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Abstract: This work makes a contribution to the theory of soft sets. It studies the concepts of soft
semi-algebras and soft algebras, along with some operations. Then, it examines the relations of soft
algebras set to their ordinary (crisp) counterparts. Among other things, we show that every algebra
of soft sets induces a collection of ordinary algebras of sets. By using the formulas (in Theorem 7 and
Corollary 1), we present a novel construction, allowing us to construct a soft algebra from a system of
ordinary algebras of sets. Two examples are presented to show how these formulas can be used in
practice. This approach is general enough to be applied to many other (soft) algebraic properties and
shows that ordinary algebras contain instruments enabling us to construct soft algebras and to study
their properties. As an application, we demonstrate how elements of the generated soft algebra can
be used to describe the weather conditions of a region.
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1. Introduction

In today’s world, the mathematical modeling and manipulation of various kinds of
uncertainties has turned into a growing concern in the solution of difficult problems in a
variety of fields, such as engineering, environmental science, economics, social sciences,
and medicine. Even though probability theory, fuzzy set theory [1], rough set theory [2],
and interval mathematics [3], and so on, are well-known and effective tools for dealing with
ambiguity and uncertainty, each has its own set of limitations; a common major weakness
among these mathematical techniques is the limitation of parametrization tools.

In 1999, Molodtsov [4] originated the soft set theory as a mathematical tool for dealing
with uncertainty, which is free of the challenges related to the earlier mentioned theories.
Soft sets were presented as a collection of parameterized possibilities of a universe. The char-
acteristics of parameter sets associated with soft sets provide a standardized foundation for
modeling uncertainty. This led to the rapid growth of soft set theory and its relevant areas
in a short amount of time and provided various applications of soft sets in real life, such as
medical diagnosis [5,6], evaluation of nutrition systems [7], decision making [8], analysis of
networks [9], and information systems [10,11]. To face more complicated problems, some
extensions of soft sets were embraced, such as bipolar soft sets and double-framed soft
sets, and their efficiency to address practical problems was demonstrated, as illustrated
in [12,13].

Multiple researchers applied soft set theory to various mathematical structures such as
soft group theory [14], soft ring theory [15], soft category theory [16], soft topology [17–20],
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infra-soft topology [21], N-soft topology [22], soft topological soft groups and soft
rings [23,24], etc.

An algebra of subsets of a universal (ordinary) set is crucial for the growth of several
disciplines, including mathematical analysis, probability theory, and economics and finance.
The concept of algebras of soft settings was established by Riaz et al. [25]. Various properties
and relations of soft algebras remain untouched. Therefore, we further study this concept
and establish a general construction for producing soft algebras. This construction helps us
to study the properties of soft algebras by means of the properties of ordinary algebras.

The content of the paper is arranged as follows: We provide a summary of the back-
ground on soft set theory and probability theory in Section 2. Section 3 concentrates on the
study of soft semi-algebras and soft algebras, with their relationships. Then, it investigates
some operations on soft algebras. Section 4 uses two remarkable formulas to demonstrate
the relationships between ordinary and soft algebras. Section 5 discusses the application of
representing weather conditions using elements of the generated soft algebra. We end with
a brief conclusion and discussion (Section 6).

2. Preliminaries

Let X be an initial universe, Q be a set of parameters, and P(X) denote the set of all
subsets of X.

Definition 1 ([4]). Let F : Q → P(X) be a set-valued mapping and let Q ⊆ Q. The collection
(F,Q) = {(q, F(q)) : q ∈ Q} is called a soft set over X.

A parameterized class of subsets of X represents what is intended by a soft set over X.
The family of all soft subsets of X with the parametric set Q (resp. Q) is denoted by SQ(X)
(resp. SQ(X)).

Remark 1. The soft set (F,Q) can indeed be extended to the soft set (F, Q) by giving F(q) = ∅
for each q ∈ Q−Q.

Definition 2 ([11]). The soft complement (F,Q)c of a soft set (F,Q) is a soft set (Fc,Q), where
Fc : E→ P(X) is a mapping having the property that Fc(q) = X− F(q) for all q ∈ Q.

Notice that ((F,Q)c)c = (F,Q).

Definition 3 ([26]). A soft set (F,Q) over X is called null with respect toQ, ΦQ, if F(q) = ∅ for
all q ∈ Q, and is called absolute with respect to Q, XQ, if F(q) = X for all q ∈ Q. The respective
null and absolute soft sets are denoted by ΦQ and XQ.

Evidently, Φc
Q = XQ and Xc

Q = ΦQ.

Definition 4 ([27]). A soft set (F,Q) is called finite (resp. countable) if F(q) is finite (resp.
countable) for each q ∈ Q. Otherwise, it is called infinite (resp. uncountable).

