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Abstract: Virtual laboratories have been increasingly used in tertiary education for natural and
applied sciences, especially due to the COVID pandemic, generating a substantial investment in
corresponding software applications, including simulation experiments and procedures. However,
it is expensive and time-consuming to analyze, understand, model and implement the virtual
experiments, especially when it is necessary to create new ones from scratch, but also when they must
be redesigned and addressed to an audience in a different educational setting. We use UML Activity
Diagrams and Petri nets to model experimental procedures and then apply conformance checking
to detect possible nonconformities between expected model behavior and actual model execution.
As a result, we provide an estimation of the conceptual proximity between experiments performed
in different educational settings using the same virtual laboratory software, assisting educators
and developers in making informed decisions about software reuse and redesign by providing a
systematic and formal way of evaluating software applicability. A virtual microscoping experiment
was used as a case study for validation purposes. The results revealed that the specific virtual lab
software can be ported, without modifications, from tertiary to secondary education, to achieve
learning outcomes relevant to that education level, even though it was originally designed for a
distance education university. The proposed framework has potential applications beyond virtual
laboratories, as a general approach to process modeling and conformance checking to evaluate the
similarity between the specification of experimental procedures and actual execution logs can be
applied to various domains.

Keywords: conceptual modeling; virtual laboratory software; conformance checking

MSC: 68N30

1. Introduction

Education in natural and applied sciences is essentially based on laboratory practice,
which provides the necessary skills for reinforcing concepts and hands-on learning [1,2].
Inquiry-based learning activities can provide valuable learning opportunities for students
to improve their scientific literacy [3]. For a long time, natural and applied science ex-
perimentation and inquiry-based learning activities have been implemented in hands-on
laboratories by asking learners to perform real experiments [4,5]. ICT advances have
greatly contributed to the popularity of inquiry-based learning [6]. Simulation-based
learning environments have great potential to improve students’ knowledge of scientific
subjects [7–9]. Virtual laboratories constitute a special category of simulations, offering the
user the opportunity to conduct the same scientific inquiry provided by hands-on experi-
ments but with the advantages of a virtual environment [10], as they are based on physical
laboratory models and the experimental processes taking place therein [11,12]. During the
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COVID-19 pandemic, practical sessions and experiments in schools and universities were
suspended. However, they are necessary for students’ skill development and experience in
laboratory-based disciplines [13]. Thus, online education approaches gained popularity
and quite a few educational institutions successfully adopted them [14,15]. Virtual labs
have numerous advantages over traditional laboratory settings, including unlimited time,
immediate feedback, the ability to repeat experiments, and safety for learners. In virtual
labs, learners can conduct experiments at their own pace and without the constraints of
limited lab time or access to expensive or rare equipment [16]. Subsequently, a substan-
tial investment in corresponding virtual lab software applications has been made. In the
following section, the evolution of virtual laboratories software is presented.

1.1. Virtual Laboratories Software

Virtual laboratories software development tools are evolving over time and new meth-
ods for modeling physical laboratories and procedures are being adopted. The initial
approaches used computer simulation software stored and executed on local workstations.
Virtual lab exercises were developed by enterprises or educators and designed for specific
experiments [17,18]. Additionally, they were locked, not giving educators the ability to
alter the parameters of the experimental process. Following this, virtual labs were devel-
oped as web-based applications, distributed VLs, which could be executed as games [19].
Due to the initially slow Internet speeds, the user interface was 2D and not as detailed.
Some of the tools included Macromedia flash [20], Macromedia Authorware [21], Microsoft
VB5 [22], LabVIEW, a powerful graphic environment for the development of virtual in-
struments and OOP languages such as C++, Java or C# [23–25]. The recent progress in
access to the Internet, as well as in 3D graphics and software packages, enabled the exact
representation of physical labs in a computer-simulated environment [26]. The virtual
laboratory software named Labster (www.labster.com, accessed on 28 February 2023) is
widely used [27,28], while other researchers use Unity 3D TM and Unreal Engine 4 TM to
build an appropriate VR environment [29–31]. The kineticsTM and MoDSTM developed by
CMCL Innovations (https://cmclinnovations.com/, accessed on 28 February 2023) were
used for virtual chemical engineering labs [32]. Some of the virtual labs can be used in
tablets and mobile phones, facilitating anytime, anyplace access [27–29]. Moreover, new
applications offered educators the ability to use already-tested experiments or create new
ones, adapted to various educational conditions. However, creating virtual experiments
from scratch or redesigning them to address an audience in a different educational setting
is expensive and time-consuming. Therefore, the reuse of implemented experiments within
specific simulators could offer an alternative solution. To effectively model activity in
integrated systems, researchers can leverage approaches from prior work. Since 1969,
standards for describing models and simulations have been advocated [33]. However,
to establish these standards, model descriptions must be stored and exchanged in a way
that enables efficient reuse [34]. Standardization is a crucial component in enabling the
exchange and interpretation of scientific research outcomes, especially in computational
modeling [35]. Thus, a formal description of simulation experiments is needed to allow for
similar experiments to be addressed to a different audience of learners [32]. Additionally,
establishing complex virtual laboratory software systems that are custom-designed for
education and will need to be maintained can be a costly undertaking and thus requires a
disciplined approach to development based on software engineering models and methods.

