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Abstract: The problem of determining the shape of an object from knowledge of the far-field of a
single incident wave in two-dimensional elasticity was considered. We applied an iterative hybrid
method to tackle this problem. An advantage of this method is that it does not need a forward solver,
and therefore, the exact boundary condition is not essential. By deriving the Fréchet derivatives
of two boundary operators, we established reconstruction algorithms for objects with Dirichlet,
Neumann, and Robin boundary conditions; by introducing a general boundary condition, we also
established the reconstruction algorithm for objects with unknown physical properties. Numerical
experiments showed the effectiveness of the proposed method.
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1. Introduction

The inverse obstacle problem of recovering the location and shape of a scattering
object from knowledge of the far-field is a classic problem in inverse scattering [1]. Recently,
inverse obstacle problems of a scattered time-harmonic elastic wave have received increased
attention for their significant applications in many scientific areas, such as geophysics and
seismology [2–8]. We refer to [9–12] for a comprehensive introduction of the mathematical
theory of direct and inverse elastic scattering problems.

If far-field data for a large number of incident elastic plane waves are available, both
the location and shape of the obstacle can be reconstructed by using the linear sampling
method [13], the factorization method [14–16], or reverse time migration [17]. However,
if only the far-field pattern due to a single incident wave is available, the reconstruction
becomes severely ill-posed and, thus, more challenging [6]. There exist some sampling-type
methods for inverse elastic obstacle scattering problems using one incident wave, e.g., the
extended sampling method [18,19], the one-wave factorization method [4,20], and the
direct sampling method [2]. The sampling methods do not need prior information on
the physical and geometrical properties of the obstacle, but they can only reconstruct the
location and size of the obstacle. To determine the shape of the obstacle, one must use
iterative methods [8,21–24]. Iterative methods can recover the shape of the obstacle with a
suitable initial approximation; they usually require forward solvers and, therefore, need
the boundary condition of the obstacle. When the physical property of the obstacle is not
available, iterative methods may fail.

In this paper, we considered inverse elastic obstacle scattering problems using the
far-field pattern due to one incident wave. For the unique results on the inverse problems,
we refer to [20,25] and the references therein. We are interested in an iterative method
for inverse acoustic obstacle scattering problems introduced by Chapko, Kress, and Ser-
ranho [26–31]. This method combines ideas of both the decomposition method [32–34]
and iterative Newton methods [35,36] and is, therefore, called a hybrid method. Since the
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hybrid method obtains good reconstructions from far-field data for a single incident wave
and does not need a forward solver, it can be improved and used even when the boundary
condition is not available [37]. In this work, we give a nontrivial extension of the hybrid
method and its improved version in [28–31,37] for the inverse elastic scattering problems.
The elastic wave equation is more challenging because of the coexistence of compressional
waves and shear waves propagating at different speeds, and the boundary conditions of
the obstacle for elastic waves are more complicated. Hence, sophisticated modification is
required in our extension.

The paper is organized as follows. In Section 2, we introduce the direct elastic scatter-
ing problem and four inverse problems. We prove that a general boundary equation system
is always satisfied on the exact boundary of the object. In Section 3, we give the Fréchet
derivatives of five boundary operators, which are important for our iterative schemes.
Section 4 is devoted to hybrid methods for four inverse problems. In Section 5, numeri-
cal experiments are given to demonstrate the effectiveness and promising features of the
proposed numerical methods. Finally, in Section 6, we make some conclusions.

2. Direct and Inverse Scattering Problems

We begin with the notation used throughout this paper. For a non-zero vector x ∈ R2,
let x̂ := x/|x| and x̂⊥ be obtained by rotating x̂ clockwise by π/2. For the vector function
u = (u1; u2), in addition to the usual differential operators grad uj := (∂1uj; ∂2uj), j = 1, 2
and div u := ∂1u1 + ∂2u2, we made use of grad⊥uj := (−∂2uj; ∂1uj) and div⊥u := ∂1u2 −
∂2u1, where ∂i denotes ∂/∂xi, i = 1, 2.