Definition 5 ([28]). An ordinary soft point({x},Q) (or shortly x) is a soft set (F,Q) over X,
such that F(q) = {x} for all q ∈ Q, where x ∈ X. It is said x∈̃(F,Q) if x ∈ F(q) for all q ∈ Q.

Definition 6 ([11,29]). LetQ1,Q2 ⊆ Q. A soft set (F1,Q1) is a (soft) subset of (F2,Q2) (written
by (F1,Q1)⊆̃(F2,Q2)) if Q1 ⊆ Q2 and F1(q) ⊆ F2(q) for all q ∈ Q1. (F1,Q1) is soft equal to
(F2,Q1) if (F1,Q1)⊆̃(F2,Q2) and (F2,Q2)⊆̃(F1,Q1).

Definition 7 ([26,30]). Let {(Fi,Q) : i ∈ I} be an indexed family of soft sets over X with an index
set I. Then

1. the soft intersection of (Fi,Q) is a soft set (F,Q) = ⋂̃
i∈I(Fi,Q), where F(q) =

⋂
i∈I Fi(q)

for all q ∈ Q
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2. the soft union of (Fi,Q) is a soft set (F,Q) = ⋃̃
i∈I(Fi,Q), where F(q) =

⋃
i∈I Fi(q) for all

q ∈ Q.

Definition 8 ([31,32]). Let X, Y be two different universes parameterized by Q,Q′, respectively,
and let g : Z → Y, h : Q → Q′ be mappings. The image of a soft set (F,Q)⊆̃(X,Q) under fg,h,
or simply f : (X,Q) → (Y,Q′), is a soft subset f (F,Q) = ( f (F), h(q)) of (Y,Q′) which is
given by

f (F)(q′) =


⋃

q∈h−1(q′)∩Q
g(F(q)), h−1(q′) ∩Q 6= ∅

∅, otherwise,

for each q′ ∈ Q′.
The inverse image of a soft set (G,Q′)⊆̃(Y,Q′) under f is a soft subset f−1(G,Q′) =

( f−1(G), h−1(q′)), such that

( f−1(G)(q) =

{
g−1(G(h(q))), h(q) ∈ Q′

∅, otherwise,

for each q ∈ Q.
The soft mapping f is called bijective if the mappings g, h are bijective.

Definition 9. A subfamily Σ of the power set P(X) of a nonempty set X is said to be an algebra
on X if Σ meets the following properties:

1. ∅ ∈ Σ,
2. if F ∈ Σ, then Fc ∈ Σ, and
3. if Fn ∈ Σ, for all n = 1, 2, . . . , k, then ∪k

n=1Fn is in Σ.

Definition 10 ([33]). Let P be a probability function defined on the collection of all possible events
A from a sample space X. Then P is called a distribution if ∑x∈X P(x) = 1. The set of all elements
with non-zero probability is called support of P.

In this work, if X happens to be a finite set, then A will be identical to P(X), and P
with the support {x1, x2, . . . , xn} will be represented by

P =
P(x1)

x1
+

P(x2)

x2
+ · · ·+ P(xn)

xn
.

3. Soft Semi-Algebras and Soft Algebras

Definition 11. A family H⊆̃SQ(X) is called a soft semi-algebra on X if it satisfies the follow-
ing properties:

1. ΦQ, XQ are inH,
2. if (F,Q), (G,Q) are inH, then (F,Q)∩̃(G,Q) is inH, and
3. if (F,Q)c =

⋃̃n
i=1(Fi,Q), where (G1,Q), (G2,Q), . . . , (Gn,Q) are in H and

(Gi,Q)∩̃(Gj,Q) = ΦQ for i 6= j, then (F,Q) is inH.

Let us recall the definition of a soft algebra.

Definition 12 ([25]). A family Σ⊆̃SQ(X) is said to be a soft algebra on X if Σ meets the follow-
ing properties:

1. ΦQ is in Σ,
2. if (F,Q) is in Σ, then (F,Q)c is in Σ, and

3. if (Fn,Q) is in Σ, for all n = 1, 2, . . . , k, then
⋃̃k

n=1(Fn,Q) is in Σ.
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If (3) in the above definition holds true for countably infinite members of Σ, then Σ
will be called a soft σ-algebra on X (see [34]).

Example 1. The collections {ΦQ, XQ} and SQ(X) are trivially soft algebras. They are, respec-
tively, the smallest and the largest soft algebras.

Example 2. For any (F,Q)∈̃SQ(X), {ΦQ, (F,Q), (F,Q)c, XQ} is a soft algebra.

Readily, each soft σ-algebra is a soft algebra and each soft algebra is a soft semi-algebra,
but not the converse.