1.2. Software Engineering Models and Methods

The goal of software engineering (SE) is to provide models and processes that lead
to the production of well-designed, well-documented, and maintainable software prod-
ucts [36]. Software engineering models are the various processes or methodologies that are
selected and used for the development of software products. They provide a structured
and organized way of designing, implementing, and maintaining software products. Each
of these models has its own set of characteristics, advantages, and limitations, and is used
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in different situations depending on the project’s requirements, size, complexity, and other
factors. In SE, understanding and modeling the environment is an important part of system
development [37]. Conceptual modeling is used in almost all of these approaches, i.e., in the
waterfall model, it is used in the analysis stage [38], while in agile software development it
can be used for knowledge management [39]. Moreover, software analysis is at the heart
of quality software development. Part of this analysis aims to clarify what has already
been implemented and how to adapt software that already exist under the constraints
of the new domain. SE aims to reuse as many previously developed software artifacts
as possible, since software reuse can provide a better means of SE [40,41]. Furthermore,
software reusability can be seen as a new approach for SE, leading to less development
time, high-quality results, a reduction in software maintainability, less effort for develop-
ers and cost-effective solutions [42]. To calculate the cost, an estimation must be made
of the extent of the relationship between what we want to implement and what already
exists. By providing the necessary information to software designers during the design
and implementation phases of SE, they can decide whether an application will be built
from scratch or if a previously implemented software product will be reused. Moreover,
model-driven software engineering (MDSE) uses modeling for the development of soft-
ware artifacts [43]. MDSE practices are proved to increase effectiveness and efficiency
in software development [44]. Furthermore, model-checking validates the behavior of a
given system when modeled by a finite state machine or other modeling notation [45].
Therefore, detecting differences between different versions of models is important because
it contributes to the further analysis and comprehension of a system, which can help it to
evolve and identify possible alternatives. By comparing and analyzing different versions of
a model, researchers can identify changes and improvements that have been made, as well
as areas in which further work may be necessary [46]. Software process models used in SE
often represent a sequence of activities, objects, transformations, and events that embody
software evolution strategies [47]. Nevertheless, software process models may differ from
the executed processes when software is run. Therefore, collecting data through logging
from successive runs based on certain process models allow for us to think about how to
analyze and possibly improve the models.

1.3. Conformance Checking

Process mining (PM) techniques are used to study when and how a specific process
deviates from the process model. Based on the extracted knowledge from event data (i.e.,
event logs) produced by information systems, PM is mainly used to analyze, discover,
and enhance processes [48–50]. PM has been successfully applied in various areas, in-
cluding software engineering [51,52]. Therefore, process mining techniques are applied to
find development processes using publicly available, open-source, software development
repositories [53]; in another study, a process mining framework was used to discover
software development processes from the event logs generated by software configuration
management (SCM) systems [54]. Software houses with complex software development
processes are appropriate for the application of PM techniques. In such organizations, there
may be obstacles to the working processes, making them difficult to complete [55]. By
using PM, the conformance of the resulted process model is verified and useful process-
oriented information is retrieved. However, many studies on PM focus on describing the
PM techniques, demonstrating their efficiency in discovering software process models,
leaving aside the software development process evaluation [52]. As a conclusion, PM can be
used during the actual software development process to generate new models or confront
the existing models with reality. Conformance checking contributes to the decision as to
whether the execution of the process conforms to the corresponding process model [56].
In study [57], two metrics concerning conformance checking were introduced: fitness and
appropriateness. Fitness is used to measure the degree to which the process model can
replay the traces from the stored event log file [48].
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1.4. Contribution