The propagation of time-harmonic waves in an isotropic homogeneous medium with
Lamé constants λ and µ (µ > 0, 2µ + λ > 0) and density ρ is governed by the Navier
equation (or system):

∆∗u + ρω2u = 0, (1)

where u denotes the displacement field, ω denotes the angular frequency, and the differen-
tial operator ∆∗u := µ∆u + (λ + µ) grad div u. In this paper, we assumed ρ ≡ 1. It is well
known that any solution u of (1) can be decomposed as

u = up + us,

where
up := − 1

k2
p

grad div u, us := − 1
k2

s
grad⊥div⊥u (2)

are known as the compressional part of u associated with the compressional wavenumber
kp := ω/

√
2µ + λ and the shear part of u associated with the shear wavenumber ks :=

ω/
√

µ, respectively.
The direct elastic scattering problem for an obstacle is as follows: Given a bounded

domain D of class C2 and an incident field uinc such that uinc is a solution of (1) in a
neighborhood of ∂D and uinc|∂D ∈ [C(∂D)]2, find the scattered field usca ∈ [C2(R2 \
D̄)
⋂

C1(R2 \ D)]2 and total field u := usca + uinc subject to
∆∗u + ω2u = 0, in R2 \ D̄,
B(u) = 0, on ∂D,
lim
r→∞

√
r(∂usca

p /∂r− ikpusca
p ) = 0, r = |x|,

lim
r→∞

√
r(∂usca

s /∂r− iksusca
s ) = 0, r = |x|.

(3)

The operator B in (3) defines the boundary condition on ∂D, which depends on the
physical properties of the scatterer. The most-frequently occurring boundary conditions
are as follows:
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(1) The Dirichlet boundary condition:

u = 0 on ∂D, (4)

for a rigid body;
(2) The Neumann boundary condition:

Tνu = 0 on ∂D, (5)

for a cavity, where Tν := 2µ ∂
∂ν + λν div − µν⊥div⊥ denotes the surface traction

operator and ν is the unit outward normal to ∂D;
(3) The Robin boundary condition:

Tνu + iσu = 0 on ∂D, (6)

for an obstacle with some real-valued parameter σ > 0.

For the unique solvability of the scattering problem (3) in the space [H1
loc(R

2 \ D̄)]2,
we refer to [9,21].

It is well known that every radiation solution to the Navier equation has an asymptotic
behavior of the form:

usca(x) =
eikp |x|√
|x|

u∞
p (x̂)x̂ +

eiks |x|√
|x|

u∞
s (x̂)x̂⊥ + O

(
|x|−3/2), |x| → ∞ (7)

uniformly in all directions x̂, where u∞
p and u∞

s are analytic functions on the unit circle
S2 := {x̂ ∈ R2; |x̂| = 1}. Throughout this paper, u∞(x̂) := (u∞

p (x̂); u∞
s (x̂)) is defined as the

far-field pattern of usca, and u∞
p and u∞

s are defined as the compressional part and shear
part of the far-field pattern, respectively.

The inverse scattering problem of interest is to reconstruct the shape of the scatterer
with the far-field pattern of all observation directions available, but only one single incident
wave. In particular, four inverse elastic scattering problems are considered:

IP1. If the Dirichlet boundary condition is known to be satisfied on ∂D, determine the shape
of the scatterer D from the far-field pattern u∞(x̂), x̂ ∈ S due to one incident wave.

IP2. If the Neumann boundary condition is known to be satisfied on ∂D, determine the
shape of the scatterer D from the far-field pattern u∞(x̂), x̂ ∈ S due to one inci-
dent wave.

IP3. If the Robin boundary condition is known to be satisfied on ∂D, determine the shape
of the scatterer D from the far-field pattern u∞(x̂), x̂ ∈ S due to one incident wave.

IP4. If the boundary condition on ∂D is unknown, determine the shape of the scatterer D
from the far-field pattern u∞(x̂), x̂ ∈ S due to one incident wave.

For the inverse elastic scattering problems with a single incident wave, there are some
uniqueness results proven within polygonal, polyhedral, or ball scatterers, and establishing
the general uniqueness results still remains challenging open problem (see [15,20,25]).

When the boundary condition is unknown, the following theorem is crucial for the
numerical solution of IP4.

Theorem 1. The total field u = (u1; u2) satisfies u = 0, Tνu = 0, or Tνu + iσu = 0 for any
x ∈ ∂D if and only if u satisfies

<
(
Tνu

)
. ∗ <

(
u
)
+=

(
Tνu

)
. ∗ =

(
u
)
= 0

<
(
Tνu

)
. ∗ <

(
u
)⊥

+=
(
Tνu

)⊥. ∗ =
(
u
)
= 0

<
(
Tνu

)
. ∗ =

(
u
)⊥ −<(Tνu

)⊥. ∗ =
(
u
)
= 0

=
(
Tνu

)
. ∗ <

(
u
)⊥ −=(Tνu

)⊥. ∗ <
(
u
)
= 0

(8)
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for x ∈ ∂D, where <(A) and =(A) denote the real and imaginary parts of vector A, respectively,
and A. ∗ B denotes the elementwise product of vectors A and B.