Example 3. Let X be an infinite universal set and Q be a set of parameters. The collection

Σ = {(F,Q)∈̃SQ(X) : either (F,Q) or (F,Q)c is finite}

will be a soft algebra. On the other hand, Σ is not a soft σ-algebra.

Example 4. Let R be the set of real numbers and let Q = {q1, q2}. The collection

H =
{
{(q1, [a, b)), (q2, (c, d])} : a, b, c, d ∈ R with a < b, c < d

}
is a soft semi-algebra but not a soft algebra.

Lemma 1. Let {Σi : i ∈ I} be an indexed family of soft algebras on X with an index set I. Then⋂̃
i∈IΣi is a soft algebra.

Proof. Since each soft algebra Σi contains ΦQ, so
⋂̃

i∈IΣi is not null and it contains ΦQ.
Let (F,Q)∈̃⋂̃i∈IΣi. Then (F,Q)∈̃Σi for each i ∈ I, and therefore, (F,Q)c∈̃Σi for each
i ∈ I. Hence, (F,Q)c∈̃⋂̃i∈IΣi. For the same reason,

⋂̃
i∈IΣi is closed under the finite soft

unions.

On the other hand, the union of two soft algebras need not be a soft algebra.

Example 5. Let X = {1, 2, 3} and let Q = {q1, q2}. Given the following two soft algebras: Σ1 =
{ΦQ, (F1,Q), (F2,Q), XQ} and Σ2 = {ΦQ, (F3,Q), (F4,Q), XQ}, where (F1,Q) = {(q1, {1}),
(q2, ∅)}, (F1,Q) = {(q1, {2, 3}), (q2, X)}, (F3,Q) = {(q1, ∅), (q2, {2, 3})}, and (F4,Q) =
{(q1, X), (q2, {1})}. Then Σ1∪̃Σ2 is not a soft algebra.

However, the next result demonstrates that the union of soft algebras is a soft algebra
under certain conditions.

Theorem 1. Let {Σn : n ∈ N} be a countable family of soft algebras on X. If Σ1⊆̃Σ2⊆̃ · · · , then⋃̃
n∈NΣn is a soft algebra.

Proof. Since Σn is a soft algebra for all n ∈ N, then ΦQ∈̃Σn. Thus, ΦQ∈̃∪̃n∈NΣn. Let
(F,Q)∈̃∪̃n∈NΣn. Then (F,Q)∈̃Σn for some n and so (F,Q)c∈̃Σn as Σn is a soft algebra.
Surely, (F,Q)c∈̃∪̃n∈NΣn. Suppose (F,Q), (G,Q)∈̃∪̃n∈NΣn. Since Σ1⊆̃Σ2⊆̃ · · · , then there
exists some n0 ∈ N such that (F,Q), (G,Q)∈̃Σ0. Thus, (F,Q)∪̃(G,Q)∈̃Σ0 as Σ0 is a soft
algebra and hence, (F,Q)∪̃(G,Q)∈̃∪̃n∈NΣn.

It is worth noting that the above result does not hold true for soft σ-algebras. Let
X = N andQ be a set of parameters. If Σn is the collection of all soft subsets of (Fn,Q) with
their complements, where Fn = {1, 2, . . . , n}, then {Σn : n ∈ N} is an increasing collection
of soft algebras. Then

⋃̃
n∈NΣn is a soft algebra mentioned in Example 3, which is not a soft

σ-algebra.
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Lemma 2. Let H be a subcollection of SQ(X). Then there exists a unique soft algebra Σ on X
containingH, in the sense that if Σ∗ is any other soft algebra containingH, then Σ⊆̃Σ∗.

Proof. Since SQ(X) is a soft algebra containing H, so such a soft algebra always exists.
Therefore, the soft algebra Σ obtained in Lemma 1 is the required soft algebra.

We refer to the above soft algebra as the soft algebra on X generated byH and denote
it by A(H). IfH is a countable collection, then A(H) is called the countably generated soft
algebra. The soft algebra considered in Example 2 is the soft algebra generated by {(F,Q)}.

Theorem 2. LetH,Hi⊆̃SQ(X), for i = 0, 1, 2, and let Σ be any soft algebra on X. The soft algebra
A(H) generated byH possesses the below properties:

1. H⊆̃A(H)⊆̃Σ.
2. A(A(H)) = A(H).
3. H is a soft algebra ifH = A(H).
4. H1⊆̃H2 implies A(H1)⊆̃A(H2).
5. A(H1),A(H2)⊆̃A(H1)∪̃A(H2)⊆̃A(H1∪̃H2) = A(A(H1)∪̃A(H2)).
6. H⊆̃H0⊆̃A(H) implies A(H0) = A(H).

