
Citation: Xing, L.; Li, J.; Cai, Z.; Hou,

F. Evolutionary Optimization of

Energy Consumption and Makespan

of Workflow Execution in Clouds.

Mathematics 2023, 11, 2126. https://

doi.org/10.3390/math11092126

Academic Editor: José Antonio Sanz

Received: 13 March 2023

Revised: 19 April 2023

Accepted: 24 April 2023

Published: 30 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Evolutionary Optimization of Energy Consumption and
Makespan of Workflow Execution in Clouds
Lining Xing 1, Jun Li 2,*, Zhaoquan Cai 3,4 and Feng Hou 5

1 School of Mathematics and Big Data, Foshan University, Foshan 528225, China; xinglining@nudt.edu.cn
2 School of Management, Hunan Institute of Engineering, Xiangtan 411104, China
3 Shanwei Institute of Technology, Shanwei 516600, China; cai@hzu.edu.cn
4 School of Computer Science and Engineering, Huizhou University, Huizhou 516007, China
5 School of Mathematical and Computational Sciences, Massey University,

Palmerston North 4442, New Zealand; f.hou@massey.ac.nz
* Correspondence: jli@hnie.edu.cn

Abstract: Making sound trade-offs between the energy consumption and the makespan of workflow
execution in cloud platforms remains a significant but challenging issue. So far, some works balance
workflows’ energy consumption and makespan by adopting multi-objective evolutionary algorithms,
but they often regard this as a black-box problem, resulting in the low efficiency of the evolutionary
search. To compensate for the shortcomings of existing works, this paper mathematically formulates
the cloud workflow scheduling for an infrastructure-as-a-service (IaaS) platform as a multi-objective
optimization problem. Then, this paper tailors a knowledge-driven energy- and makespan-aware
workflow scheduling algorithm, namely EMWSA. Specifically, a critical task adjustment-based
local search strategy is proposed to intelligently adjust some critical tasks to the same resource
of their successor tasks, striving to simultaneously reduce workflows’ energy consumption and
makespan. Further, an idle gap reuse strategy is proposed to search the optimal energy consumption
of each non-critical task without affecting the operation of other tasks, so as to further reduce
energy consumption. Finally, in the context of real-world workflows and cloud platforms, we carry
out comparative experiments to verify the superiority of the proposed EMWSA by significantly
outperforming 4 representative baselines on 19 out of 20 workflow instances.

Keywords: mathematical model; cloud computing; workflow scheduling; evolutionary algorithm;
multi-objective optimization

MSC: 97M40

1. Introduction

Cloud computing is a revolutionary paradigm which enables the on-demand delivery
of resources and services over the Internet [1]. This allows customers to access a wide range
of computing services on a pay-per-use basis without investing in additional hardware and
software infrastructures. Relying on the advantages of economy of scale, high scalability,
flexibility, fault-tolerant, and lower costs, cloud computing is attracting applications from
enterprises and governments. Meanwhile, cloud computing has proliferated rapidly over
the past decade [2–4].

To process the ever-growing big data in various fields [5–7], cloud computing providers
are building more and more hyper-scale cloud data centers around the world. A data center
often deploys millions of high-performance servers, network facilities, and storage de-
vices [8]. As a consequence, the massive facilities in cloud data centers consume enormous
amounts of electric energy. It is reported that cloud data centers around the world have
consumed nearly 2% of worldwide electricity in 2020, and that this will increase to 8% by
2030 [9]. Such high energy consumption unavoidably causes a large amount of carbon

Mathematics 2023, 11, 2126. https://doi.org/10.3390/math11092126 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11092126
https://doi.org/10.3390/math11092126
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11092126
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11092126?type=check_update&version=2

Mathematics 2023, 11, 2126 2 of 18

dioxide emissions, which further give rise to environmental deterioration issues [10–12].
Furthermore, high energy consumption leads to high operating costs for cloud platforms.
The electric energy consumed by Amazon’s cloud data centers cost nearly 20% of its total
budget. Thus, reducing the energy consumption of cloud data centers not only is crucial to
the implementation of sustainable computing but also lowers the monetary cost and, thus,
improves the market competitiveness for the cloud providers [13,14].

Workflow has been a popular paradigm that supports the complicated process of big
data applications on cloud platforms [15,16]. A workflow often contains a set of tasks and
the data dependencies among tasks can be modeled as a Directed Acyclic Graph (DAG). In
general, the processing of workflows is computing- and data-intensive with a large amount
of data being produced and transferred. Taking satellite observation image processing as
an example, it involves geometric rectification, data filtering, object classification, change
detection, and other phases. Furthermore, a large amount of data needs to be transferred
among tasks belonging to different phases [17]. It is worth noting that most workflow
applications have to output results as fast as possible.

Confronting such scenarios, workflow scheduling in cloud computing should be for-
mulated as a multi-objective optimization problem aimed at optimizing two conflicting
objectives: energy consumption and makespan. In recent years, many works have sug-
gested heuristics [18], meta-heuristics [19,20], and artificial neural networks [21–23] to solve
this problem. However, most existing multi-objective workflow scheduling approaches for
cloud platforms fail to capture the inherent characteristics of cloud resources and workflows.
From the perspective of cloud resource characteristics, the dynamic voltage/frequency
scaling (DVFS) technique, which enables dynamic adjusting of voltages and frequencies
of processors [24], is commonly used for energy conservation in high-performance com-
puting systems. By dynamically adjusting processors’ voltages and frequencies, different
trade-offs between energy consumption and performance can be obtained. However, the
DVFS technique has not yet been fully explored in multi-objective evolutionary algorithms
to balance energy consumption and makespan. From the perspective of workflow charac-
teristics, the data transmission time between tasks executed on the same cloud resource can
be negligible. Then, by adjusting the critical predecessor of a task to the same resource it is
capable of eliminating the data transmission time, which is promising to simultaneously
reduce the energy consumption and makespan. However, the above characteristic are
rarely explored to improve the multi-objective workflow scheduling algorithms.

Considering the above facts, we formulate workflow scheduling in cloud comput-
ing as a multi-objective optimization problem aimed at optimizing two conflicting objec-
tives: energy consumption and makespan. To solve the problem, we design an efficient
multi-objective workflow algorithm by exploring the characteristics of cloud resources
and workflows, especially the dynamic voltage/frequency scaling technique and work-
flow structure. The proposal embraces two new strategies. The first one is a critical task
adjustment-based local search strategy, which intelligently adjusts some critical tasks to
the same resource as their successor tasks, striving to simultaneously reduce workflows’
energy consumption and makespan. The second one is an idle gap reuse strategy, which
searches the optimal energy consumption of each non-critical task without affecting the
operation of other tasks, so as to further reduce energy consumption. At last, we verify the
superiority of the proposal by comparing it with four baselines in the context of real-world
workflows and cloud platforms.

The rest of this paper is organized as follows. Section 3 provides the models for
workflows and cloud resources, and then formulates the multi-objective optimization
problem. Section 4 develops the algorithms. Section 5 provides the performance evaluation.
Section 6 concludes this paper and discusses two future research directions.

Mathematics 2023, 11, 2126 3 of 18

2. Related Work

Over the past decade, simultaneously optimizing the energy consumption and makespan
of cloud workflows has attracted a lot of attention, and numerous relevant methods have
been reported [2,25]. They can be roughly partitioned into two branches: heuristics-based
and meta-heuristics-based workflow scheduling algorithms.

