣∣∣X(0) = X0) = 1 .

Therefore, it can be inferred that the SLSO algorithm in this paper converges.
The relevant symbols are common symbols for the convergence proof of swarm

intelligence algorithms, and there will be no expansion explanation here. �

3.3. Numerical Experiments

To verify the performance of the SLSO presented in this paper, six well-known bench-
mark functions are used. For comparison, the standard LSO, standard GA, and standard
PSO algorithms are adopted during the test process.

For a fair comparison, the population = 50, dimension = 10, number of iterations = 100,
and each algorithm runs 50 times for each test function. Some of these benchmark functions
are lower than 10 dimensions. Since the goal of this paper is to optimize the parameter
configuration of ADRC, all benchmark functions have been increased to 10 dimensions
for calculation. We take the average of the results of 50 runs as the result to eliminate
the uncertain factors in the search process. The final iteration result is compared with the
number of iterations used to achieve the optimized iteration result, and the results are
shown in Table 2. Information on these benchmark functions is shown in Table 2, too.

Table 2. Comparative results of benchmark functions.

Function
Name

SLSO Standard LSO GA PSO Min
ValueAvg_Result Std Avg_Result Std Avg_Result Std Avg_Result Std

Schwefel 3.55 × 103 5.05 × 104 3.66 × 103 6.36 × 10 3.64 × 103 5.75 3.61 × 103 1.44 × 10 0
Styblinski

Tang −2.69 × 10 6.01 × 10−4 −1.48 × 10 4.21 −8.58 2.92 −2.68 × 10 1.02 × 10−10 −2.903534

Beale 1.01 × 10−5 1.53 × 10−5 2.23 × 10−5 1.58 × 10−1 2.69 × 10−3 4.37 × 10−3 5.69 × 10−5 2.81 × 10−11 0
Easom −9.99 × 10−1 3.15 × 10−5 −9.84 × 10−1 8.89 × 10−2 −1.07 × 10−2 7.57 × 10−2 −2.00 × 10−2 1.41 × 10−1 −1

Eggholder −9.42 × 102 2.66 × 10 −8.95 × 102 6.58 × 10 −8.66 × 102 1.12 × 102 −7.12 × 102 9.21 × 10 −959.6407
Holder_table −1.85 × 10 4.74 × 10−1 −1.82 × 10 1.13 −1.74 × 10 1.52 −1.83 × 10 4.15 × 10−1 −19.2085
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Please note that it is not that there are no more experiments, but that most of the test
functions are not difficult to optimize for LSO. Therefore, we only select functions with
poor LSO performance to show the improvement effect.

Figure 2 shows the convergence curves of four algorithms with benchmark functions,
and shows the performance of the SLSO more intuitively and clearly. From Figures 2–7,
we can find that in Function Eason, the LSO obtains a worse result than GA, but the SLSO
obtains a better result than the other three methods.
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In Function Styblinski_Tang, Beale, Eggholder, and Holder_table, the LSO works
worse than PSO, but better than GA. However, after being improved, it works better
than PSO.

In Function Schwefel, we can find that LSO works worst, and the SLSO works best.
We can find that in Table 2, the standard deviation of the results of the function

based on the SLSO algorithm for finding the best is smaller than that of the LSO-based,
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which means that SLSO can find the optimal solution more stably, rather than relying on
randomness.

In conclusion, SLSO can not only further improve the optimization results of LSO, but
also perform well in the face of functions where LSO is not good at optimizing. Therefore,
we can think that the improvement in this paper not only improves the accuracy of the
algorithm, but also improves the applicability of the algorithm, and the improvement effect
is ideal.

4. Designing of SLSO-Based Fuzzy PID
4.1. Fuzzy PID of Overhead Crane

The structure of fuzzy PID is shown in Figure 8. By calculating the system error e(t)
and error change rate ec(t), and combining them with expert experience, the change rates
of Kp, Ki and Kd can be deduced through fuzzy rules.
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The value ranges of e(t), ec(t) and the fuzzy domains of Kp, Ki, and Kd are [−10, 10],
[−10, 10], and [−6, 6], respectively. Generally speaking, fuzzy rules include {NB, NM, NS,
NZ, ZO, PZ, PS, PM, PB}, and may contain different numbers of fuzzy rules according to
different situations. The update method of Kp, Ki, and Kd is shown in Formula (16).