Proof.

(1) It follows from the definition of A(H).
(2) The first direction, A(H)⊆̃A(A(H)), follows from (1). Now, we always have

A(H)⊆̃A(H), soA(H) is a soft algebra includingA(H). SinceA(A(H)) is the small-
est soft algebra including A(H). Thus, A(A(H))⊆̃A(H). Hence, A(A(H)) = A(H).

(3) Straightforward.
(4) By (1), H2⊆̃A(H2). Since H1⊆̃H2, then H1⊆̃H2⊆̃A(H2) and so ⊆̃A(H2) is a soft

algebra containing H1, but A(H1) is the smallest soft algebra containing H1. Thus,
A(H1)⊆̃A(H2).

(5) We only prove the last equality, other inclusions can be concluded easily. Since
H1⊆̃H1∪̃H2, by (4), A(H1)⊆̃ A(H1∪̃H2). Similarly, A(H2)⊆̃A(H1∪̃H2). Therefore,
A(H1)∪̃A(H1)⊆̃A(H1∪̃H2). By (4), σ[A(H1)∪̃ A(H1)]⊆̃A(H1∪̃H2).
On the other hand, sinceH1⊆̃A(H1) andH2⊆̃A(H2), thenH1∪̃H2⊆̃A(H1)∪̃A(H2).
By (4), A(H1∪̃H2)⊆̃A[A(H1)∪̃A(H2)]. Hence, A(H1∪̃H2) = A(A(H1)∪̃A(H2)).

(6) It follows from (2) and (4).

Proposition 1. LetH be a soft semi-algebra on X. The family

Σ = {(F,Q)∈̃SQ(X) : (F,Q) =
⊔̃n

i=1
(Fi,Q), where, (Fi,Q)∈̃H}

is a soft algebra on X andH⊆̃Σ, where the symbol
⊔̃

means disjoint soft union.

Proof. The second claim H⊆̃Σ is obvious, because each (Fi,Q) =
⊔̃i

(Fi,Q)∈̃Σ. It re-
mains to show that Σ is a soft algebra. Clearly ΦQ∈̃Σ as ΦQ∈̃H⊆̃Σ. Let (R,Q), (S,Q)∈̃Σ.
By definition,

(R,Q) =
⊔̃n

i=1
(Fi,Q), where (Fi,Q)∈̃H for i = 1, 2, . . . , n, and

(S,Q) =
⊔̃m

j=1
(Gj,Q), where (Gj,Q)∈̃H for j = 1, 2, . . . , m.
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Now

(R,Q)∩̃(S,Q) =

(⊔̃n

i=1
(Fi,Q)

)⋂(⊔̃m

j=1
(Gj,Q)

)
=

⊔̃n

i=1

⊔̃m

j=1

(
(Fi,Q)∩̃(Gj,Q)

)
Since (Fi,Q), (Gj,Q)∈̃H for all i and j, andH is closed under finite soft intersections,

therefore, (R,Q)∩̃(S,Q)∈̃Σ.

Let (R,Q)∈̃Σ. There exist (F1,Q), (F1,Q), . . . , (Fn,Q)∈̃H such that
(R,Q) = ⊔̃n

i=1(Fi,Q). Now

(R,Q)c =

(⊔̃n

i=1
(Fi,Q)

)c
=
⋂̃n

i=1
(Fi,Q)c = (F1,Q)c∩̃(F2,Q)c∩̃ · · · ∩̃(Fn,Q)c.

By definition ofH, each (Fi,Q)c =
⊔̃ki

k=1(Fi,k,Q), for some (Fi,k,Q)∈̃H. Therefore,

(R,Q)c =
⋂̃n

i=1

(⊔̃ki

k=1
(Fi,k,Q)

)
=
⊔̃ki

k=1

(⋂̃n

i=1
(Fi,k,Q)

)
.

However,H is a soft semi-algebra, which implies that
⋂̃n

i=1(Fi,k,Q)∈̃H. This proves
that (R,Q)c∈̃Σ. Hence, Σ is a soft algebra.

Theorem 3. LetH be a soft semi-algebra on X and let A(H) be the soft algebra generated byH.
Then, (F,Q)∈̃A(H) if (F,Q) = ⊔̃n

i=1(Fi,Q), for some (F1,Q), (F2,Q), . . . , (Fn,Q)∈̃H.

Proof. From Proposition 1,H⊆̃Σ and, by Theorem 2, A(H)⊆̃Σ, since A(H) is a soft algebra.
The converse is clear, since (Fi,Q)∈̃H⊆̃A(H), for i = 1, 2, . . . , n, and A(H) is a soft

algebra, so
⋃̃n

i=1(Fi,Q) = (F,Q)∈̃A(H).