The list-based workflow scheduling methods, represented by the heterogeneous earli-
est first time (HEFT) and its variants, are famous heuristics. They have been embedded
into multi-objective frameworks to balance multiple conflicting objectives in scheduling
cloud workflows. For instance, Durillo et al. [18] extended the heterogeneous earliest finish
time algorithm to make trade-offs between energy consumption and makespan. Faragardi
et al. [26] suggested a greedy resource provisioning and list-based scheduling method
to optimize cost and makespan while meeting the budget constraints. Medara et al. [26]
introduced a list-based energy-efficient workflow algorithm to optimize energy efficiency,
execution cost, and resource utilization at the same time. Although these approaches based
on specific heuristic strategies can always output feasible schedules, they only search for
part of the solution space, leading to the oversight of some promising solutions.

For example, Li et al. [15] proposed five energy- and cost-aware scheduling strate-
gies to reduce the energy consumption and cost of workflow execution. Pan et al. [27]
developed a strength Pareto-based multi-objective clustering evolutionary algorithm to
minimize the cost and energy consumption of multiple workflows with deadlines in mo-
bile edge computing. Mohammadzadeh et al. [28] combined the antlion optimization
algorithm and the grasshopper optimization algorithm to balance the makespan, energy
consumption, execution cost, and throughput. Mohammadzadeh et al. [29] combined the
antlion optimizer with a sine cosine algorithm to solve the workflow scheduling problem
considering four conflicting objectives: makespan, cost, energy consumption, and through-
put. Hussain et al. [30] designed new genetic operators by referring to the principles of
quantum mechanics and quantum rotation gate to simultaneously optimize makespan and
energy consumption. Paknejad et al. [31] combined the chaotic systems into the population
initialization, crossover/mutation operators of the preference-based, multi-objective co-
evolutionary framework to optimize makespan, execution cost, and energy consumption.
Based on the classical multi-objective evolutionary algorithm NSGA-II, Peng et al. [32]
developed a multi-objective scheduling approach to balance the cost and energy consump-
tion of workflows. Ismayilov et al. [21] incorporated an artificial neural network with the
NSGA-II algorithm to balance makespan, cost, energy, and degree of imbalance, reliability,
and utilization. Tarafdar et al. [33] suggested two energy and makespan-aware approaches,
including a linear weighted sum strategy and an ant colony optimization policy, to opti-
mize energy consumption and the makespan of workflow execution. To pursue a sound
trade-off between the makespan and the energy consumption of workflow execution, Xia
et al. [34] developed an initialization scheduling sequence strategy and a longest common
sub-sequence preservation strategy to improve a multi-objective genetic algorithm. How-
ever, most existing multi-objective workflow scheduling approaches for cloud platforms
cannot exploit the inherent characteristics of cloud resources and workflows.

3. Mathematical Models

This section models the workflows and cloud resources, and then presents the mathe-
matical formulation for the multi-objective workflow scheduling problem in cloud comput-
ing. For the convenience of reference, we summarize the main notations in Table 1.

Mathematics 2023, 11, 2126 4 of 18

Table 1. Notations used in the study.

Notation Definition

V set of tasks in the workflow
vi i-th task in the workflow
P(vi) set of task vi’s direct precursors
S(vi) set of task vi’s direct successors
Bi all of the tasks being executed before vi on the same resource
Vk all of the tasks being mapped to resource rτ

k
rτ

k k-th resource instance with type τ

τ ∈ {1, 2, · · · , m} τ-th resource type
E set of directed edges among tasks
w(ep,i) size of data being transferred from task vp to task vi
stvi ,k start time of task vi on resource rτ

k
f tvi ,k finish time of task vi on resource rτ

k
etvi ,k execution time of task vi on resource rτ

k
p(τ, f (t)) power consumption of a resource with type τ

3.1. Workflow and Resource Model

To facilitate the big data processing workflows to make the best use of the cloud
resources, researchers and engineers widely model them as directed acyclic graphs (DAGs).
A workflow corresponds to a unique directed acyclic graph, denoted as G = {V, E}, where
V = {v1, v2, · · · , vn} denotes n tasks in the workflow and E ⊆ V × V is the set of edges
denoting precedence-constraints between tasks. An edge ei,j ∈ E means that the vj cannot
be executed before receiving vi’s output data. Then, task vi is defined as a direct precursor
of task vj, and vj is defined as a direct successor of vi. For any task vi, all of its direct
precursors are denoted as set P(vi), and all of its direct successors are denoted as set S(vi).

Figure 1 gives a visual example of a workflow. Its DAG model can be described
as G = {V, E}, where V = {v1, v2, v3, v4, v5} and E = {e1,2, e1,3, e2,4, e3,5, e4,5}. The edge
e2,4 portrays the precedence constraint from v1 to v4, meaning that the start of task v4 is
constrained by v2’s output data. From Figure 1, we can also see that the set of v5’s direct
precursors is P(v5) = {v3, v4} and the set of v1’s direct successors is S(v1) = {v2, v3}.

1v

2v

3v

4v

5v

1,2e

1,3e

2,4e

3,5e

4,5e

Figure 1. An example of a workflow with five tasks.

Similar to other works [21,35,36], this paper also focuses on the IaaS paradigm, where
cloud service providers generally offer various types of cloud resources at different con-
figurations, such as CPU frequency, energy power, network bandwidth, and memory size.
All types of cloud resources can be summarized as Γ = {1, 2, · · · , m}, where m denotes
the number of resource types and τ ∈ Γ denotes the τ-th resource type. Then, a resource
instance of type τ in cloud platforms can be described as rτ

k = {k, con(τ), p(τ, t)}, in
which k and con(τ) represent its index and configurations, and p(τ, f (t)) denotes its power
consumption with CPU frequency f at time instance t.

For a DVFS-enabled cloud resource, its power consumption p(τ, f (t)) can be described
as follows [13]:

p(τ, f (t)) = ps
τ + ατ · v(t)2 · f (t), (1)

Mathematics 2023, 11, 2126 5 of 18

where ps
τ denotes the static power consumption, i.e., the power consumption when the

instance is completely idle; ατ · v(t)2 · f (t) denotes the dynamic power consumption caused
by processing workloads. Furthermore, ατ denotes the proportionality coefficient for the
resource type τ; v(t) and f (t) denote the supply voltage and frequency at time t.

Since the frequency and supply voltage are approximately linear, Equation (1) can be
simplified as:

p(τ, f (t)) = ps
τ + α′τ · f (t)3. (2)

3.2. Problem Formulation

From the perspective of the end-users, the available resources in cloud platforms
are infinite. In this paper, we build a resource pool considering the maximum resource
demands of the workflow. Assuming the maximum parallelism of a workflow is p and
there are m types of resources, we formally describe the resource pool as follows:

R = {r1
1, r1

2, · · · , r1
p, r2

p+1, r2
p+1, · · · , r2

2·p, · · · , rm
m·p}. (3)

Workflow scheduling in DVFS-enabled cloud platforms involves three types of de-
cision vectors: task sequencing, task runtime, and mappings from tasks to resources. To
simplify the optimization process, we sort the workflow tasks based on their downward
rank [37] and employ their minimum runtime when evolving the mappings from tasks to
resources. The decision vector x = {x1, x2, · · · , xn} represents the mappings from tasks
to resources, in which the value of the i-th decision variable xi denotes the index of the
resource mapped to the i-th task. It is intuitive that the value of each decision variable is
selected from the set {1, 2, · · · , m · p}.

With a decision vector, the mapped resource of task vi is assumed to be rτ
k , on which

the tasks before vi can be described as the following set:

Bi = {vp|O(vp) < O(vi)}, (4)

where O(vp) represents the order number of task vp on resource rτ
k .