Proof. For any point x ∈ ∂D, if u = 0 or Tνu = 0 at x, it is apparent that u satisfies (8) at
x. If Tνu + iσu = 0 at x, by taking the real part and the imaginary part of this equation,
we have

<
(
Tνu

)
= σ=

(
u
)
,

=
(
Tνu

)
= −σ<

(
u
)
,

which imply
<
(
Tνu

)⊥
= σ=

(
u
)⊥,

=
(
Tνu

)⊥
= −σ<

(
u
)⊥,

and we can easily obtain (8) from the above four equations.
On the other hand, if (8) is satisfied on ∂D, then

u. ∗ <
(
Tνu

)
− i=

(
u
)
. ∗ Tνu (9)

=
[
<
(
u
)
+ i=

(
u
)]

. ∗ <
(
Tνu

)
− i=

(
u
)
. ∗
[
<
(
Tνu

)
+ i=

(
Tνu

)]
= <

(
Tνu

)
. ∗ <

(
u
)
+=

(
Tνu

)
. ∗ =

(
u
)

= 0.

Similarly, we can deduce

u. ∗ =
(
Tνu

)
+ i<

(
u
)
. ∗ Tνu = 0, (10)

u. ∗ <
(
Tνu

)⊥ − i=
(
u
)⊥. ∗ Tνu = 0, (11)

u. ∗ =
(
Tνu

)⊥
+ i<

(
u
)⊥. ∗ Tνu = 0. (12)

Taking the elementwise products of (9)–(12) with i=
(
u
)
,−i<

(
u
)
, i=
(
u
)⊥,−i<

(
u
)⊥

and then taking the sum of these four equations, we obtain[
=
(
u
)
. ∗ =

(
u
)
+<

(
u
)
. ∗ <

(
u
)
+=

(
u
)⊥. ∗ =

(
u
)⊥

+<
(
u
)⊥. ∗ <

(
u
)⊥]. ∗ Tνu

+iu. ∗
[
<
(
Tνu

)
. ∗ =

(
u
)
−=

(
Tνu

)
. ∗ <

(
u
)
+<

(
Tνu

)⊥. ∗ =
(
u
)⊥ −=(Tνu

)⊥
. ∗ <

(
u
)⊥]

= 0 on ∂D.

The above equation implies that u = 0, or Tνu + iσu = 0 at any point x ∈ ∂D, where

σ(x) =
<(w1)=(u1) +<(w2)=(u2)−=(w1)<(u1)−=(w2)<(u2)(

<(u1)
)2

+
(
=(u1)

)2
+
(
<(u2)

)2
+
(
=(u2)

)2 .

Here, w1 and w2 denote the two components of w := Tνu.

Remark 1. From Theorem 1, if the total field of the elastic scattering problem satisfies the Dirichlet,
Neumann, or Robin boundary condition on ∂D, it must satisfy the general boundary condition (8)
on ∂D.

3. Fréchet Derivatives of Five Boundary Operators

In this section, let Γ be any closed C2-contour, let v be a C1 smooth scalar function in
the space near Γ, and assume that boundary Γ has a parametric form:

Γ = {z(t) : t ∈ [0, 2π]}
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with z(t) ∈ C2[0, 2π]× C2[0, 2π].
The operators that we will consider include the normal operator ν : C2[0, 2π] ×

C2[0, 2π]→ C[0, 2π]× C[0, 2π]:

ν : z 7→ z′⊥

|z′| , (13)

the tangential operator τ : C2[0, 2π]× C2[0, 2π]→ C[0, 2π]× C[0, 2π]:

τ : z 7→ z′

|z′| , (14)

the Dirichlet operator BD,v : C2[0, 2π]× C2[0, 2π]→ C[0, 2π] that maps the parameteriza-
tion z of the contour Γ to the exterior trace of v over Γ, that is

BD,v : z 7→ v ◦ z, (15)

the normal derivative operator BN,v : C2[0, 2π] × C2[0, 2π] → C[0, 2π] that maps the
parameterization z of the contour Γ to the exterior trace of ∂v/∂ν over Γ, that is

BN,v : z 7→ ∂v
∂ν
◦ z, (16)

and the tangential derivative operator BT,v : C2[0, 2π]× C2[0, 2π]→ C[0, 2π] that maps the
parameterization z of the contour Γ to the exterior trace of the ∂v/∂τ over Γ, that is

BT,v : z 7→ ∂v
∂τ
◦ z. (17)

The Fréchet derivatives of the Dirichlet operator, normal operator, and normal deriva-
tive operator were considered in [28,31].