Proposition 2. Let (Y,Q)∈̃SQ(X)−ΦQ and let Σ be a soft algebra on X. Then

Σ∩̃(Y,Q) = {(F,Q)∩̃(Y,Q) : (F,Q)∈̃Σ}

is a soft algebra on (Y,Q) and is denoted by Σ|(Y,Q) or simply Σ|Y.

Proof. Since ΦQ∩̃(Y,Q) = ΦQ and ΦQ∈̃Σ, so ΦQ∈̃Σ|(Y,Q). If (G,Q)∈̃Σ|(Y,Q), then
(G,Q) = (F,Q)∩̃ (Y,Q) for some (F,Q)∈̃Σ. Since (F,Q)c∈̃Σ, we have (G,Q)c = (F,Q)c

∩̃(Y,Q). Thus, (G,Q)c∈̃ Σ|(Y,Q). Suppose that (G1,Q), (G2,Q), . . . , (Gk,Q)∈̃Σ|(Y,Q). Then
for each n = 1, 2, . . . , k, there exists (Fn,Q)∈̃Σ such that (Gn,Q) = (Fn,Q)∩̃(Y,Q). Since
∪̃k

n=1(Fn,Q)∈̃Σ, so

⋃̃k

n=1
(Gn,Q) =

⋃̃k

n=1
[(Fn,Q)∩̃(Y,Q)] = [

⋃̃k

n=1
(Fn,Q)]∩̃(Y,Q).

This implies that ∪̃k
n=1(Gn,Q)∈̃Σ|(Y,Q).

Theorem 4. LetH be a subcollection of SQ(X) and let (Y,Q)∈̃SQ(X)−ΦQ. Then

A(H∩̃(Y,Q)) = A(H)∩̃(Y,Q),

whereH∩̃(Y,Q) = {(F,Q)∩̃(Y,Q) : (F,Q)∈̃H}.

Proof. Let (R,Q)∈̃H∩̃(Y,Q). Then (R,Q) = (F,Q)∩̃(Y,Q) for some (F,Q)∈̃H⊆̃A(H).
Therefore, (R,Q)∈̃A(H)∩̃(Y,Q) and, hence, H∩̃(Y,Q)⊆̃A(H)∩̃(Y,Q). Since by
Proposition 2, A(H) ∩̃(Y,Q) is a soft algebra on Y. Thus, Lemma 2 guarantees that
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A(H∩̃(Y,Q))⊆̃A(H) ∩̃(Y,Q). To prove the other way of the inclusion, we first need
to check that

Σ = {(S,Q)∈̃SQ(X) : (S,Q)∩̃(Y,Q)∈̃A(H∩̃(Y,Q))}

is a soft algebra. Evidently, ΦQ∈̃Σ because ΦQ∩̃(Y,Q) = ΦQ∈̃A(H∩̃(Y,Q)). Suppose
that (S,Q)∈̃Σ. Then (S,Q)∩̃(Y,Q)∈̃A(H∩̃(Y,Q)). Since (S,Q)c∩̃(Y,Q) = (Y,Q) −
[(S,Q)∩̃(Y,Q)], this means that (S,Q)c∈̃Σ. Assume that (H1,Q), (H2,Q), · · · , (Hk,Q)∈̃Σ.
Then (H1,Q)∩̃(Y,Q), (H2,Q)∩̃(Y,Q), · · · , (Hk,Q)∩̃(Y,Q)∈̃A(H∩̃(Y,Q)). Therefore,

[
⋃̃k

n=1
(Hn,Q)]∩̃(Y,Q) =

⋃̃k

n=1
[(Hn,Q)∩̃(Y,Q)]∈̃A(H∩̃(Y,Q)).

Hence, ∪̃k
n=1(Hn,Q)∈̃Σ. This proves that Σ is a soft algebra on X. Suppose that (F,Q)∈̃H.

Then (F,Q)∩̃(Y,Q)∈̃ H∩̃(Y,Q)⊆̃A(H∩̃(Y,Q)), and so, (F,Q)∈̃Σ. Thus, H⊆̃Σ and, by
Lemma 2,A(H)⊆̃Σ. Now, if (R,Q)∈̃A(H)∩̃(Y,Q), then (R,Q) = (F,Q)∩̃(Y,Q) for some
(F,Q)∈̃A(H) ⊆̃Σ and, hence, (R,Q)∈̃A(H∩̃(Y,Q)). This concludes that
A(H)∩̃(Y,Q)⊆̃ A(H∩̃(Y,Q)). Thus, A(H∩̃(Y,Q)) = A(H)∩̃(Y,Q).