Kp = K′p + ∆Kp, Ki = K′ i + ∆Ki, Kd = K′d + ∆Kd (16)

The fuzzy rules of Kp, Ki, and Kd are shown in Tables 3–5.

Table 3. Fuzzy RULES of Kp.

e(t)()
∆kp
ec(t)

NB NM NS Z PS PM PB

NB PB PB PB PB PM PS Z
NM PM PM PS PS PS Z Z
NS PM PS Z Z Z NS NM
Z PS PS Z Z Z NM NB
PS NM NS Z Z Z PS PM
PM Z Z PS PM PM PB PB
PB Z PS PB PB PB PB PB
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Table 4. Fuzzy RULES of Ki.

e(t)()
∆ki
ec(t)

NB NM NS Z PS PM PB

NB PB PB PB PB PM PS Z
NM PB PB PB PM PS Z Z
NS PB PM PS PS Z NS NM
Z NM NS Z Z Z NS NM
PS NM NS Z PS PS PM PB
PM Z Z PS PM PM PB PB
PB Z PS PB PB PB PB PB

Table 5. Fuzzy RULES of Kd.

e(t)()
∆kd
ec(t)

NB NM NS Z PS PM PB

NB PB PM PS PB NB NB NB
NM PM PS Z PS NB NS Z
NS PB PM Z PS PS PM PB
Z PB Z PS PS PS PM PB
PS PB PM PS Z PS PM PB
PM Z NS NM NS Z PS PM
PB NB NB NB NS PS PM PB

4.2. SLSO-Based Fuzzy PID

The fuzzy rule setting of fuzzy PID can be obtained quickly according to expert
experience, but the value setting needs repeated debugging.

In this paper, SLSO is introduced to the interval design of fuzzy numbers.
For PID control, three rules require fuzzy control, each with two input parameters

and one output parameter. Each parameter has seven situations and is controlled by seven
arrays. Due to the symmetry of the parameters themselves, each parameter requires six
numbers to control.

The interval of parameters is determined; therefore, the optimization of fuzzy rules
can be transformed into the segmentation of the interval, and the number of segmented
nodes is the number we need. Therefore, we patrol through seven numbers, with a range
of values in the range (0–100). The ratio of the seven numbers is equivalent to the length
ratio between the divided partitions within the interval. In this way, we can obtain the six
numbers of the segmentation interval.

In summary, each interval needs 7 parameters, each fuzzy rule needs 3 intervals, this
experiment has 3 fuzzy rules, so each individual needs to have 63 dimensions to optimize
the parameters of the fuzzy rule. Then, the basic PID parameters also need to be optimized,
which means that the length of each individual is 66.

The objective function is set as the product of the actual travel distance and the
cumulative swing angle.

The steps are as follows:

Step 1 Establish the overhead crane control system.
Step 2 Set the individual length to 66, where the first and the second mean Kp and Kd,

the left mean values of fuzzy rules. The population number to 30, and the number
of iterations to 1000 to initialize the population.

Step 3 Analyze individual values, generate FIS files, read them into the base workspace,
start Simulink, read the output of the simulation, and calculate individual fitness.

Step 4 Set i = i + 1, update individual values according to SLSO.
Step 5 If the obtained parameters meet the termination criteria or i = I_itermax, stop the

algorithm and output the result. Otherwise, return to Step 3.
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Step 6 Save the best individual as FIS files.

where the FIS file is a file type, which is used to save fuzzy rules and values.

5. Simulation Experiment

Generally speaking, in fuzzy PID, a set of fuzzy rules contains dozens of intervals.
To verify the validity of the proposed method, fuzzy PID control based on SLSO, fuzzy

PID control without adjustment, adaptive PID based on the DE algorithm (hereinafter
referred to as PID-DE), and the traditional PID control method are simulated under different
conditions. The conditions are shown in Table 6.

Table 6. Specific experimental conditions.