Theorem 2 ([31]). The Dirichlet operator BD,v defined in (15) is Fréchet differentiable, and the
Frećhet derivative is given by

B′D,v(z)h = (ν · h)∂v
∂ν
◦ z + (τ · h) ∂v

∂τ
◦ z. (18)

Theorem 3 ([31]). The normal operator ν defined in (13) is Fréchet differentiable, and its Fréchet
derivative is given by

ν′(z)h = − 1
|z′| (h

′ · ν)τ. (19)

Theorem 4 ([28]). The operator BN,v defined in (16) is Fréchet differentiable, and the Fréchet
derivative is given by

B′N,v(z)h =− (h′ · ν)
|z′|

∂v
∂τ
◦ z + (h · τ)

[ ∂2v
∂τ∂ν

◦ z− H
∂v
∂τ
◦ z
]
+ (h · ν)∂2v

∂ν2 , (20)

where H = −(z′′ · ν)/|z′|2.

In the following, we characterize the Fréchet derivatives of the tangential operator
and the tangential derivative operator.

Theorem 5. The tangential operator τ defined in (14) is Fréchet differentiable. The Fréchet
derivative is given by

τ′(z)h =
1
|z′| (h

′ · ν)ν. (21)
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Proof. Since τ(z) = z′
|z′ | , we have

τ(z + h)− τ(z) =
z′ + h′

|z′ + h′| −
z′

|z′| .

From Taylor’s formula,

z′ + h′

|z′ + h′| −
z′

|z′| =
1
|z′|3

[
z′22 h′1 − z′1z′2h′2
−z′1z′2h′1 + z′21 h′2

]
+ O(|h′|2)

=
1
|z′|3

[
|z′|2h′ − z′(z′ · h′)

]
+ O(|h′|2)

=
1
|z′|
[
h′ − (h′ · τ)τ

]
+ O(|h′|2)

=
1
|z′| (h

′ · ν)ν + O(|h′|2)

These two equations imply

lim
‖h‖C2→0

‖τ(z + h)− τ(z)− 1
|z′ | (h

′ · ν)ν‖∞

‖h‖C2
= 0.

One can obtain the derivative of τ(z) by the definition of the Fréchet derivative.

Theorem 6. The operator BT,v defined in (17) is Frećhet differentiable, and the Fréchet derivative
is given by

B′T,v(z)h =
(h′ · ν)
|z′|

∂v
∂ν
◦ z + (h · τ)

[
H

∂v
∂ν
◦ z +

∂2v
∂τ2 ◦ z

]
+ (h · ν)

[
∂2v

∂τ∂ν
◦ z− H

∂v
∂τ
◦ z
]

,
(22)

where H = −(z′′ · ν)/|z′|2.

Proof. Let h be sufficiently small to ensure that

Γz+h = {z(t) + h(t) : t ∈ [0, 2π]}

describes a closed curve.
We divided BT,v(z + h)− BT,v(z) into two parts:

BT,v(z + h)− BT,v(z) =(τ · grad v) ◦ (z + h)− (τ · grad v) ◦ z

=
z′ + h′

|z′ + h′| · grad v ◦ (z + h)− z′

|z′| · grad v ◦ z

=

(
z′ + h′

|z′ + h′| −
z′

|z′|

)
· grad v ◦ (z + h)

+
z′

|z′|

(
grad v ◦ (z + h)− grad v ◦ z

)
.

(23)

For the first term on the right side of (23), by using Taylor’s formula, we have

grad v ◦ (z + h)− grad v ◦ (z) = O(|h|),

and
z′ + h′

|z′ + h′| −
z′

|z′| =
1
|z′| (h

′ · ν)ν + O(|h′|2).
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These two equations imply(
z′ + h′

|z′ + h′| −
z′

|z′|

)
· grad v ◦ (z + h) =

(h′ · ν)
|z′|

∂v
∂ν

+ O(|h′|2) + O(|h′||h|). (24)

Now, we considered the second term on the right side of (23). A new coordinate
system (t, ε) is introduced (see [31,38]). The relation between the new system and the
Cartesian coordinate system is

x(t, ε) = z(t) + εν(t), t ∈ [0, 2π], ε ∈ (−ε0, ε0),

where ν(t) is the abbreviation of ν(z(t)). In this new coordinate system, the gradient of v
can be rewritten as (see [31,38])

grad v(t, ε) =
1

|z′(t) + εν′(t)|2
∂v
∂t

(t, ε)
[
z′(t) + εν′(t)

]
+

∂v
∂ε

(t, ε)ν(t). (25)