Conformance checking is a fundamental branch of process mining (PM) that involves
the comparison of a process model with real-life process executions to identify potential
deviations, bottlenecks, and inefficiencies in the process [58]. The goal of this branch is
to explain and quantify deviations in a non-ambiguous manner, drawing conclusions
concerning the process model and real execution data correspondence [59]. Hence, as the
calculation of “deviation” necessarily involves some amount of “similarity” calculations,
conformance checking could serve as a soft computing technique for virtual lab software
analysis, evaluation and possible reusability, since it is based on process models describing
the real lab experiments. To the best of our knowledge, there is currently no study that
suggests a combination of conceptual modeling and conformance checking to deal with
the analysis and reusability of virtual laboratory software. This paper aims to propose
a framework that can be used under a software engineering process, contributing to
problem analysis, and the understanding and assessment of the possible applicability of
a solution. It incorporates soft computing techniques at various stages in order to decide
whether to use a new simulator or reuse one that already exists. To achieve this goal,
we can utilize standard tools from the conceptual modeling repertoire, such as unified
modeling language (UML) activity diagrams (ADs) and Petri nets (PNs), to formally
describe the experimental procedure. UML ADs and PNs are powerful modeling languages
that can represent both the static and dynamic aspects of an experimental procedure, as
well as composite flows. By using these tools, researchers can create a comprehensive
and accurate representation of the experimental procedure, which can be shared and
analyzed by others. After obtaining simulation traces from the corresponding Petri nets
and logged data from virtual experiments executed in a specific virtual laboratory, Onlabs
(https://sites.google.com/site/onlabseap, accessed on 15 February 2023), the conformance
checking metric of fitness can be calculated. This metric quantifies the degree to which
the executed experiments conform to the expected behavior described by the Petri nets.
The proposed method uses the simulated processes for conformance checking and is
independent of any process model notation. Our approach aims to analyze and evaluate
the virtual laboratory software, offering an estimation regarding the conceptual proximity
of the same experiments when performed in diverse educational settings. Consequently,
the suggested framework empowers educators to determine whether a specific software
application can be reused with minimal modifications or if it needs to be redesigned.
A virtual microscoping experiment is used to validate our approach. The suggested
framework concerns a wide and growing field of applications, as it may serve as an
essential part of software analysis and reusability.

The remainder of the paper is structured as follows. In Section 2, we present the
conceptual modeling of experiments in the virtual laboratory software. In Section 3,
we describe our approach based on conformance checking and alignment techniques.
Section 4 outlines the application of our approach and the experiment used for validation,
followed by the results and a discussion of their interpretation in the context of previous
studies and our hypotheses. Section 5 concludes the paper by summarizing our findings,
acknowledging the limitations of our research, and providing future applications for our
proposed approach.

2. Conceptual Modeling of Virtual Laboratory Experiments

Conceptual modeling is a technique used in software engineering to create a high-
level abstract representation of a software system [60]. The goal of conceptual modeling
is to capture the key features and functionality of a software system in a way that is
understandable to both developers and stakeholders. This is typically achieved using
visual models, such as diagrams, that can help to clarify composite relationships, flows and
interactions within the system. Moreover, conceptual modeling is an important part of the
software development process, as it can help to identify potential problems early on and
ensure that the final system meets the needs set before implementation. The conceptual

https://sites.google.com/site/onlabseap
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modeling of experiments executed in a virtual laboratory involves the creation of a high-
level representation of the experiment, its components, and their interactions in a virtual
environment. The goal is to provide a clear and comprehensive understanding of the
experiment’s purpose, design, and expected outcomes.

2.1. Conceptual Modeling Tools

In the following sections, two of the most-used tools in conceptual modeling repertoire
are presented. They are used for the analysis of the virtual laboratory software under study.