Conditions 1 2 3 4 5 6

ml/kg 7 7 7 12 12 12

xd 6 12 20 6 12 20

The parameters of the overhead crane are set as MT = 22 kg, l = 1 m, g = 9.81 m/s2.
The parameters of traditional PID are set to (60, 0, 60), and the parameters of PID-DE refer
to the relevant paper [34]. In addition, the relevant parameters of other methods are listed
below.

The values of fuzzy PID are based on SLSO and which, without adjustment, are shown
in Tables 7–10. In addition, the parameters of fuzzy PID based on SLSO are optimized and
set to (31.7, 0, 44.5). The parameters of fuzzy PID without optimization are set to (50, 0,
50) because the up limit is 100 and the low limit is 0 in the process of optimizing the PID
parameters using the SLSO algorithm.

Table 7. Values of fuzzy PID rules Kp based on SLSO.

Name NB NM NS Z

e(t) [−5.829,−4.457] [−5.829,−4.457,−4.114,−2.742] [−4.114,−2.742,−2.4,−1.658] [−2.4,−1.658,1.658,2.4]
ec(t) [−5.143,−4.286] [−5.143,−4.286,−3.429,−2.571] [−3.429,−2.571,−1.714,−0.857] [−1.714,−0.857,0.857,1.714]
∆kp [−8.571,−7.143] [−8.571,−7.143,−5.714,−4.286] [−5.714,−4.286,−2.857,−1.429] [−2.857,−1.429,1.429,2.857]

Name PS PM PB
e(t) [1.658,2.4,2.743,4.114] [2.742,4.114,4.457,5.829] [4.457,5.829]
ec(t) [0.857,1.714,2.571,3.429] [2.571,3.429,4.286,5.143] [4.286,5.143]
∆kp, [1.429,2.857,4.286,5.714] [4.286,5.714,7.143,8.571] [7.143,8.571]

Table 8. Values of fuzzy PID rules Ki based on SLSO.

Name NB NM NS Z

e(t) [−5.143,−4.286] [−5.143,−4.286,−3.429,−2.571] [−3.429,−2.571,−1.714,−0.857] [−1.714,−0.857,0.857,1.714]
ec(t) [−5.073,−4.226] [−5.073,−4.226,−3.339,−2.54] [−3.339,−2.54,−1.614,−0.757] [−1.614,−0.757,0.757,1.614]
∆ki [−9.667,−7.0] [−9.667,−7.0,−6.334,−3.666] [−6.334,−3.666,−3.0,−0.333] [−3.0,−0.333,0.333,3.0]

Name PS PM PB
e(t) [0.857,1.714,2.571,3.429] [2.571,3.429,4.286,5.143] [4.286,5.143]
ec(t) [0.757,1.614,2.54,3.339] [2.54,3.339,4.226,5.073] [4.226,5.073]
∆ki, [0.333,3.0,3.666,6.334] [3.666,6.334,7.0,9.667] [7.0,9.667]
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Table 9. Values of fuzzy PID rules Kd based on SLSO.

Name NB NM NS Z

e(t) [−5.8,−4.2] [−5.8,−4.2,−3.832,−2.232] [−3.832,−2.232,−1.832,−0.232] [−1.832,−0.232,0.232,1.832]
ec(t) [−5.76,−3.84] [−5.76,−3.84,−3.36,−1.44] [−3.36,−1.44,−0.96,0.96] [−1.44,−0.96,0.96,1.44]
∆kd [−9.667,−7.0] [−9.667,−7.0,−6.334,−3.666] [−6.334,−3.666,−3.0,−0.3333] [−3.0,−0.333,0.333,3.0]

Name PS PM PB
e(t) [0.2,1.832,2.232,3.832] [2.232,3.832,4.2,5.8] [4.2,5.8]
ec(t) [−0.96,0.96,1.44,3.36] [1.44,3.36,3.84,5.76] [3.84,5.76]
∆kd, [0.333,3,3.0,3.666,6.334] [3.666,6.334,7.0,9.667] [7.0,9.667]

Table 10. Values of fuzzy PID rules without optimization.