If we let σ = (h · τ)/|z′| and ε = h · ν, then

z(t) + h(t) = z(t) +
(
h(t) · τ(t)

)
τ(t) +

(
h(t) · ν(t)

)
ν(t)

= z(t) + σz′(t) + εν(t)

= z(t + σ) + εν(t + σ) + O(|h|2). (26)

Using (25) and (26), together with Taylor’s formula, we have

grad v ◦ (z + h)− grad v ◦ z

= grad v ◦
[
z(t + σ) + εν(t + σ) + O(|h|2)

]
− grad v ◦

[
z(t)

]
= grad v ◦

[
z(t + σ) + εν(t + σ)

]
− grad v ◦

[
z(t)

]
+ O(|h|2)

= grad v(t + σ, ε)− grad v(t, 0) + O(|h|2)

=
z′(t + σ) + εν′(t + σ)

|z′(t + σ) + εν′(t + σ)|2
∂v
∂t

(t + σ, ε) +
∂v
∂ε

(t + σ, ε)ν(t + σ)

− z′(t)

|z′(t)|2
∂v
∂t

(t, 0)− ∂v
∂ε

(t, 0)ν(t)

=

[
z′(t + σ) + εν′(t + σ)

|z′(t + σ) + εν′(t + σ)|2
− z′(t)

|z′(t)|2

]
∂v
∂t

(t + σ, ε)

+
z′(t)

|z′(t)|2

[
∂v
∂t

(t + σ, ε)− ∂v
∂t

(t, 0)
]

+

[
∂v
∂ε

(t + σ, ε)− ∂v
∂ε

(t, 0)
]

ν(t + σ) +
[
ν(t + σ)− ν(t)

]∂v
∂ε

(t, 0)

=
1
|z′|2

[
σ(z′′ · ν)ν− σ(z′′ · τ)τ − ε(ν′ · τ)τ

]
∂v
∂t

(t, 0)

+
τ

|z′|

[
ε

∂2v
∂t∂ε

(t, 0) + σ
∂2v
∂t2 (t, 0)

]
+ ν′σ

∂v
∂ε

(t, 0)

+ν

[
σ

∂2v
∂t∂ε

(t, 0) + ε
∂2v
∂ε2 (t, 0)

]
+ O(|h|2). (27)

Therefore, with (27), σ = (h · τ)/|z′|, and ε = h · ν, we have
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τ ·
(

gradv ◦ (z + h)− gradv ◦ z
)

= − 1
|z′|2

[
σ(z′′ · τ) + ε(ν′ · τ)

]
∂v
∂t

(t, 0) +
1
|z′|

[
ε

∂2v
∂t∂ε

(t, 0) + σ
∂2v
∂t2 (t, 0)

]
+σ(ν′ · τ)∂v

∂ε
(t, 0) + O(|h|2)

= −
[
(h · τ)
|z′|3 (z′′ · τ) + (h · ν)

|z′|2 (ν′ · τ)
]

∂v
∂t

(t, 0) +

[
(h · ν)
|z′|

∂2v
∂t∂ε

(t, 0) +
(h · τ)
|z′|2

∂2v
∂t2 (t, 0)

]

+
(h · τ)
|z′| (ν′ · τ)∂v

∂ε
(t, 0) + O(|h|2). (28)

To simplify (28), we use the relations

ν′ · τ = − 1
|z′| (ν · z

′′), (29)

∂v
∂ε

(t, 0) =
[
grad v(t, 0)

]
· ν(t) = ∂v

∂ν
◦ z, (30)

1
|z′(t)|

∂v
∂t

(t, 0) =
[
grad v(t, 0)

]
· τ(t) = ∂v

∂τ
◦ z, (31)

1

|z′(t)|2
∂2v
∂t2 (t, 0) =

∂2v
∂τ2 ◦ z +

(τ · z′′)
|z′|2

∂v
∂τ
◦ z, (32)

1
|z′(t)|

∂2v
∂ε∂t

(t, 0) =
∂2v

∂τ∂ν
◦ z, (33)

where (29) is obtained by direct computation, (30) and (31) are obtained from (25), and
the relations (32) and (33) are obtained by replacing v with ∂v

∂t in (30) and (31). With the
relations (29)–(33) and (28), we can write the second term on the right side of (23) as

τ ·
(

gradu ◦ (z + h)− gradu ◦ z
)
= −(h · ν)H

∂u
∂τ
◦ z + (h · ν) ∂2u

∂τ∂ν
◦ z

+ (h · τ)∂2u
∂τ2 ◦ z + (h · τ)H

∂u
∂ν
◦ z + O(|h|2),

(34)

where H := −(z′′ · ν)/|z′|2.
Inserting (24) and (34) into (23), one can obtain the expression of the Fréchet derivative

of BT,v from the definition of the Fréchet derivative.