2.1.1. UML Activity Diagrams

Unified modeling language (UML) is a standardized modeling language that can
be used across different programming languages and development processes. Specifi-
cally, UML activity diagrams (ADs) constitute a powerful tool because they can model
the composite flows and sequence of actions, thus capturing the process flow and its
results [61,62]. Additionally, Ads are adopted as a standard tool in the IT industry to model
workflows and investigate system behavior [63]. Depending on their actual semantics, ADs
are a mixture of dataflow diagrams, and Petri nets [62]. Additionally, they are mostly used
to describe the flow of activities in a wide range of settings, including computer systems,
business processes, use-case processes, experimental processes, and serious educational
games [64,65].

Models for virtual laboratories continuously evolve to meet the educational needs of
a variety of educational settings. Thus, a formal description of simulation experiments is
needed [66]. Description languages, diagrams, and visual modeling environments and
tools are commonly used in experimental processes to describe the procedures and steps
involved in the process, as well as the data objects that are needed [67]. Subsequently, UML
ADs describing virtual experiments can be mapped, using the appropriate tool, to any
concrete implementation language, such as C or Java, so that they can be embedded in any
virtual laboratory environment. However, in order to be reused in different simulation en-
vironments, rules for simulation experiments should apply, including a precise description
of the simulation steps and other procedures [68].

An AD can be described as [69]

AD = 〈A, Vinp, Vloc, AN, PN, T〉

where

• A is a set of action names;
• Vinp is a set of input variables over finite domains;
• Vloc is a set of local variables over finite domains;
• AN is a set of action nodes, an1 with acname (an) = ac ∈ A;
• PN is a set of pseudo-nodes, such as initial nodes PNinit, final nodes PNfin, decision

nodes PNdec.

T is a set of transitions of the form t = 〈nsrc, ntrg, guard〉, where nsrc, ntrg ∈ (AN ∪ PN)
and guard is a Boolean expression.

While activity diagrams provide a useful graphical representation of the behavior of a
system, they do not support formal analysis in the same way that Petri nets or automata do.
AD-based specifications are considered semi-formal because they lack the tools necessary
for rigorous analysis and verification before implementation. To address this limitation,
ADs can be transformed into a formal specification such as Petri nets or automata, which
can then be analyzed using verification tools [70].

2.1.2. Petri Nets

Petri nets (PN) are a well-established mathematical modeling language for the de-
scription of various systems [71] and for modeling processes in several domains [57]. In
addition, they are a graphical and mathematical modeling tool applicable to many systems.
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They are frequently used to describe and study information processing systems that are
characterized as asynchronous, concurrent, parallel, distributed, nondeterministic, and/or
stochastic [72].

A PN without any initial marking is represented as a three-tuple N = {P,T,F}, where

P = {p1, p2, . . . , pn} is a finite set of places;

T = {t1, t2, . . . , tn} is a finite set of transitions;

F ⊆ (P × T) ∪ (T × P) is a set of arcs.

The set (P × T) represents the directed arcs from T to P, while set (T × P) includes the
directed arcs from P to T, respectively. The behavior of many systems can be described in
terms of states and their changes. Although Petri nets are simple and graphical, they allow
for the modeling of concurrency, choices, and iteration. Thus, the syntax of PN and AD has
to be reviewed in order to define a formal mapping between them. Prior work has provided
mapping rules from ADs to PN [63,73], based on an equivalence of the modeling elements
in PN and ADs. As a result, we mapped the ADs abstractly describing the experiments
executed in a virtual lab into the equivalent PN.

2.2. Virtual Laboratory

The virtual laboratory environment utilized in this study is the Onlabs software
(https://sites.google.com/site/onlabseap/, accessed on 15 February 2023), developed
by an interdisciplinary team at the Hellenic Open University (HOU), a distance educa-
tion institution specializing in distance learning education. Figure 1 depicts the virtual
laboratory environment.
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Figure 1. The Onlabs virtual environment.

The Onlabs software provides a virtual laboratory environment where users can
navigate and manipulate instruments to conduct experiments. It is designed to be an
applied research laboratory simulator using powerful game engine, Unity, to enable multi-
platform support. The latest version of Onlabs includes experiments for microscoping a
test specimen and preparing an aqua solution, with the latter featuring quantitative aspects
of the simulation.