The start time st(vi, k) of task vi on resource rτ
k can be obtained as follows:

st(vi, k) = max{max
vb∈Bi

f t(vb, k), max
vp∈P(vi)

{ f t(vp, ∗) + dt(vp, vi)}}, (5)

where f t(vb, k) represents vb’s finish time on resource rτ
k , f t(vp, ∗) represents vp’s finish

time on its mapped resource, and dt(vp, vi) represents the data transfer duration from vp
to vi.

We use the symbol et(vi, k) to represent the minimum execution time of task vi on
the mapped resource rτ

k . The relationships among st(vi, k), et(vi, k), and f t(vi, k) can be
summarized as follows:

f t(vi, k) = st(vi, k) + et(vi, k). (6)

Due to the precedence constraints between tasks, a task can only start running after
receiving the output results of all of the direct precursors, which leads to the following
constraint:

st(vi, k) ≥ max
vp∈P(vi)

{ f t(vp, r(vi)) +
I{r(vi) 6= r(vp)} × w(ep,i)

bw
}, ∀vi ∈ V, (7)

where I{·} is an indicator function, when vp and vi are mapped to the same resource, I{·}
is 0; otherwise, it is 1. The indicator function reflects the fact that when two dependent
tasks are processed by the same resource, their data transfer time can be negligible and
assumed to be zero. bw represents the bandwidth.

Mathematics 2023, 11, 2126 6 of 18

With a decision vector, all of the tasks being mapped to resource rτ
k can be denoted

with the following set:

Vk = {vi|xi = k, i ∈ {1, 2, · · · , n}}. (8)

Then, the power-up time tu and off time to of resource rτ
k are as follows:

tu = min
vi∈Vk
{st(vi, k)− max

vp∈P(vi)
dt(vp, vi)},

to = max
vi∈Vk
{ f t(vi, k) + max

vs∈S(vi)
dt(vi, vs)}.

(9)

Based on the above analysis, we formulate the first optimization objective to minimize
energy consumption as follows:

Minimize f1(x) =
m·p

∑
k=1

∫ to

tu
ps

τ + α′τ · fk(t)3dt. (10)

The second optimization objective is to minimize the workflow’s makespan, which
refers to the maximum finish time of all of the tasks by considering both the task execution
time and the data transfer time among the tasks. This optimization objective is formulated
as follows:

Minimize f2(x) = max
vi∈V

f t(vi, ∗). (11)

In sum, the model of multi-objective workflow scheduling in cloud platforms is
summarized as follows: 

Minimize f (x) = [f1(x), f2(x)],
S.t.

x ∈ {1, 2, · · · , m · p}n,
(7).

(12)

From (12), we derive that the focused optimization problem is challenging. Its decision
variables are discrete, and their relationships are diverse and complex. Furthermore,
its objective functions include nonlinear expressions. These characteristics make this
problem intractable. Thus, we strive to design a knowledge-based optimization algorithm
to handle it.

The focused problem is a representative multi-objective optimization problem (MOP).
A key feature of a MOP is that there is no single solution that is optimal in terms of all
objectives. Instead, there exists a set of compromise solutions, which are called the Pareto-
optimal set in the decision space and the Pareto-optimal front in the objective space [38,39].

Pareto-Dominance: Regarding two feasible solutions x1 and x2, x1 is defined to Pareto-
dominate x2 (denoted by x1 ≺ x2) if and only if all of the objectives of x1 are not inferior
to that of x2 (i.e., f j(x1) ≤ f j(x2), ∀j ∈ {1, 2, · · · , M}) and x1 is better than x2 on at least
one objective (i.e., f j(x1) < f j(x2), ∃j ∈ {1, 2, · · · , M}). The symbol M denotes the number
of objectives.

Pareto-optimal Solution: A feasible solution is commonly called Pareto-optimal if it
cannot be dominated by any other feasible solution.

Pareto-optimal Set/Front: All of the Pareto-optimal solutions construct the Pareto-
optimal Set (PS) in the decision space and the Pareto-optimal Front (PF) in the objec-
tive space.

4. Algorithm Design

In a cloud platform, the scheduler is a middleware of the management system directly
bridging tenants and cloud infrastructures. After a new workflow arrives, the scheduler
analyzes the workflow’s service requirements and acquires the status of cloud resources.

Mathematics 2023, 11, 2126 7 of 18

Then, the workflow scheduling algorithm will be triggered to decide the mappings from
workflow tasks to resources, the execution order of tasks, and the start/finish time of cloud
resources. The workflow scheduling for cloud platforms encounters various challenging
factors such as scalable heterogeneous resources, various workflow structures, and multiple
conflicting objectives. Searching for a set of compromise solutions is greatly significant.
Based on the mainstream framework of multi-objective evolutionary algorithms, we design
two problem-specific strategies: a critical task adjustment-based local search strategy and
an idle gap reuse strategy.

4.1. Motivation Examples

To visually illustrate the advantages of these two strategies, Figure 2 gives two exam-
ples. Suppose that the workflow in Figure 1 is to be scheduled and there are two available
resources with the same configuration; the minimum execution times of the five tasks are
{5, 10, 8, 5, 5}, and the data transfer time between tasks is summarized in Table 2. A feasible
schedule based on the above assumptions is shown in Figure 2a. The solid directed edges
indicate the data transfer constraints, and the dotted directed edges indicate that the data
transfer time is negligible.

0 10 20 30 time (s)

1r

2r

1v 2v

3v

4v

5v

(a) A schedule

0 10 20 30 time (s)

1r

2r

1v 2v

3v 4v 5v

(b) A schedule by adjusting a critical task

0 10 20 30 time (s)

2r

1r 1v 2v

3v 4v 5v

(c) A schedule by adjusting CPU frequency for a non-critical task

Figure 2. Examples of motivation cases.

Table 2. Data transmission time (in seconds) among workflow tasks.

t1 t2 t3 t4 t5

t1 − 5.0 3.0 − −
t2 − − 5.0 − −
t3 − − − − 5.0
t4 − − − − 10.0
t5 − − − − −

Since the start time of task v5 is determined by the output result of task v4, task v4 is a
critical task. After adjusting the critical task v4 to resource r2, as illustrated in Figure 2b,
the data transfer time from v4 to v5 is negligible. Then, the start/finish time of task v5

Mathematics 2023, 11, 2126 8 of 18

is advanced, meaning that the makespan of the workflow is shortened. Furthermore,
the working time of the two resources is shortened to reduce energy consumption. This
example shows that the critical task adjustment-based local search strategy has the advan-
tage of optimizing both the makespan and energy consumption of workflow execution.
Furthermore, since task v4 is constrained by the output result of task v2, there is an idle
time gap between v3 and v4. Given this fact, we adopt the DVFS technology to reduce the
frequency/voltage of CPU processing task v3 to reduce dynamic energy consumption, as
shown in Figure 2c.

4.2. Main Framework

The proposed EMWSA follows the framework of classical multi-objective optimization
algorithms and mainly includes three modules: initialization, reproduction of offspring
population, and environmental selection. The main process of the proposed EMWSA is
summarized in Algorithm 1.