4. Hybrid Method

In this section, we propose a hybrid method to reconstruct the shape of the scatterer
∂D from the far-field pattern u∞(x̂) = (u∞

p (x̂), u∞
s (x̂)), x̂ ∈ S2 of the elastic scattering

problem (3); more specifically, we solve the four inverse problems IP1, IP2, IP3, and IP4.

4.1. Basic Algorithm of the Hybrid Method

The hybrid method consists of two steps in the same spirit as a decomposition method,
which are iterated until some stopping criterion is achieved as in an iterative method. We
denote the approximation at the nth iteration to the exact boundary ∂D by a closed C2-
contour Γn and suppose that Γn can be parameterized by a C2-smooth function zn(t), t ∈
[0, 2π].
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In the first step, we compute the total field u, its normal derivative ∂u
∂ν , and its tan-

gential derivative ∂u
∂τ on Γn from the far-field pattern u∞(x̂) := (u∞

p (x̂); u∞
s (x̂)), x̂ ∈ S. The

fundamental solution tensor to the Navier equation (1) is (see [39])

Φ(x, y) :=
i

4π
H(1)

0 (ks|x− y|)I +
i

4ω2 gradxgradT
x

[
H(1)

0 (ks|x− y|)− H(1)
0 (kp|x− y|)

]

in terms of the identity matrix, I, and the Hankel function of the first kind of order zero, H(1)
0 .

Using the Bessel differential equation, straightforward computations yield a representation
of the form

Φ(x, y) = Φ1(|x− y|)I + Φ2(|x− y|)J(|x− y|),

where, for w ∈ R2 \ {0}, the matrix J is given by

J(w) =
wwT

|w|2 ,

and where, for r > 0, the functions Φ1 and Φ2 are given by

Φ1(r) =
i

4µ
H(1)

0 (ksr)−
i

4ω2r

[
ksH(1)

1 (ksr)− kpH(1)
1 (kpr)

]
,

Φ2(r) =
i

4ω2

[
2ks

r
H(1)

1 (ksr)− k2
s H(1)

0 (ksr)−
2kp

r
H(1)

1 (kpr) + k2
p H(1)

0 (kpr)
]

,

with the Hankel function of the first kind of order one H(1)
1 = −H(1)

0

′
. Then, choose Γ̃n

to be a closed curve inside and near Γn and seek the scattered field usca in the form of an
elastic single-layer potential over Γ̃n [39]:

usca(x) =
∫

Γ̃n
Φ(x, y)ϕ(y)ds(y), x ∈ R2 \ Γ̃n. (35)

From the asymptotics for Hankel functions, it follows that the far-field patterns of the
above single-layer potential are given by

u∞
p (x̂) =

1
λ + 2µ

eiπ/4√
8πkp

∫
Γ̃n

(
x̂ · ϕ(y)

)
e−ikp x̂·yds(y), x̂ ∈ S, (36)

u∞
s (x̂) =

1
µ

eiπ/4
√

8πks

∫
Γ̃n

(
x̂⊥ · ϕ(y)

)
e−iks x̂·yds(y), x̂ ∈ S. (37)

In the experiments, the density function ϕ can be numerically solved from (36) and (37)
using the Nyström method and the Tikhonov regularization method. Then, the scattered
field usca, its normal derivative ∂usca

∂ν , and its tangential derivative ∂usca

∂τ on Γn can be solved
from (35). Since the incident waves are known, the total field u and its normal derivative
∂u
∂ν and tangential derivative ∂u

∂τ on Γn can be reconstructed.
In the second step, we solved for the improved approximation Γn+1 from Γn. Suppose

the total field u satisfies the boundary condition B(u) = 0 on the exact boundary ∂D. We
considered the boundary operator G : C2[0, 2π] × C2[0, 2π] → C[0, 2π] × C[0, 2π] that
maps a closed contour Γ with parameterization z onto the trace of the boundary condition
of the total field u on Γ, that is

G : z 7→ B(u) ◦ z. (38)

Apparently, if the parameterization of ∂D is z∗, then

G(z∗) = 0.
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In the spirit of Newton’s method, we linearized this equation based on the Fréchet
derivative of G and solved

G(zn) + G′(zn)h = 0 (39)

to obtain the shift h and a new approximation Γn+1 to ∂D given by zn+1 = zn + h. We
summarize the basic algorithm as follows:
Basic algorithm:

1. Start with an initial guess Γ0 := {z0(t), t ∈ [0, 2π]} of the exact boundary ∂D.
2. Solve for the total field u, its normal derivative ∂u

∂ν , and its tangential derivative ∂u
∂τ on

the approximation boundary Γn := {zn(t), t ∈ [0, 2π]}:
a. Use Tikhonov regularization to compute ϕ(y), y ∈ Γ̃n from the discrete version of

(36) and (37), where Γ̃n is a closed curve inside and near Γn.
b. Compute the scattered field usca, its normal derivative ∂usca

∂ν , and its tangential
derivative ∂usca

∂τ on Γn from (35).
c. Estimate the total field u, its normal derivative ∂u

∂ν , and its tangential derivative
∂u
∂τ on Γn.

3. Solve for the shift h(t) from the linearized Equation (39) (the linearized equations for
different inverse problems are particularized in Section 4.2), and then, update the
approximation with Γn+1 given by zn+1 = zn + h.

4. Repeat Steps 2 and 3 with n = n + 1 until ‖G(zn+1)‖L2 > ‖G(zn)‖L2 .

4.2. Linearized Equations for Different Inverse Problems

Once the expression of the linearized Equation (39) is given, the hybrid method
can be iteratively implemented by following the basic algorithm above. Because the
linearized Equation (39) is based on the boundary condition, which has different forms
for different inverse problems, we need to particularize the linearized equation for each of
these inverse problems.

4.2.1. Linearized Equation for IP1

For the inverse problem IP1, we denote the linearized equation by

GD(z) + G′D(z)h = 0 (40)

for any approximation Γ to ∂D with parameterization Γ := {z(t), t ∈ [0, 2π]}.
Since the Dirichlet boundary condition u = 0 is satisfied on the exact boundary ∂D,

from the definition of G in (38), the boundary operator for IP1 is

GD(z) = u ◦ z, (41)

where u is considered to be a vector, that is

GD(z) =
[

u1 ◦ z
u2 ◦ z

]
. (42)

According to Theorem 2, we have the Fréchet derivative of GD:

G′D(z)h =

[
(ν · h) ∂u1

∂ν ◦ z + (τ · h) ∂u1
∂τ ◦ z

(ν · h) ∂u2
∂ν ◦ z + (τ · h) ∂u2

∂τ ◦ z

]
. (43)

Therefore, the linearized equation for IP1 is (40), where GD(z) and G′D(z)h are defined
in (42) and (43), respectively.
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4.2.2. Linearized Equation for IP2

For the inverse problem IP2, we denote the linearized equation by

GN(z) + G′N(z)h = 0 (44)

for any approximation Γ to ∂D with parameterization Γ := {z(t), t ∈ [0, 2π]}.
Since the total field u satisfies the Neumann boundary condition

Tνu := 2µ
∂u
∂ν

+ λν div u + µτ div⊥u = 0

on the exact boundary ∂D, from the definition of G in (38), the boundary operator for IP2 is

GN(z) = 2µ
∂u
∂ν
◦ z + λ(ν div u) ◦ z + µ(τ div⊥u) ◦ z, (45)

where ν = (ν1; ν2) and τ = (τ1; τ2) are normal and tangential vectors on Γ and

div u =
∂u1

∂x1
+

∂u2

∂x2

= ν1
∂u1

∂ν
+ τ1

∂u1

∂τ
+ ν2

∂u2

∂ν
+ τ2

∂u2

∂τ
,

div⊥u =
∂u2

∂x1
− ∂u1

∂x2

= ν1
∂u2

∂ν
+ τ1

∂u2

∂τ
− ν2

∂u1

∂ν
− τ2

∂u1

∂τ
.

Since u, ν, and τ are all vectors, we can rewrite (45) by

GN(z) = 2µ

[
∂u1
∂ν ◦ z

∂u2
∂ν ◦ z

]
+ λ(div u ◦ z)

[
ν1(z)
ν2(z)

]
+ µ(div⊥u ◦ z)

[
τ1(z)
τ2(z)

]
. (46)

Now let us consider the Fréchet derivative of GN . According to Theorem 3 and
Theorem 5, we have the Fréchet derivatives ν′(z)h and τ′(z)h of operators ν(z) and τ(z),
which imply the expressions of the Fréchet derivatives of the components ν1(z), ν2(z),
τ1(z), and τ2(z):

ν′j(z)h = − (h′ · ν)
|z′| τj, τ′j (z)h =

(h′ · ν)
|z′| νj, j = 1, 2.