Lemma 3. Let f : (X,Q) −→ (Y,Q′) be a soft mapping. Then

1. if Σ is a soft algebra on X, then {(G,Q′)⊆̃(Y,Q′) : f−1(G,Q′)∈̃Σ} is a soft algebra on Y.
2. If Σ′ is a soft algebra on Y, the set f−1(Σ′) is a soft algebra on X.

Proof. Both (1) and (2) follow from the fact that f−1(ΦQ′) = ΦQ, f−1(YQ′ − (G,Q′)) = XQ−
f−1(G,Q′) for each soft set (G,Q′) over Y, and f−1(

⋃k
n=1(Gn,Q′)) = ⋃k

n=1 f−1(Gn,Q′) for
each collection {(Gn,Q′) : n = 1, 2, . . . , k} of soft sets over Y (see Theorem 14 in [31]).

We shall remark that the direct image of a soft algebra under a soft mapping need not
be a soft algebra.

Example 6. Let X = {x1, x2, x3}, Y = {y1, y2}, and Q = Q′ = {q1, q2}. Define the mapping
fg,h by

g(x) =

{
y1, if x 6= x3;
y2, if x = x3,

and h(q) = q, for all q ∈ Q. Let Σ = {ΦQ, (F1,Q), (F2,Q), XQ}, where (F1,Q) = {(q1, {x1}),
(q2, ∅)} and (F2,Q) = {(q1, {x2, x3}), (q2, X)}. The image of the soft algebra Σ is fg,h(Σ) =

{ΦQ, (G1,Q), Ỹ}, where (G1,Q) = {(q1, {y1}), (q2, ∅)}, which is not a soft algebra on Y.

Theorem 5. Let f : (X,Q) −→ (Y,Q′) be a soft mapping. Then

f−1(A(H)) = A( f−1(H)),

for each collectionH of soft sets over Y.

Proof. By Lemma 3 (2), f−1(A(H)) is a soft algebra and f−1(H)⊆̃ f−1(A(H)), and this im-
plies that A( f−1(H))⊆̃ f−1(A(H)). However, by Lemma 3 (1), the set
Σ = {(G,Q′)⊆̃(Y,Q′) : f−1(G,Q′)∈̃A( f−1(H))} is a soft algebra, and it containsH, hence
A(H)⊆̃Σ. Therefore, f−1(A(H)) ⊆̃ f−1(Σ) = {(F,Q)⊆̃(X,Q) : (F,Q) = f−1(G,Q′) for
some(G,Q′)∈̃Σ}⊆̃ A( f−1(H)). This shows that f−1(A(H)) = A( f−1(H)).

4. Ordinary and Soft Algebras

Proposition 3. Let Σ be a soft algebra on X, parameterized byQ. Then Σq = {F(q) : (F,Q)∈̃Σ}
is an ordinary algebra on X for each q ∈ Q.

Proof. Since ΦQ∈̃Σ, then ∅ ∈ Σq for each q ∈ Q. Let F(q) ∈ Σq. Then (F,Q)∈̃Σ and,
since Σ is a soft algebra, so (F,Q)c∈̃Σ. However, (F,Q)c = {(q, X − F(q)) : q ∈ Q} and



Mathematics 2023, 11, 2035 8 of 12

so, Fc(q) = X − F(q) ∈ Σq. Let {Fn(q) : n = 1, 2, . . . , k} be a family of sets in Σq. Then,
for each n, (Fn,Q)∈̃Σ, and thus, ∪̃k

n=1(Fn,Q)∈̃Σ. Hence, ∪k
n=1Fn(q) ∈ Σq.

The converse of this lemma is not always true, particularly when |Q| > 1, and the
counterexample can be concluded from Example 5 in [34]. The scenario is different when
|Q| = 1.

Theorem 6. LetQ = {q} and letF be a family of subsets of X. Then Σ = {(q, F(q)) : F(q) ∈ F}
is a soft algebra if Σq = {F(q) : (q, F(q))∈̃Σ} is an ordinary algebra on X.

Proof. The first direction follows from Proposition 3.
Conversely, suppose Σq is an algebra. Clearly, ∅ ∈ Σq, and so, (q, ∅) = ΦQ∈̃Σ. Let

(F,Q)∈̃Σ. Then, (F,Q) = (q, F(q)) and F(q) ∈ Σq. Since Σq is an algebra, so Fc(q) ∈ Σq.
Therefore, (F,Q)c = (q, Fc(q))∈̃Σ. Let {(Fn,Q) : n = 1, 2, . . . , k} be a collection of soft sets
in Σ. This implies that (Fn,Q) = (q, Fn(q)) for each n = 1, 2, . . . , k, and thus, ∪k

n=1Fn(q) ∈
Σq, as Σq is an algebra on X. Therefore,

⋃̃k

n=1
(Fn,Q) =

⋃̃k

n=1
(q, Fn(q)) = (q,

k⋃
n=1

Fn(q))∈̃Σ.