Algorithm 1: Main Process of EMWSA
Data: Workflow G; Resource pool R; Population size N; Maximum number of

function evaluations (MNE);
Result: A solution set;

1 P← Randomly initialize a population;
2 FEs← N;
3 while FEs < MNE do
4 Q← ∅;
5 P′ ← Disturb the orders of solutions in P;
6 for i = 1→ N do
7 x← Variation(Pi, P′i);
8 x← Function AdjustCriticalTask(x, G);
9 x← Function AdjustCPUFrequency(x, G, R);

10 q← Calculate the objective vector using the formulas in (10) and (11) and
obtain a new solution;

11 Q← Q
⋃{q};

12 FEs← FEs + 1;
13 end
14 P← EnvironmentalSelection(P

⋃
Q, N);

15 end

As shown in Algorithm 1, the main inputs of the EMWSA are a workflow to be
scheduled, resource pool, population size, and stop condition. When the EMWSA reaches
the stop condition, it will output a set of non-dominated solutions.

In the initialization phase, a population is randomly generated (Line 1) and the number
of used function evaluations (FEs) is recorded as N (Line 2). Before the FEs reach the
maximum number of function evaluations (MNE), the EMWSA continuously iterates the
remaining two phases: offspring population reproduction (Lines 4–13) and environment
selection (Line 14). During offspring population reproduction, a set Q is initialized to
store the offspring solutions (Line 4). Then, each solution is randomly combined with
another one to generate an offspring solution (Line 7). Note that Pi denotes the i-th
solution in population P. Next, Function AdjustCriticalTask() is called to adjust some
critical tasks to simultaneously optimize workflow’s energy consumption and makespan,
as described in Algorithm 2. After that, Function AdjustCPUFrequency() is called to adjust
the voltage/frequency of non-critical tasks to decrease energy consumption, as described
in Algorithm 3. Since environmental selection is not the focus of this paper, we directly use
the environmental selection operator in classical NSGA-II [40]. This approach first sorts the
combined population into multiple non-domination levels and then conducts a crowding
comparison procedure on the solutions in the last accepted levels.

Mathematics 2023, 11, 2126 9 of 18

4.3. Problem-Specific Optimization Strategies

For task vi, we define its critical predecessor as the task whose data arrives at task
vi at the latest time among all of the predecessor tasks. Since the data transmission time
between tasks executed on the same cloud resource can be negligible, adjusting the critical
predecessor of a task to the same resource is promising to simultaneously reduce the energy
consumption and makespan. This drives us to design a critical task adjustment-based local
search strategy, as described in Algorithm 2.

Algorithm 2: Function AdjustCriticalTask(~v, G, R)
Data: A decision vector x; the workflow G;
Result: A new decision vector x;

1 C ← 01×n;
2 for i = 1→ n do
3 rt← max{0, f t(vb)};
4 vc ← ∅;
5 for vp ∈ P(vi) do
6 f t← 0;

7 dt← f t(vp) +
I(xp 6=xi)·w(ep,i)

bw ;
8 if dt > rt & dt > f t then
9 f t← dt;

10 vc ← vp;
11 end
12 end
13 if vc 6= ∅ then
14 C(i)← c;
15 end
16 end
17 U ← 11×|R|;
18 for rk ∈ R do

19 U(k)← ∑vi∈Vk
et(vi)

f t(rk)−st(rk)
;

20 end
21 U′ ← 11×n;
22 for ti ∈ T do
23 U′(i)← U(xi);
24 end

25 i∗ ← Select a task using roulette according to 1/U′i
∑n

i=1 1/U′i
;

26 j← C(i∗);
27 xj ← xi∗ ;

From Algorithm 2, we can see that the main inputs of Function AdjustCriticalTask()
are a decision vector and the workflow to be scheduled. This function consists of two
stages: critical task identification (Lines 1–16) and adjustment (Lines 17–26). An array C is
initialized to record the index of each task’s critical precursor (Line 1). If the value of C(i)
is 0, it means that the task vi has no critical precursor. For task vi, its critical precursor vc is
defined as the one whose data arrives at task vi at the latest time, and the arrival time is
larger than the resource’s ready time rt (Line 8). The symbol vb denotes the task before task
vi on the same resource, and f t(vb) is the finish time of vb. After identifying the critical
precursors of each task, this function calculates the utilization rate of each resource (Lines
17–20). The symbol U(k) is used to record the utilization rate of resource rk; Vk denotes the
set of tasks mapped to resource rk; f t(rk) and st(rk) denote the finish time and start time
of resource rk, respectively. Next, the utilization rate of a resource is assigned to all of the
tasks mapped to this resource (Lines 21–24). After that, according to the utilization rate

Mathematics 2023, 11, 2126 10 of 18

of the resources where the tasks are located, this function uses the roulette rule to select
a task (Line 25), and adjusts its critical precursor to its mapped resource (Lines 26–27).
In this way, this function is more likely to adjust critical tasks to resources with lower
resource utilization.

Based on the fact that non-critical workflow tasks have certain slack times, we de-
sign an idle gap reuse strategy to lower the voltage/frequency of resources for energy
conservation, as summarized in Algorithm 3.

Algorithm 3: Function AdjustCPUFrequency(x, G, R)
Data: A decision vector x;
Result: Decision of CPU frequency for each task;

1 for vi ∈ V do
2 l f t← +∞;
3 for vs ∈ S(vi) do
4 f t← st(vs)−

I(xi 6=xs)·w(ei,s)
bw ;

5 if f t < l f t then
6 l f t← f t;
7 end
8 end
9 l f t← min{l f t, st(v f)};

10 if l f t > f t(vi) then
11 mec← +∞;
12 f ∗ ← ∅;
13 f t∗ ← ∅;
14 for fl ∈ F do
15 f t′(vi)← Finish time of vi under frequency fl ;
16 ec← Dynamic energy consumption of vi under frequency fl ;
17 if f t′(ti) <= l f t & ec < mec then
18 mec← ec;
19 f ∗ ← fl ;
20 f t∗ ← f t′(vi);
21 end
22 end
23 if f ∗ 6= ∅ then
24 Assign the CPU frequency of resource rxi as f ∗ from st(vi) to f t∗;
25 end
26 end
27 end

As illustrated in Algorithm 3, Function AdjustCPUFrequency() lowers the execution
frequency of non-critical tasks according to a decision vector about the mappings from tasks
to resources. For a task vi, its latest finish time l f t is defined as the time point that does not
affect the start of all of its successor tasks (Lines 3–8) and the task being executed after it
(Line 9). The symbol v f denotes the task being executed after task vi. A task vi is termed
as non-critical if its latest finish time is greater than its finish time, that is l f t > f t(vi).
For non-critical tasks, this function finds the execution frequency f ∗ which minimizes
the dynamic energy consumption mec and meets the constraint of the latest finish time
(Line 17). The parameter f t∗ records the corresponding finish time of the tasks. Next, the
execution frequency and finish time of non-critical tasks are adjusted (Lines 24).

5. Performance Evaluation

In the context of real-world workflow traces and cloud platforms, this section evalu-
ates the performance of the proposed EMWSA by comparing it with four representative
baselines: EMS-C [35], SGA [41], GALCS [34], and MOELS [42].

Mathematics 2023, 11, 2126 11 of 18

5.1. Experimental Setups

Five different kinds of real-world workflows released by the Pegasus library have
various model structures and have been widely employed to investigate the performance
of workflow scheduling algorithms. We also employ these workflows to thoroughly test
the proposal and the four existing algorithms, including Montage with 25, 50, 100, and
1000 tasks; Epigenomics with 24, 46, 100, and 997 tasks; Inspiral with 30, 50, 100, and 1000
tasks; Cybershake with 30, 50, 100, and 1000 tasks; and Sipht with 30, 60, 100, and 1000
tasks. Figure 3 gives the DAG examples for these five kinds of workflows with small-scale
tasks. We can observe that these workflows pose complicated structures, including in-tree,
out-tree, fork-join, pipeline, and mixture. For more details on these workflows, please refer
to the Pegasus library repository at https://confluence.pegasus.isi.edu/display/pegasus
(accessed on 1 October 2022).