2.3. Modeling Experiments within a Virtual Laboratory

UML ADs are used to model the experimental procedure of microscoping for HOU
and secondary education. In Figure 2 below, an AD is presentes depicting the initial steps
of the experimental procedure of microscoping at the HOU level.

https://sites.google.com/site/onlabseap/
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The experimental procedures are depicted in UML ADs, which are a widely used
and easily understood modeling language. The choice of UML activity diagrams (ADs) to
model the experiments for the virtual lab was motivated by the need to involve scientists
from different domains, including biology, chemistry, and computer science. UML is a stan-
dardized notation that is widely recognized and understood by researchers from different
fields, making it an ideal choice for interdisciplinary collaboration. The interdisciplinary
team working on the virtual lab design needs to understand the underlined model in order
to analyze and evaluate it. By studying and comparing these models, a further analysis
was made regarding the application of a virtual lab to a different audience.

To increase the level of formality in the conceptual modeling of experiments in Onlabs,
Petri nets were used to model the same experiments. Therefore, in Figure 4, part of the
corresponding PN of the microscoping experimental procedure in HOU is presented. The
PN modeling of the experiment in secondary education is shown in Figure 5.

Therefore, PN tools such as Yasper and PIPE v. 4.3 can be used for PN verification and
simulation, leading to useful results. These tools use an extended Petri net as a modeling
technique. Additionally, they offer easy editing, token gameplay and performance analysis
with a randomized automatic simulation for basic place/transition nets. They also offer
case-specific vs. inter-case token flow, decision nodes with parameterized probabilities of
alternatives, and reset and inhibitor arcs [74,75]. Then, the model represented via PN can
be compared to the model of the experiment used in another educational setting to decide
whether it can be reused.
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3. Conformance Checking Framework for Evaluation and Reusability of
Virtual Laboratory

The information and communication applications used in various institutions can log
the educational processes that take place therein. Taking advantage of these logged data, a
research area, Educational Process Mining (EPM), aims to monitor, discover, and improve
educational processes by extracting valuable information from stored event logs [76]. In
the context of virtual laboratories, process models can be used to describe the sequence of
necessary actions that lead to a specific learning outcome. The further analysis of these
processes contributes to the deeper comprehension of experiments and learning flows,
since the logged learners’ actions are associated with the process models describing the
standardized experimental procedures [48]. These process models can be compared to the
logged events to identify deviations between the model and the reality. This is achieved
through a technique called conformance checking, which computes an alignment value to
compare process models [56]. By analyzing these deviations, researchers can gain a deeper
understanding of the learning flows and improve the virtual laboratory experience. The
standard conformance checking technique is alignments computation [77].

3.1. Conformance Checking Preliminaries

Using the conformance checking technique, the stored event logs and the model are
compared by calculating the alignment between the observed and modeled behaviors. As a
first step, any logged events not associated with any task in the model are removed. Then,
the execution traces are stored in an event log, and the potential variations between traces
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and the process model are evaluated [78]. The main type of conformance checking metric
is Fitness [57].

Fitness

The fitness metric is important to estimate the severity of potential deviations and to
compare different model–log combinations. To compute the alignment, the moves (tasks)
in the process model need to be associated with the moves (events) in the trace contained
in the log file. To establish a correspondence between the tasks in the model describing the
experiment and the logged events, a label denoting the associated log event type needs to
be assigned to each task in the model [79]. For example, a Petri net with labels l of process
model tasks/actions t named

l(t1) = k1, l(t2) = k2, l(t3) = k3, l(t4) = k4, l(t5) = k5, where k1, k2, k3, k4, k5

represent the events in the stored log files and a stored trace

σ = k1 k2 k3 k2 k4 k5.

Possible alignments are presented below.

γ1 =

∣∣∣∣ k1|k2|k3|k5

t1|t3|⊥|t5

∣∣∣∣, γ2 =

∣∣∣∣ k1|k1|k2|k5

⊥|t1|t2|t5

∣∣∣∣, γ3 =

∣∣∣∣ k2|k2|k3|k4

⊥|t1|t3|t4

∣∣∣∣
The top row refers to the trace stored in the event log, while the bottom row refers to

the process model tasks. Notation ⊥ is used to describe the nonappearance of a model task
even when an event is stored. Therefore, the first move in γ3 is (k2, ⊥), declares that when
a trace action k2 is carried out, no task is executed in the process model. In a labeled Petri
net, the moves can be categorized as synchronous, log-only, model-only, or illegal, based
on the matching of tasks and events during the conformance checking process.