This proves that Σ is a soft algebra on X.

Theorem 7. Let A be an (ordinary) algebra on X and Q be a set of parameters. Then

1. the family Σ(A) of soft sets (F,Q) forms a soft algebra on X, where (F,Q) = {(q, F(q)) :
F(q) ∈ A for each q ∈ Q}.

2. The family Σ̂(A) of soft sets (F,Q) forms a soft algebra on X, where (F,Q) = {(q, F(q)) :
F(q) = F(q′) ∈ A for each q, q′ ∈ Q}.

Proof. The proof is quite comparable to the second part of the proof for the preceding
result.

Remark 2. The above formula holds true for any family of subsets of a given universe. Namely, we
generate a collection of soft sets from an ordinary family of sets.

The soft algebra Σ(A) is called a soft algebra on X generated byA, and the soft algebra
Σ̂(A) is called an extended soft algebra on X via A.

Observe that Σq = Σ̂q = A for each q ∈ Q.
The following examples show how the process in Theorem 7 can be used:

Example 7. Let X = {x1, x2, x3, x4} and Q = {q1, q2}. Consider the following ordinary algebra
on X: A = {∅, {x1, x2}, {x3, x4}, X}. Applying the first formula, we conclude the following soft
algebra on X:

Σ(A) =
{

ΦQ, (F1,Q), (F2,Q), · · · , (F14,Q), XQ
}

,

where
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(F1,Q) = {(q1, ∅), (q2, {x1, x2})},
(F2,Q) = {(q1, ∅), (q2, {x3, x4})},
(F3,Q) = {(q1, ∅), (q2, X)},
(F4,Q) = {(q1, {x1, x2}), (q2, ∅)},
(F5,Q) = {(q1, {x1, x2}), (q2, {x1, x2})},
(F6,Q) = {(q1, {x1, x2}), (q2, {x3, x4})},
(F7,Q) = {(q1, {x1, x2}), (q2, X)},
(F8,Q) = {(q1, {x3, x4}), (q2, ∅)},
(F9,Q) = {(q1, {x3, x4}), (q2, {x1, x2})},
(F10,Q) = {(q1, {x3, x4}), (q2, {x3, x4})},
(F11,Q) = {(q1, {x3, x4}), (q2, X)},
(F12,Q) = {(q1, X), (q2, ∅)},
(F13,Q) = {(q1, X), (q2, {x1, x2})}, and

(F14,Q) = {(q1, X), (q2, {x3, x4})}.

Applying the second formula, we conclude the following soft algebra on X:

Σ̂(A) =
{

ΦQ, (G1,Q), (G2,Q), XQ
}

,

where
(G1,Q) = {(q1, {x1, x2}), (q2, {x1, x2})} and

(G2,Q) = {(q1, {x3, x4}), (q2, {x3, x4})}.

A less trivial example is

Example 8. Let A f be the finite–cofinite algebra on X. That is,

A f =
{

F ⊆ X : F is finite or Fc is finite
}

.

If X is finite, A f = P(X). The soft algebra Σ(A f ) on X generated by A f is given by the
following family:

Σ(A f ) =
{
{(q, F(q)) : q ∈ Q}∈̃SQ(X) : F(q) or F(q)c is finite, for each q ∈ Q

}
.

When we need to define the finite–cofinite algebra Σ f on X in soft settings, we normally do so
as in Example 3, i.e.,

Σ f =
{
(F,Q)∈̃SQ(X) : (F,Q) or (F,Q)c is finite

}
.

However, both Σ f = Σ(A f ) are equivalent. This example demonstrates how effectively our
formulas produce soft algebras. We shall call Σ f the finite–cofinite soft algebra on X.

It is worth noting that the general formula for constructing soft algebras provided by
Theorem 7 can be improved by the use of several ordinary algebras.

Corollary 1. Let AAA = {AQ : q ∈ Q} be a collection of (ordinary) algebras on X indexed by
a set of parameters Q. The family Σ(AAA ) of all soft sets (F,Q) forms a soft algebra on X, where
(F,Q) = {(q, F(q)) : F(q) ∈ AQ for each q ∈ Q}.

Notice that, if for each q, q′ ∈ Q, AQ = AQ′ = A, then Σ(AAA ) = Σ(A).
We have seen that each soft algebra produces a family of (ordinary) algebras of size

≤|Q|, so we obtain the following observation:



Mathematics 2023, 11, 2035 10 of 12

Lemma 4. Let AAA = {Aq : q ∈ Q} be the family of all ordinary algebras on X from a soft algebra
Σ. Then

Σ⊆̃Σ(AAA ).