(a) Montage (b) Epigenomics (c) Inspiral

(d) CyberShake (e) Sipht

Figure 3. DAG diagrams of workflows with about 30 tasks.

In the experiment, the power consumption and performance configurations of three
different types of cloud resources are employed. Table 3 summarizes their relevant parameters.

Hypervolume [43] is a popular metric to measure the performance of multi-objective
optimization approaches in terms of both convergence and diversity. The calculation of this
metric does not require knowledge about problems’ Pareto-optimal fronts, and is only a
reference point. Since the Pareto-optimal front of the multi-objective workflow scheduling
problem is unavailable and the reference point can be set according to the initialization pop-
ulation, this metric is suitable for testing multi-objective workflow scheduling algorithms.
Assume r = {r1, r2, . . . , rm} is a reference point. For a population P, its hypervolume value

https://confluence.pegasus.isi.edu/display/pegasus

Mathematics 2023, 11, 2126 12 of 18

represents the hypervolume formed by reference point r and the P in the objective space
and is computed as follows:

HV(P) = L(
⋃

p∈P[f1(p), r1]× [f2(p), r2] · · · × [fm(p), rm]), (13)

where L(4) denotes the Lebesgue measure.
For fairness, the population size of all 5 algorithms is set to 120; the maximum number

of function evaluations is set according to the number of decision variables n, that is
n× 3× 103.

All five multi-objective workflow scheduling algorithms are written in MATLAB, and
each experiment is repeated 30 times. The experimental environment mainly includes CPU
(Intel(R) Xeon(R) Gold 6226R, 2.90 GHz), Memory (256.0 GB), Hard Disk (4.0 TB), Windows
10 operating system, and MATLAB 2020b.

Table 3. CPU configurations with respect to voltage/frequency pairs.

Levels
ADM Turion MT-34 AMD Opteron 2218 Intel Xeon E5450

Vol. (V) Fre. (GHz) Vol. (V) Fre. (GHz) Vol. (V) Fre. (GHz)

0 1.20 1.80 1.30 2.60 1.35 3.00
1 1.15 1.60 1.25 2.40 1.17 2.67
2 1.40 1.40 1.20 2.20 1.00 2.33
3 1.20 1.20 1.15 2.00 0.85 2.00
4 1.00 1.00 1.10 1.80 − −
5 0.80 0.80 1.05 1.00 − −

Vol.: supply voltage to the CPU; Fre.: CPU frequency.

5.2. Comparison Results

Table 4 summarizes the comparison results of the 5 algorithms on 20 different work-
flows. These results include the mean and variance (in brackets) of the hypervolume
values. Note that we use the Wilcoxon rank-sum test with a significance of 0.1 to identify
the difference between the EMWSA and the baselines. The marks − and ≈ represent the
corresponding baseline performing significantly worse than and similar to the proposed
EMWSA, respectively. The best results on each workflow are highlighted in bold.

As shown in Table 4, except for Sipht with 30 tasks, the proposed EMWSA generates
higher hypervolume values than the four baselines. The three baselines (EMS-C, GALCS,
and MOELS) only evolve the mappings from workflow tasks to resources, without consider-
ing the dynamic voltage frequency scaling technology. Different from these three baselines,
the proposed EMWSA has two advantages. On the one hand, the EMWSA intelligently
adjusts some critical tasks to the same resource as their successor tasks for simultaneously
reducing workflows’ energy consumption and makespan. On the other hand, the EMWSA
searches for the optimal energy consumption of each non-critical task without affecting
the operation of other tasks, so as to further reduce energy consumption. Although SGA
employs dynamic voltage frequency scaling technology to save energy consumption, it
does not have the ability to adjust critical tasks to reduce both the energy consumption and
makespan. The comparison with SGA illustrates the effectiveness of the proposed critical
task adjustment-based local search strategy.

On these workflows, the reference point for calculating the hypervolume is set based
on the initial population and is far from the output populations; thus, the hypervolume
values for each algorithm are high. On the Montage application with 25 tasks, the proposed
EMWSA improves the hypervolume of algorithm EMS-C, SGA, GALCS, and MOELS by
8.33%, 7.63%, 27.68%, and 106.39%, respectively. Another interesting phenomenon is that,
as the scale of workflows increases, the advantages of the proposed EMWSA become more
apparent. Taking the Montage application as an example, the proposed EMWSA improves
the hypervolume of SGA by 7.63% in a scenario of 25 tasks, while the EMWSA obtains
32.44% improvement in a scenario of 1000 tasks.

Mathematics 2023, 11, 2126 13 of 18

Table 4. Comparison results for the five algorithms on 20 workflows in terms of the hypervolume
metric.

Workflows n EMS-C SGA GALCS MOELS EMWSA

Montage

25 1.068 × 106 (4.7 × 104) − 1.075 × 106 (3.6 × 104) − 9.062 × 105 (7.1 × 104) − 5.606 × 105 (2.5 × 105) − 1.157 × 106 (3.7 × 104)
50 7.896 × 105 (8.8 × 104) − 7.766 × 105 (9.1 × 104) − 1.139 × 105 (1.1 × 105) − 2.669 × 104 (4.2 × 104) − 7.951 × 105 (6.5 × 104)
100 2.011 × 106 (3.3 × 105) − 1.958 × 106 (3.5 × 105) − 0.000 × 100 (0.0 × 100) − 0.000 × 100 (0.0 × 100) − 2.285 × 106 (3.1 × 105)

1000 3.534 × 107 (2.4 × 106) − 3.517 × 107 (2.6 × 106) − 0.000 × 100 (0.0 × 100) − 0.000 × 100 (0.0 × 100) − 4.658 × 107 (5.8 × 106)

Epigenomics

24 2.812 × 109 (2.0 × 107) − 2.796 × 109 (4.8 × 107) − 2.731 × 109 (3.9 × 107) − 2.352 × 109 (1.6 × 108) − 2.825 × 109 (2.8 × 109)
46 4.378 × 109 (6.7 × 107) − 4.388 × 109 (4.9 × 107) − 4.205 × 109 (1.2 × 108) − 3.666 × 109 (3.2 × 108) − 4.406 × 109 (5.5 × 107)
100 1.081 × 1011 (8.0 × 108) − 1.071 × 1011 (1.4 × 109) − 1.034 × 1011 (3.8 × 109) − 7.873 × 1010 (9.2 × 109) − 1.088 × 1011 (7.2 × 107)
997 3.823 × 1012 (7 × 1010) − 3.817 × 1012 (8 × 1010) − 2.365 × 1012 (4 × 1011) − 2.122 × 1012 (3 × 1011) − 4.033 × 1012 (7 × 1010)

Inspiral

30 7.197 × 107 (2.7 × 106) − 7.346 × 107 (3.7 × 106) − 6.168 × 107 (4.9 × 106) − 3.900 × 107 (7.5 × 106) − 8.664 × 107 (4.8 × 106)
50 5.515 × 107 (3.7 × 106) − 5.592 × 107 (3.4 × 106) − 4.092 × 107 (7.2 × 106) − 2.527 × 106 (4.5 × 106) − 6.006 × 107 (2.8 × 106)
100 1.428 × 108 (1.8 × 106) − 1.416 × 108 (4.3 × 106) − 1.848 × 107 (6.4 × 106) − 8.216 × 106 (2.8 × 105) − 1.482 × 108 (1.5 × 106)