Name NB NM NS Z

e(t) [−5.25,−4.5] [−5.25,−4.5,−3.75,−3] [−3.75,−3,−2.25,−1.5] [−2.25,−0.75,0.75,2.25]
ec(t) [−5.15,−4.3] [−5.15,−4.3,−3.44,−2.58] [−3.44,−2.58,−1.72,−0.86] [−1.72,−0.86,0.86,1.72]
∆kp [−8.58,−7.15] [−8.58,−7.15,−5.72,−4.28] [−5.72,−4.29,−2.86,−1.43] [−2.86,−1.43,1.43,2.86]

Name PS PM PB
e(t) [1.5,2.25,3,3.75] [3,3.75,4.5,5.25] [4.5,5.25]
ec(t) [0.86,1.72,2.58,3.44] [2.58,3.44,4.3,5.15] [4.3,5.15]
∆kp, [1.43,2.86,4.29,5.72] [4.29,5.72,7.15,8.58] [7.15,8.58]

The clear values of fuzzy PID rules are shown in Tables 7–9. In addition, the values of
fuzzy PID without optimization are shown in Table 10, where parameters are the average
points of the interval. Because the values of fuzzy PID without optimization are set by
average, we just show the values of Kp; the values of Ki and Kd are the same as Kp.

Introducing the parameters obtained by the SLSO algorithm, the comparative simula-
tion experiment is implemented, and the simulation results are shown below.

From Figures 9–14, we can see that, compared to PID without optimized parameters,
fuzzy PID without targeted configuration of fuzzy rules has advantages over ordinary PID
in swing-angle control, but its anti-swing performance is worse than the PID-DE. In terms
of distance control, its oscillation amplitude is larger than that of ordinary PID. This can
prove that fuzzy control lacks usability without parameter optimization.
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However, in the fuzzy PID, where only basic rules are specified and specific parameters
are optimized by the algorithm, its distance control completely exceeds the PID-DE. Most
intuitively, the distance of the fuzzy PID almost does not exceed the maximum distance,
which is very important in practical applications, meaning that collisions will not occur.

At the same time, the swing angle of the fuzzy PID is also well controlled, which
means that the suspended object can reach the endpoint in a very stable attitude.

We conducted comparative experiments on both distance and counterweight dimen-
sions, and the experimental results showed that in both cases, the fuzzy PID control based
on SLSO parameter configuration can achieve a good anti-swing effect.

6. Conclusions

In this paper, an SLSO-based fuzzy PID controller is designed to suppress the swing
of load during the operation of an overhead crane. To configure the parameter effectively, a
modified lion swarm algorithm, which is based on the stray strategy, verifies the effective-
ness of the improvement on several functions. By implementing simulation experiments
and compared to other adaptive PID methods, the proposed method can dampen the load
angle amplitude and residual swing. More precisely, in distance control, the percentages
of invalid distance for the four methods of fuzzy PID-SLSO, fuzzy PID-non-optimization,
PID-DE, and PID are 3.31%, 35.83%, 10.85%, and 37.03%, respectively. In addition, in the
swing control, the swing angle of PID is set to 1, and the swing amplitudes of the four
methods are 52.87%, 79.63%, 66.37%, and 100%, respectively. The numerical results show
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that the fuzzy PID-SLSO algorithm proposed in this paper has an excellent anti-swing
control effect in an overhead crane system. This proposed method can also be applied
to other under-actuated control systems, such as inverted pendulum systems, pendulum
robots, and autonomous surface vehicles.

Author Contributions: Conceptualization, J.F. and Z.S.; methodology, Z.S.; software, D.X.; validation,
J.L. and J.F.; formal analysis, Z.S.; investigation, J.F. and J.L.; resources, J.L.; data curation, D.X.;
writing—original draft preparation, J.F.; writing—review and editing, Z.S.; visualization, D.X. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
nos. 61972208, 62272239, and 62022044) and the National Natural Science Foundation of Jiangsu
Province (grant nos. BK20201043).