A synchronous move occurs when both the model and log move simultaneously,
meaning that the observed behavior matches the expected behavior according to the model.
A log-only move occurs when only the log moves, meaning that an event is observed that
is not captured by the model. This could indicate an error in the model, or a real-world
behavior that was not anticipated during the modeling phase. A model-only move occurs
when only the model moves, meaning that an action is taken in the model that is not
observed in the log data. This could indicate an error in the log data, or a difference
between the simulated and actual behavior of the system. An illegal move occurs when
there is a mismatch between the model and the log data, indicating a violation of the
expected behavior. This could be caused by errors in the model, errors in the log data, or
discrepancies between the simulated and actual behavior of the system [79]. Successively,
the fitness as part of alignment can be defined as:

Fitness = (events in trace mimicked by the model)/(total moves in the observed trace)

The closer the fitness value is to 1, the more similar the model is to the event log file.

3.2. Proposed Implementation Framework

The proposed implementation framework is based on a comparison of the traces of
virtual lab log file and the PN of the same experiment. The virtual lab experiment execution
and the PN are from different educational settings. Thus, the results of the comparison can
be used to determine whether the same virtual lab software can be reused in a variety of
educational settings.

As the first step in our approach, we model experiments for both university and
secondary education levels using UML activity diagrams (Ads) and the corresponding
Petri nets. Afterwards, using Yasper tool, we validate, simulate and collect the simulation
traces of the PN describing the experiment in one educational setting. In order to calculate
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the fitness metric, the experiment is performed in the Onlabs virtual laboratory in a different
educational setting, and the ordered tasks are recorded in a log file. These traces are then
used to compute the fitness between the model and the log. First, the tasks in the process
model are associated with the logged events by using labels to denote the associated log
event type for each task in the model. The mapping results are stored in an association
database containing the associated model events and logged traces required for alignment
computation. The mapping is then used for fitness calculation. The fitness results can help
determine if the same virtual laboratory can be reused for the experiment in a different
educational setting without further study.

Figure 6 illustrates the proposed implementation framework.
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4. A Prototype Implementation of a Fitness Metric for Virtual Lab Experiments to
Assist Education Analysts

The proposed implementation was tested by an experiment in secondary school in
Preveza, Greece. The participants were 25 first-year high school students in a biology class.
The students had to execute the microscoping experiment in the virtual laboratory (Onlabs)
without prior experience. They formed teams of two or three students per computer and
were provided with written instructions describing the experimental steps of the HOU
microscoping experiment. The educational activity lasted one teaching hour (40 min).
At the start of the activity, the microscope was displayed prominently on the computer
screen due to time constraints. Initially, the students were offered some explanations
about the purpose of the activity, to allow them to become familiar with the microscope’s
function. The students handled the microscope’s functions easily and showed interest
and enthusiasm during the activity despite the problems with some computers. They
even managed to solve the problems on their own, such as by using the space key to
“release” the screen or stopping the virtual laboratory rotations that occurred against their
will. Cooperation and mutual assistance were developed among the groups. Some groups
successfully faced and solved a problem, while other students faced a different one, and
they exchanged their views. Since the experimental process was not guided by the software,
students followed the experimental steps of their own free will. Help was only requested
from the instructor in rare cases. The instructor monitored the activity and intervened only
when necessary. At the end of the activity, the instructor asked the students for feedback
and summarised the lesson’s objectives.
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Then, log files were selected from each computer for further analysis and conformance
checking. The proposed approach was applied to the processed log files and the fitness
values are shown in Table 1.

Table 1. Results of fitness calculation.

Log File Fitness Value

Log1 0.59
Log2 0.57
Log3 0.61
Log4 0.63
Log5 0.56
Log6 0.55
Log7 0.62
Log8 0.65
Log9 0.58