Proof. It can be concluded from the definition of soft sets and the soft algebra generated
by AAA .

Theorem 8. Let {Aq : q ∈ Q} be a family of ordinary algebras on X indexed by Q. Then

Σ
(⋂̃
Aq
)
=
⋂̃

Σ
(
Aq
)
.

Proof. Let (F,Q)∈̃Σ
(⋂̃Aq

)
. Then

=⇒ F(q) ∈
⋂
Aq

=⇒ F(q) ∈ Aq, for each q ∈ Q
=⇒ {(q, F(q)) : q ∈ Q} ∈ Σ(Aq), for each q ∈ Q

=⇒ (F,Q)∈̃
⋂̃

Σ(Aq).

Hence, Σ
(⋂̃Aq

)
⊆̃⋂̃Σ

(
Aq
)
. The converse can be followed by reversing the above

steps.

Consequently, we have the following corollary:

Corollary 2. Let E be a subcollection of SQ(X), such that ΦQ, XQ∈̃E . Then

Σ
(
A(E)

)
= A

(
Σ(E)

)
,

where Σ(E) is the family of all soft sets {(q, F(q)) : q ∈ Q}, such that F(q) ∈ E for each q ∈ Q.

5. Weather Forecasting Application

As an application, elements in a soft algebra can represent weather forecasting. Con-
sider the weather conditions for a specific week of a region R. Let X = {x1, x2, x3, x4, x5, x6}
be our universe, where x1 = sunny, x2 = rainy, x3 = cloudy, x4 = thunderstorms,
x5 = windy, and x6 = snowy. Suppose the set of parameters A is the seven days of
the week. The set of all possible events is SQ(X), which is equivalent to the soft algebra
generated by the ordinary algebra P(X) with respect to A. Assume that the probability
distribution on weather predictions of this week is given in the following Table 1:

Table 1. The probability distribution of weather predictions.

XQ x1 x2 x3 x4 x5 x6

Sunday 0.7 0 0.3 0 0 0
Monday 0.1 0 0.9 0 0 0
Tuesday 0 0.8 0.2 0 0 0

Wednesday 0.6 0 0.3 0 0.1 0
Thursday 0 0 0.8 0 0.2 0

Friday 0 0.3 0.3 0.1 0.1 0.2
Saturday 0 0.3 0 0 0.2 0.5
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The weather predictions for working weekdays Q0 can be described by the element
(F,Q0) in the soft algebra SQ(X) as

F(sunday) =
0.7
x1

+
0.3
x3

,

F(monday) =
0.1
x1

+
0.9
x3

,

F(tuesday) =
0.8
x2

+
0.2
x3

,

F(wednesday) =
0.6
x1

+
0.3
x3

+
0.1
x5

,

F(thursday) =
0.8
x3

+
0.2
x5

.

The soft set (F,Q0) indicates that the region R will be partly cloudy on Sunday and
mostly cloudy on Monday. Tuesday is expected to be cloudy. Furthermore, R has remained
cold, but warming is estimated on Wednesday, with mostly cloudy conditions on Thursday.

If Q1 contains the weekend days, then the soft set (G,Q1) represents the weather as

F( f riday) =
0.3
x2

+
0.3
x3

+
0.1
x4

+
0.1
x5

+
0.2
x6

,

F(saturday) =
0.3
x2

+
0.2
x5

+
0.5
x6

.

The soft set (G,Q1) forecasts a cold wave for the region R. The weather on Friday will
be rainy, cloudy, and possibly windy. People may hear thunder in the distance. A snowfall
is also expected on Friday, but the most snowfall will be expected on Saturday, with a
noticeable wind chill.

6. Conclusions

This paper contributes to the field of soft set theory by investigating the concept
of soft semi-algebras and soft algebras. We have discussed how soft algebras perform
when used for specific operations such as restricting to a soft set, taking soft unions and
soft intersections, generating by a collection of soft sets, and taking images or preimages
under certain soft mappings. We have shown that each element of a soft algebra can be
represented by a finite soft union of disjoint elements of a soft semi-algebra. We have seen
that a soft algebra produces a family of ordinary algebras. Then, we have established two
formulas by which one can construct a soft algebra from an ordinary algebra or a family
of ordinary algebras. This construction provides a general framework for studying soft
algebras and investigating their properties in relation to their counterparts in ordinary
algebras. In particular, one can study probability theory, measure theory, etc., in the context
of soft set theory without defining all the related terminologies. As an application to
the generated soft algebras, we have shown that their elements can describe the weather
conditions for some area over time.
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