1000 1.797 × 109 (2.4 × 107) − 1.932 × 109 (9.0 × 107) − 0.000 × 100 (0.0 × 100) − 0.000 × 100 (0.0 × 100) − 2.360 × 109 (1.7 × 107)

CyberShake

30 3.641 × 107 (3.2 × 106) − 1.978 × 107 (4.2 × 106) − 1.139 × 107 (4.1 × 106) − 7.417 × 105 (1.2 × 106) − 6.146 × 107 (4.3 × 106)
50 7.614 × 107 (3.9 × 106) − 8.165 × 107 (6.9 × 106) − 6.560 × 107 (1.2 × 106) − 2.549 × 107 (9.2 × 106) − 8.356 × 107 (3.8 × 106)
100 2.689 × 108 (9.3 × 106) − 2.726 × 108 (1.3 × 107) − 2.221 × 108 (2.5 × 107) − 9.230 × 107 (5.4 × 106) − 2.922 × 108 (1.1 × 107)

1000 8.170 × 108 (4.0 × 107) − 7.876 × 108 (3.1 × 107) − 0.000 × 100 (0.0 × 100) − 3.579 × 107 (4.5 × 107) − 8.263 × 108 (7.6 × 107)

Sipht

30 1.825 × 108 (1.2 × 106) ≈ 1.809 × 108 (6.7 × 104) − 1.784 × 108 (7.1 × 105) − 1.343 × 108 (8.4 × 105) − 1.824 × 108 (8.3 × 105)

60 3.415 × 108 (2.0 × 106) − 3.413 × 108 (2.1 × 106) − 3.338 × 108 (1.9 × 106) − 2.859 × 108 (1.7 × 106) − 3.444 × 108 (9.4 × 105)
100 3.435 × 108 (2.1 × 106) − 3.413 × 108 (1.5 × 106) − 3.328 × 108 (1.7 × 106) − 2.068 × 108 (3.1 × 107) − 3.462 × 108 (1.3 × 106)

1000 6.137 × 109 (1.4 × 108) − 6.252 × 109 (8.8 × 107) − 2.941 × 109 (5.3 × 108) − 1.170 × 109 (6.9 × 108) − 6.869 × 109 (9.5 × 107)

To visually compare the convergence and diversity of the 5 algorithms (i.e., EMS-
C, SGA, GALCS, MOELS, and EMWSA), we select their populations with the highest
hypervolume values among 30 repeats on Montage, Epigenomics, Inspiral, CyberShake,
and Sipht. Figure 4 draws these populations in the objective space.

As illustrated in Figure 4, the output populations of the proposed EMWSA have
a better convergence and diversity when solving the problems derived from the five
workflows. The better convergence of the EMWSA means that its solutions protrude to the
origin in the objective space. The better diversity refers to its solutions covering a wider
range. On Montage with 100 tasks, after the first objective value greater than 1.55 × 105,
the proposed EMWSA and two baselines (EMS-C and SGA) have their own merits. When
the first objective value is less than 1.42 × 105, the proposed EMWSA is obviously superior
to the two baselines. Regarding the solutions obtained by GALCS, they are far dominated
by that of the EMWSA. Although the MOELS achieves good results on the first objective,
its results on the second objective are far worse than the EMWSA. These visual results are
consistent with the higher hypervolume values of the EMWSA in Table 4. On the other four
workflows, the five scheduling algorithms maintain good diversity. However, the proposed
EMWSA shows a better convergence. This feature is particularly evident on Cybershake
with 100 tasks. The results in Figure 4 visually reveal the superiority of the EMWSA in
simultaneously optimizing energy consumption and makespan.

5.3. Trends of Hypervolume Values

To investigate the search characteristics of the five multi-objective workflow schedul-
ing algorithms, Figure 5 shows the growth trends of their hypervolume values with the
evolution process.

Mathematics 2023, 11, 2126 14 of 18

1.2 1.3 1.4 1.5 1.6 1.7
 f

1 105

100

150

200

250

300

 f 2

Montage_100

EMS-C
SGA
GALCS
MOELS
EMWSA

(a)

3.8 3.9 4 4.1 4.2 4.3 4.4
 f

1 107

4

5

6

7

8

9

10

 f 2

104 Epigenomics_100

EMS-C
SGA
GALCS
MOELS
EMWSA

(b)

1.15 1.2 1.25
 f

1 106

1,500

2,000

2,500

3,000

 f 2

Inspiral_50

EMS-C
SGA
GALCS
MOELS
EMWSA

(c)

0.6 0.8 1 1.2 1.4 1.6
 f

1 106

850

900

950

1,000

1,050

1,100

1,150
 f 2

CyberShake_100

EMS-C
SGA
GALCS
MOELS
EMWSA

(d)

1.65 1.7 1.75 1.8 1.85 1.9
 f

1 106

5,000

5,500

6,000

6,500

7,000

 f 2

Sipht_100

EMS-C
SGA
GALCS
MOELS
EMWSA

(e)

Figure 4. Output populations of the 5 algorithms on Montage, Epigenomics, Inspiral, CyberShake,
and Sipht. (a) on Montage with 100 tasks; (b) on Epigenomics with 100 tasks; (c) on Inspiral with
50 tasks; (d) on CyberShake with 100 tasks; (e) on Sipht with 100 tasks.

Mathematics 2023, 11, 2126 15 of 18

0 0.5 1 1.5 2 2.5 3
 FEs 105

0

0.5

1

1.5

2

H
V

106 Montage_100

EMS-C
SGA
GALCS
MOELS
EMWSA

(a)

0 0.5 1 1.5 2 2.5 3
 FEs 105

2

4

6

8

10

H
V

1010 Epigenomics_100

EMS-C
SGA
GALCS
MOELS
EMWSA

(b)

0 0.5 1 1.5 2
 FEs 105

0

1

2

3

4

5

6

H
V

107 Inspiral_50

EMS-C
SGA
GALCS
MOELS
EMWSA

(c)

0 0.5 1 1.5 2 2.5 3
 FEs 105

0.5

1

1.5

2

2.5

H
V

108 CyberShake_100

EMS-C
SGA
GALCS
MOELS
EMWSA

(d)

0 0.5 1 1.5 2 2.5 3
 FEs 105

1.5

2

2.5

3

H
V

108 Sipht_100

EMS-C
SGA
GALCS
MOELS
EMWSA

(e)

Figure 5. Change of hypervolume values with the advance of evolution. (a) on Montage with
100 tasks; (b) on Epigenomics with 100 tasks; (c) on Inspiral with 50 tasks; (d) on CyberShake with
100 tasks; (e) on Sipht with 100 tasks.

It is eye-catching in Figure 5 that the hypervolume values of the five scheduling
algorithms grow quickly at the early stage. This can be summed up with the following facts.
The scale of available resources in cloud platforms is very huge, and it is difficult to use these

Mathematics 2023, 11, 2126 16 of 18

resources properly by randomly initializing solutions. That is, workflow tasks are sparsely
distributed on different resources, and the data transfer overheads among tasks causes
considerable resource waste. In such a scenario, evolutionary algorithms can aggregate
workflow tasks onto limited resources to simultaneously reduce energy consumption and
makespan. This demonstrates that evolutionary algorithms have considerable potential in
solving cloud workflow scheduling problem.

Figure 5 also illustrates that, with the deepening of the evolutionary search, the
hypervolume values of the EMWSA still maintain a certain growth rate, while that of the
other four baselines basically stops growing in the second half. Compared with the four
baselines, the biggest feature of the EMWSA is that it embraces a critical task adjustment-
based local search strategy. These comparison results demonstrate that the proposed local
search strategy is conducive to jumping out of the local optimum, thus maintaining a strong
search ability.