Log10 0.67
Log11 0.58

The above table shows the fitness calculation values for 11 different log files, with
values ranging from 0.55 to 0.67. It is important to note that fitness calculation values are
not the only measure of the effectiveness of a simulator in a specific educational setting.
The fact that all students were able to complete the experiment successfully is a strong
indication that the simulator can be effectively reused in secondary education, without
additional preparation. However, it is also important to consider other factors, such as
student engagement, learning outcomes, and satisfaction with the learning experience, to
determine the overall effectiveness of a simulator in a particular educational setting. Most of
the tasks in the process model for the HOU microscoping experiment were also observed in
the logged events from the virtual laboratory application in secondary education. However,
the order of some model tasks differed, indicating the need for some alignment. For
instance, the decision node on whether the microscope lens 4x is active was in a different
order between the model event for the secondary education experiment and the logged
trace from the university experiment. Figures 7 and 8 depict the differences between UML
AD for secondary education experiment and the corresponding steps included in the log
file from the HOU experiment’s execution.
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Nonetheless, it can be concluded that the general learning outcome of manipulating
microscope lenses, as set by the educational program, was achieved. Whether the learn-
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ing outcome was achieved depends on the educator’s opinion, considering the fitness
calculation. Despite the fact that the virtual lab was originally designed for university
students, in the experiment described in the previous section, lower secondary education
students completed the microscoping experiment. Although students achieved rather small
fitness, the above alignment calculation results revealed that the microscoping experiment
can be used in secondary education by reusing the same virtual laboratory designed for
university-level education. This is in line with the findings of Sypsas and Kalles (2022).
In summary, our proposed approach allows learners from different educational settings
to benefit from educational tools and resources commonly used in university distance
education. If necessary, educators can modify the experimental steps to achieve the desired
learning outcomes, and the process model can be adjusted accordingly.

Another study used event process logs from a custom software development process
within the IT department of a large automotive company to extract information about the
working process model, organizational network, and statistical information [55]. Based on
the obtained results, an action plan was developed to improve the development process
and the release result. This approach is similar to other studies that use event logs to extract
information and improve processes and demonstrates the potential of using data-driven
insights to optimize software development processes.

Thus, a central soft-computing technique, that of computing similarities, now appears
as a process alignment computation to analyze and evaluate the suitability of virtual
laboratory software. Additionally, it offers instructors an indication of the reusability of the
software in diverse educational settings.

However, there are still limitations to our approach. Although users from lower sec-
ondary education were included in the validation check, the promising results must be
viewed in the context of our approach being applied to a single experiment. Therefore, fur-
ther research on other experiments in the same virtual lab, executed in various educational
settings, is necessary to validate our approach.

5. Conclusions

In software engineering, it is crucial to understand and model the environment in
which a system will be used. This includes factors such as user requirements, organizational
processes, hardware and software infrastructure, and other external factors that may impact
the system’s performance and functionality. By modeling the environment, developers
can better anticipate potential issues and design solutions that are better suited to the
specific context in which the system will operate. Developing virtual experiments from
scratch or redesigning them for different educational settings can be a time-consuming and
costly process. Therefore, the ability to reuse existing virtual experiments across different
educational settings with minimal modifications can be beneficial in terms of time and
resources. In pursuit of this goal, we proposed a framework using conceptual modeling
for the analysis and better comprehension of the virtual lab experiments. The proposed
approach uses UML activity diagrams and Petri nets to model the experimental procedure,
serving as appropriate tools for developers to work on the existing virtual lab software.
Subsequently, we used the conformance checking technique to detect deviations between
expected model behavior and actual model execution. Therefore, the actual stored log
files of the investigated system were used to compute a similarity index by aligning the
model of an experiment at a specific educational level with the logged file produced from a
simulation of the same experiment at a different educational level. The ultimate goal is to
provide educators with an estimation of the conceptual proximity between experiments
performed in different educational settings, enabling them to determine whether a virtual
laboratory software application can be reused with minimal modifications or requires a
redesign. Finally, our approach was applied, and the results revealed a good performance
in well-defined experiments, concluding that they can be executed in different educational
settings by reusing the same virtual laboratory environment, without further investigation.
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In order to tackle the limitations of our present study, we will use the proposed
approach to validation in other experiments that are commonly executed in a variety of
educational settings, all with possible changes (the actual experiment we are working on is
the production of an aqueous solution), trying to reuse the virtual laboratory software.

The proposed framework has potential applications beyond virtual laboratories and
can be used in recommendation systems and software analysis and reusability. This is
because the use of process modeling and conformance checking to evaluate the similarity
between experimental procedures and execution logs can be applied to various software
applications beyond virtual laboratories. By providing a systematic and formal way
of evaluating software applicability, the proposed framework can help educators and
developers to make informed decisions about software reuse and redesign.
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