Data Availability Statement: The data used to support the findings of this study are available
from the corresponding author upon request. Some models and codes used during the study are
proprietary or confidential in nature.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kuo, K.Y.; Linb, J. Fuzzy logic control for flexible link robot arm by singular perturbation approach. Appl. Soft Comput. 2003, 2,

24–38. [CrossRef]
2. Lu, Y. Adaptive-Fuzzy Control Compensation Design for Direct Adaptive Fuzzy Control. IEEE Trans. Fuzzy Syst. 2018, 26,

3222–3231. [CrossRef]
3. Ma, M.; Wang, T.; Qiu, J.; Karimi, H.R. Adaptive Fuzzy Decentralized Tracking Control for Large-Scale Interconnected Nonlinear

Networked Control Systems. IEEE Trans. Fuzzy Syst. 2021, 29, 3186–3191. [CrossRef]
4. Chiou, Y.C.; Lan, L.W. Genetic fuzzy logic controller: An iterative evolution algorithm with new encoding method. Fuzzy Sets

Syst. 2005, 152, 617–635. [CrossRef]
5. Jiang, H.; An, T.; Ma, B.; Li, Y.; Dong, B. Value Iteration-based Decentralized Fuzzy Optimal Control of Modular Reconfigurable

Robots via Adaptive Dynamic Programming. In Proceedings of the 2022 5th International Conference on Robotics, Control and
Automation Engineering (RCAE), Changchun, China, 28–30 October 2022; pp. 186–190.

6. Sabir, M.M.; Ali, T. Optimal PID controller design through swarm intelligence algorithms for sun tracking system. Appl. Math.
Comput. 2016, 274, 690–699. [CrossRef]

7. Ismayil, C.; Kumar, R.S.; Sindhu, T.K. Optimal fractional order PID controller for automatic generation control of two—Area
power systems. Int. Trans. Electr. Energy Syst. 2016, 25, 3329–3348. [CrossRef]

8. Zamani, A.A.; Tavakoli, S.; Etedali, S. Fractional order PID control design for semi-active control of smart base-isolated structures:
A multi-objective cuckoo search approach. Isa Trans. 2017, 67, 222. [CrossRef]

9. Garrido, J.; VãZquez, F.; Morilla, F. Multivariable PID control by decoupling. Int. J. Syst. Sci. 2016, 47, 1054–1072. [CrossRef]
10. Xie, M.; Li, X.; Wang, Y.; Liu, Y.; Sun, D. Saturated PID Control for the Optical Manipulation of Biological Cells. IEEE Trans.

Control Syst. Technol. 2017, 26, 1909–1916. [CrossRef]
11. Gao, P.; Wang, Z.; Zhang, Y.; Li, M. Prediction System for Overhead Cranes Based on Digital Twin Technology. Appl. Sci. 2023, 13,

4696. [CrossRef]
12. Lisperguier, N.; López, Á.; Vielma, J.C. Seismic Performance Assessment of a Moment-Resisting Frame Steel Warehouse Provided

with Overhead Crane. Materials 2023, 16, 2815. [CrossRef] [PubMed]
13. Ungureanu, M.; Medan, N.; Ungureanu, N.S.; Pop, N.; Nadolny, K. Tribological Aspects Concerning the Study of Overhead

Crane Brakes. Materials 2022, 15, 6549. [CrossRef] [PubMed]
14. Mustapää, T.; Tunkkari, H.; Taponen, J.; Immonen, L.; Heeren, W.; Baer, O.; Brown, C.; Viitala, R. Secure Exchange of Digital

Metrological Data in a Smart Overhead Crane. Sensors 2022, 22, 1548. [CrossRef] [PubMed]
15. Shi, Q.; Lam, H.K.; Xuan, C.; Chen, M. Adaptive Neuro-Fuzzy PID Controller based on Twin Delayed Deep Deterministic Policy

Gradient Algorithm. Neurocomputing 2020, 402, 183–194. [CrossRef]
16. Wu, W.; Gong, G.; Chen, Y.; Zhou, X. Performance Analysis of Electro-Hydraulic Thrust System of TBM Based on Fuzzy PID

Controller. Energies 2022, 15, 959. [CrossRef]
17. Sun, L.; Ma, J.; Yang, B. Fuzzy PID Design of Vehicle Attitude Control Systems. In Proceedings of the 2020 Chinese Control and

Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 1826–1830.
18. Sun, Z.; Ling, Y.; Sun, Z.; Bi, Y.; Tan, S.; Ding, L. Designing and Application of Fuzzy PID Control for Overhead Crane Systems.