6. Conclusions and Future Work

This paper focuses on balancing the energy consumption and makespan of workflow
executions running on cloud platforms, and mathematically formulates it as a multi-
objective optimization problem. To resolve this challenging problem, this paper explores
the problem’s characteristics to tailor energy- and makespan-aware workflow scheduling
algorithms with two new aspects. A critical task adjustment strategy is proposed to mitigate
the negative impact of data transfer overheads among workflow tasks, simultaneously
optimizing energy consumption and makespan. Furthermore, an idle gap reuse strategy is
proposed to lower the execution CPU frequency of each non-critical task, so as to further
reduce energy consumption. The performance of the proposal is evaluated by comparing it
with four representative baselines in the context of twenty real-world workflows. Numerical
results reveal that the proposal outperforms the four existing baselines in balancing energy
consumption and makespan.

In addition to CPUs’ energy consumption, other facilities in cloud platforms, such as
storage and network equipment, are still significant energy consumption sources. In future
work, we will comprehensively consider various sources of energy consumption, analyze
their relationships, and develop systematic energy-saving technologies.

Author Contributions: Conceptualization and investigation, L.X. and F.H.; methodology, J.L. and
Z.C.; validation, L.X. and F.H.; writing—original draft preparation, L.X.; writing—review and editing,
J.L., Z.C. and F.H.; supervision, J.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by the Science and Technology Innovation Team of Shaanxi Province
(2023-CX-TD-07), the Special Project in Major Fields of Guangdong Universities (2021ZDZX1019),
the Major Projects of Guangdong Education Department for Foundation Research and Applied
Research (2017KZDXM081, 2018KZDXM066), Guangdong Provincial University Innovation Team
Project (2020KCXTD045), and the Hunan Key Laboratory of Intelligent Decision-making Technology
for Emergency Management (2020TP1013).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I. A view of

cloud computing. Commun. ACM 2010, 53, 50–58. [CrossRef]
2. Gill, S.S.; Buyya, R. A taxonomy and future directions for sustainable cloud computing: 360 degree view. ACM Comput. Surv.

2018, 51, 1–33. [CrossRef]

http://doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1145/3241038

Mathematics 2023, 11, 2126 17 of 18

3. Dai, X.; Xiao, Z.; Jiang, H.; Alazab, M.; Lui, J.C.; Min, G.; Dustdar, S.; Liu, J. Task offloading for cloud-assisted fog computing with
dynamic service caching in enterprise management systems. IEEE Trans. Ind. Inform. 2023, 19, 662–672. [CrossRef]

4. Zhang, J.; Liu, Y.; Li, Z.; Lu, Y. Forecast-Assisted Service Function Chain Dynamic Deployment for SDN/NFV-Enabled Cloud
Management Systems. IEEE Syst. J. 2023, 1–12. [CrossRef]

5. Lv, Z.; Chen, D.; Lv, H. Smart city construction and management by digital twins and BIM big data in COVID-19 scenario. ACM
Trans. Multimed. Comput. Commun. Appl. 2022, 18, 1–21. [CrossRef]

6. Ye, R.; Liu, P.; Shi, K.; Yan, B. State damping control: A novel simple method of rotor UAV with high performance. IEEE Access
2020, 8, 214346–214357. [CrossRef]

7. Lv, Z.; Qiao, L.; Hossain, M.S.; Choi, B.J. Analysis of using blockchain to protect the privacy of drone big data. IEEE Netw. 2021,
35, 44–49. [CrossRef]

8. Yuan, H.; Bi, J.; Zhou, M.; Liu, Q.; Ammari, A.C. Biobjective task scheduling for distributed green data centers. IEEE Trans.
Autom. Sci. Eng. 2020, 18, 731–742. [CrossRef]

9. Jones, N. How to stop data centres from gobbling up the world’s electricity. Nature 2018, 561, 163–166. [CrossRef]
10. Li, M.; Tian, Z.; Du, X.; Yuan, X.; Shan, C.; Guizani, M. Power normalized cepstral robust features of deep neural networks in a

cloud computing data privacy protection scheme. Neurocomputing 2023, 518, 165–173. [CrossRef]
11. Min, C.; Pan, Y.; Dai, W.; Kawsar, I.; Li, Z.; Wang, G. Trajectory optimization of an electric vehicle with minimum energy

consumption using inverse dynamics model and servo constraints. Mech. Mach. Theory 2023, 181, 105185. [CrossRef]
12. Duan, Y.; Zhao, Y.; Hu, J. An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid:

Modeling, optimization and analysis. Sustain. Energy Grids Netw. 2023, 34, 101004. [CrossRef]
13. Lee, Y.C.; Zomaya, A.Y. Energy conscious scheduling for distributed computing systems under different operating conditions.

IEEE Trans. Parallel Distrib. Syst. 2011, 22, 1374–1381. [CrossRef]
14. Masdari, M.; Zangakani, M. Green cloud computing using proactive virtual machine placement: challenges and issues. J. Grid

Comput. 2020, 18, 727–759. [CrossRef]
15. Li, Z.; Ge, J.; Hu, H.; Song, W.; Hu, H.; Luo, B. Cost and energy aware scheduling algorithm for scientific workflows with deadline

constraint in clouds. IEEE Trans. Serv. Comput. 2018, 11, 713–726. [CrossRef]
16. Chen, H.; Zhu, X.; Liu, G.; Pedrycz, W. Uncertainty-aware online scheduling for real-time workflows in cloud service environment.

IEEE Trans. Serv. Comput. 2021, 14, 1167–1178. [CrossRef]
17. Chen, H.; Wen, J.; Pedrycz, W.; Wu, G. Big data processing workflows oriented real-time scheduling algorithm using task-

duplication in geo-distributed clouds. IEEE Trans. Big Data 2018, 6, 131–144. [CrossRef]
18. Durillo, J.J.; Nae, V.; Prodan, R. Multi-objective energy-efficient workflow scheduling using list-based heuristics. Future Gener.

Comput. Syst. 2014, 36, 221–236. [CrossRef]
19. Hafsi, H.; Gharsellaoui, H.; Bouamama, S. Genetically-modified Multi-objective Particle Swarm Optimization approach for

high-performance computing workflow scheduling. Appl. Soft Comput. 2022, 122, 108791. [CrossRef]
20. Tian, J.; Hou, M.; Bian, H.; Li, J. Variable surrogate model-based particle swarm optimization for high-dimensional expensive

problems. Complex Intell. Syst. 2022, 1–49. [CrossRef]
21. Ismayilov, G.; Topcuoglu, H.R. Neural network based multi-objective evolutionary algorithm for dynamic workflow scheduling

in cloud computing. Future Gener. Comput. Syst. 2020, 102, 307–322. [CrossRef]
22. Zhang, K.; Wang, Z.; Chen, G.; Zhang, L.; Yang, Y.; Yao, C.; Wang, J.; Yao, J. Training effective deep reinforcement learning agents

for real-time life-cycle production optimization. J. Pet. Sci. Eng. 2022, 208, 109766. [CrossRef]
23. Feng, Q.; Feng, Z.; Su, X. Design and simulation of human resource allocation model based on double-cycle neural network.