In Proceedings of the 2019 2nd International Conference on Information Systems and Computer Aided Education (ICISCAE),
Dalian, China, 28–30 September 2019; pp. 411–414.

19. Yazdani, M.; Jolai, F. Lion Optimization Algorithm (LOA): A Nature-Inspired Metaheuristic Algorithm. J. Comput. Des. Eng. 2016,
3, 24–36. [CrossRef]

https://doi.org/10.1016/S1568-4946(02)00026-1
https://doi.org/10.1109/TFUZZ.2018.2815552
https://doi.org/10.1109/TFUZZ.2020.3009727
https://doi.org/10.1016/j.fss.2004.11.011
https://doi.org/10.1016/j.amc.2015.11.036
https://doi.org/10.1002/etep.2038
https://doi.org/10.1016/j.isatra.2017.01.012
https://doi.org/10.1080/00207721.2014.911390
https://doi.org/10.1109/TCST.2017.2723344
https://doi.org/10.3390/app13084696
https://doi.org/10.3390/ma16072815
https://www.ncbi.nlm.nih.gov/pubmed/37049109
https://doi.org/10.3390/ma15196549
https://www.ncbi.nlm.nih.gov/pubmed/36233882
https://doi.org/10.3390/s22041548
https://www.ncbi.nlm.nih.gov/pubmed/35214455
https://doi.org/10.1016/j.neucom.2020.03.063
https://doi.org/10.3390/en15030959
https://doi.org/10.1016/j.jcde.2015.06.003


Mathematics 2023, 11, 2170 18 of 18

20. Almezeini, N.; Hafez, A. Task Scheduling in Cloud Computing using Lion Optimization Algorithm. Int. J. Adv. Comput. Sci. Appl.
2017, 8, 77–83. [CrossRef]

21. Zhang, D.Q.; Jiang, M.Y. Parallel discrete lion swarm optimization algorithm for solving traveling salesman problem. J. Syst. Eng.
Electron. 2020, 31, 751–760.

22. Qu, S.; Dou, Y.; Wang, Y.; Sun, R.; Liu, J.; Yang, W. Path Planning of Electric Power Inspection Robot Based on Improved Lion
Swarm Algorithm. In Proceedings of the 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2),
Taiyuan, China, 22–24 October 2021; pp. 3335–3339.

23. Ji, F.; Jiang, M. Tabu Annealing Lion Swarm Optimization Algorithm. In Proceedings of the 2021 International Conference on
Computer Engineering and Artificial Intelligence (ICCEAI), Shanghai, China, 27–29 August 2021; pp. 422–426.

24. Wang, Z.; Wang, Q.; He, D.; Liu, Q.; Zhu, X.; Guo, J. An Improved Particle Swarm Optimization Algorithm Based on Fuzzy PID
Control. In Proceedings of the 2017 4th International Conference on Information Science and Control Engineering (ICISCE),
Changsha, China, 21–23 July 2017; pp. 835–839.

25. Fu, J.; Wang, N.; Zhao, J.H.; Zang, S.C. A Membrane Computing Optimization Algorithm with Multi-Subsystem for Parameter
Estimation of Heavy Oil Thermal Cracking Model. Int. J. Intell. Robot. Appl. 2022, 1, 139–151. [CrossRef]

26. Wang, N.; Wang, D.X.; Xing, Y.Z.; Shao, L.M.; Afzal, S. Application of co-evolution RNA genetic algorithm for obtaining optimal
parameters of SOFC model. Renew. Energy 2020, 150, 221–233.

27. Fu, J.; Zhao, J.H.; Yu, L.D. Self-adaptive membrane computing algorithm and its application in ABS system. Con. Eng. China 2019,
26, 155–161.

28. Zhu, X.H.; Wang, N. Cuckoo search algorithm with membrane communication mechanism for modeling overhead crane systems
using RBF neural networks. Appl. Soft. Comput. 2017, 56, 458–471. [CrossRef]

29. Debbah, A.; Kherfane, H.; Kelaiaia, R. Gas Turbine Aerodynamics Improvement Via a Design of Intelligent Fractional Control.
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