Comput. Intell. Neurosci. 2021, 2021, 7149631. [CrossRef] [PubMed]
24. Hussain, M.; Wei, L.F.; Rehman, A.; Abbas, F.; Hussain, A.; Ali, M. Deadline-constrained energy-aware workflow scheduling in

geographically distributed cloud data centers. Future Gener. Comput. Syst. 2022, 132, 211–222. [CrossRef]
25. Bharany, S.; Badotra, S.; Sharma, S.; Rani, S.; Alazab, M.; Jhaveri, R.H.; Gadekallu, T.R. Energy efficient fault tolerance techniques

in green cloud computing: A systematic survey and taxonomy. Sustain. Energy Technol. Assess. 2022, 53, 102613. [CrossRef]
26. Medara, R.; Singh, R.S.; Sompalli, M. Energy and cost aware workflow scheduling in clouds with deadline constraint. Concurr.

Comput. Pract. Exp. 2022, 34, e6922. [CrossRef]
27. Pan, L.; Liu, X.; Jia, Z.; Xu, J.; Li, X. A Multi-objective Clustering Evolutionary Algorithm for Multi-workflow Computation

Offloading in Mobile Edge Computing. IEEE Trans. Cloud Comput. 2021. [CrossRef]
28. Mohammadzadeh, A.; Masdari, M.; Gharehchopogh, F.S. Energy and cost-aware workflow scheduling in cloud computing data

centers using a multi-objective optimization algorithm. J. Netw. Syst. Manag. 2021, 29, 1–34. [CrossRef]
29. Mohammadzadeh, A.; Masdari, M.; Gharehchopogh, F.S.; Jafarian, A. A hybrid multi-objective metaheuristic optimization

algorithm for scientific workflow scheduling. Clust. Comput. 2021, 24, 1479–1503. [CrossRef]
30. Hussain, M.; Wei, L.F.; Abbas, F.; Rehman, A.; Ali, M.; Lakhan, A. A multi-objective quantum-inspired genetic algorithm for

workflow healthcare application scheduling with hard and soft deadline constraints in hybrid clouds. Appl. Soft Comput. 2022,
128, 109440. [CrossRef]

31. Paknejad, P.; Khorsand, R.; Ramezanpour, M. Chaotic improved PICEA-g-based multi-objective optimization for workflow
scheduling in cloud environment. Future Gener. Comput. Syst. 2021, 117, 12–28. [CrossRef]

http://dx.doi.org/10.1109/TII.2022.3186641
http://dx.doi.org/10.1109/JSYST.2023.3263865
http://dx.doi.org/10.1145/3529395
http://dx.doi.org/10.1109/ACCESS.2020.3040779
http://dx.doi.org/10.1109/MNET.011.2000154
http://dx.doi.org/10.1109/TASE.2019.2958979
http://dx.doi.org/10.1038/d41586-018-06610-y
http://dx.doi.org/10.1016/j.neucom.2022.11.001
http://dx.doi.org/10.1016/j.mechmachtheory.2022.105185
http://dx.doi.org/10.1016/j.segan.2023.101004
http://dx.doi.org/10.1109/TPDS.2010.208
http://dx.doi.org/10.1007/s10723-019-09489-9
http://dx.doi.org/10.1109/TSC.2015.2466545
http://dx.doi.org/10.1109/TSC.2018.2866421
http://dx.doi.org/10.1109/TBDATA.2018.2874469
http://dx.doi.org/10.1016/j.future.2013.07.005
http://dx.doi.org/10.1016/j.asoc.2022.108791
http://dx.doi.org/10.1007/s40747-022-00910-7
http://dx.doi.org/10.1016/j.future.2019.08.012
http://dx.doi.org/10.1016/j.petrol.2021.109766
http://dx.doi.org/10.1155/2021/7149631
http://www.ncbi.nlm.nih.gov/pubmed/34733325
http://dx.doi.org/10.1016/j.future.2022.02.018
http://dx.doi.org/10.1016/j.seta.2022.102613
http://dx.doi.org/10.1002/cpe.6922
http://dx.doi.org/10.1109/TCC.2021.3132175
http://dx.doi.org/10.1007/s10922-021-09599-4
http://dx.doi.org/10.1007/s10586-020-03205-z
http://dx.doi.org/10.1016/j.asoc.2022.109440
http://dx.doi.org/10.1016/j.future.2020.11.002

Mathematics 2023, 11, 2126 18 of 18

32. Peng, K.; Zhu, M.; Zhang, Y.; Liu, L.; Zhang, J.; Leung, V.C.; Zheng, L. An energy-and cost-aware computation offloading method
for workflow applications in mobile edge computing. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 207. [CrossRef]

33. Tarafdar, A.; Debnath, M.; Khatua, S.; Das, R.K. Energy and makespan aware scheduling of deadline sensitive tasks in the cloud
environment. J. Grid Comput. 2021, 19, 1–25. [CrossRef]

34. Xia, X.; Qiu, H.; Xu, X.; Zhang, Y. Multi-objective workflow scheduling based on genetic algorithm in cloud environment. Inf. Sci.
2022, 606, 38–59. [CrossRef]

35. Zhu, Z.; Zhang, G.; Li, M.; Liu, X. Evolutionary multi-objective workflow scheduling in cloud. IEEE Trans. Parallel Distrib. Syst.
2016, 27, 1344–1357. [CrossRef]

36. Pham, T.P.; Fahringer, T. Evolutionary multi-objective workflow scheduling for volatile resources in the cloud. IEEE Trans. Cloud
Comput. 2022, 10, 1780–1791. [CrossRef]

37. Topcuoglu, H.; Hariri, S.; Wu, M.Y. Performance-effective and low-complexity task scheduling for heterogeneous computing.
IEEE Trans. Parallel Distrib. Syst. 2002, 13, 260–274. [CrossRef]

38. Coello, C.A.C.; Brambila, S.G.; Gamboa, J.F.; Tapia, M.G.C.; Gómez, R.H. Evolutionary multiobjective optimization: open research
areas and some challenges lying ahead. Complex Intell. Syst. 2020, 6, 221–236. [CrossRef]

39. Chen, H.; Cheng, R.; Wen, J.; Li, H.; Weng, J. Solving large-scale many-objective optimization problems by covariance matrix
adaptation evolution strategy with scalable small subpopulations. Inf. Sci. 2020, 509, 457–469. [CrossRef]

40. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

41. Sathya Sofia, A.; GaneshKumar, P. Multi-objective task scheduling to minimize energy consumption and makespan of cloud
computing using NSGA-II. J. Netw. Syst. Manag. 2018, 26, 463–485. [CrossRef]

42. Wu, Q.; Zhou, M.; Zhu, Q.; Xia, Y.; Wen, J. MOELS: Multiobjective evolutionary list scheduling for cloud workflows. IEEE Trans.
Autom. Sci. Eng. 2020, 17, 166–176. [CrossRef]

43. Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach.
IEEE Trans. Evol. Comput. 1999, 3, 257–271. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1186/s13638-019-1526-x
http://dx.doi.org/10.1007/s10723-021-09548-0
http://dx.doi.org/10.1016/j.ins.2022.05.053
http://dx.doi.org/10.1109/TPDS.2015.2446459
http://dx.doi.org/10.1109/TCC.2020.2993250
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1007/s40747-019-0113-4
http://dx.doi.org/10.1016/j.ins.2018.10.007
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1007/s10922-017-9425-0
http://dx.doi.org/10.1109/TASE.2019.2918691
http://dx.doi.org/10.1109/4235.797969

	Introduction
	Related Work
	Mathematical Models
	Workflow and Resource Model
	Problem Formulation

	Algorithm Design
	Motivation Examples
	Main Framework
	Problem-Specific Optimization Strategies

	Performance Evaluation
	Experimental Setups
	Comparison Results
	Trends of Hypervolume Values

	Conclusions and Future Work
	References