For the operators BN,u1 : z 7→ ∂u1
∂ν ◦ z and BN,u2 : z 7→ ∂u2

∂ν ◦ z, from Theorem 4, the
Fréchet derivatives are

B′N,uj
(z)h = − (h′ · ν)

|z′|
∂uj

∂τ
◦ z + (h · τ)

[
∂2uj

∂τ∂ν
◦ z− H

∂uj

∂τ
◦ z
]

+(h · ν)
∂2uj

∂ν2 ◦ z, j = 1, 2,

For the operators BT,u1 : z 7→ ∂u1
∂τ ◦ z and BT,u2 : z 7→ ∂u2

∂τ ◦ z, from Theorem 6, the
Fréchet derivatives have the expression

B′T,uj
(z)h =

(h′ · ν)
|z′|

∂uj

∂ν
◦ z + (h · τ)

[
H

∂uj

∂ν
◦ z +

∂2uj

∂τ2 ◦ z
]

+(h · ν)
[

∂2uj

∂τ∂ν
◦ z− H

∂uj

∂τ
◦ z
]

, j = 1, 2.



Mathematics 2023, 11, 1939 12 of 21

Then, by using the product rule, we have the Fréchet derivative of GN(z), which is

G′N(z)h = 2µ

[
B′N,u1

(z)h
B′N,u2

(z)h

]
+ λ(div u ◦ z)′

[
ν1(z)
ν2(z)

]
− λ

(h′ · ν)
|z′| (div u ◦ z)

[
τ1(z)
τ2(z)

]
+µ(div⊥u ◦ z)′

[
τ1(z)
τ2(z)

]
+ µ

(h′ · ν)
|z′| (div⊥u ◦ z)

[
ν1(z)
ν2(z)

]
, (47)

where [
div u ◦ z

]′
=

[
ν′1(z)h

]∂u1

∂ν
◦ z + ν1(z)

[
B′N,u1

(z)h
]

+
[
τ′1(z)h

]∂u1

∂τ
◦ z + τ1(z)

[
B′T,u1

(z)h
]

+
[
ν′2(z)h

]∂u2

∂ν
◦ z + ν2(z)

[
B′N,u2

(z)h
]

+
[
τ′2(z)h

]∂u2

∂τ
◦ z + τ2(z)

[
B′T,u2

(z)h
]

and [
div⊥u ◦ z

]′
=

[
ν′1(z)h

]∂u2

∂ν
◦ z + ν1(z)

[
B′N,u2

(z)h
]

+
[
τ′1(z)h

]∂u2

∂τ
◦ z + τ1(z)

[
B′T,u2

(z)h
]

−
[
ν′2(z)h

]∂u1

∂ν
◦ z− ν2(z)

[
B′N,u1

(z)h
]

−
[
τ′2(z)h

]∂u1

∂τ
◦ z− τ2(z)

[
B′T,u1

(z)h
]
.

In summary, the linearized equation for IP2 is (44), where GN(z) and G′N(z)h are
defined in (46) and (47), respectively.

4.2.3. Linearized Equation for IP3

For the inverse problem IP3, we denote the linearized equation by

GR(z) + G′R(z)h = 0 (48)

for any approximation Γ to ∂D with parameterization Γ := {z(t), t ∈ [0, 2π]}.
Since the total field u satisfies the Robin boundary condition:

2µ
∂u
∂ν

+ λν div u + µτ div⊥u + iσu = 0

on the exact boundary ∂D, according to the definition of G in (38), the boundary operator
for IP3 is

GR(z) = 2µ
∂u
∂ν
◦ z + λ(ν div u) ◦ z + µ(τ div⊥u) ◦ z + iσu ◦ z. (49)

From the definitions of GD in (42) and GN in (46), GR(z) can be rewritten as

GR(z) = GN(z) + iσGD(z). (50)

Based on the Fréchet derivatives of GD and GN in (43) and (47), the Fréchet derivative
of GR is

G′R(z)h = G′N(z)h + iσG′D(z)h. (51)
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Therefore, the linearized equation for IP3 is (48), where GR(z) and G′R(z)h are defined
in (50) and (51), respectively.

4.2.4. Linearized Equation for IP4

For the inverse problem IP4, we denote the linearized equation by

GU(z) + G′U(z)h = 0, (52)

for any approximation Γ to ∂D with parameterization Γ := {z(t), t ∈ [0, 2π]}.
For the inverse problem IP4, the boundary condition of the object is unknown. How-

ever, according to Theorem 1, if the total field u satisfies the Dirichlet, Neumann, or Robin
boundary condition on the exact boundary ∂D, then it satisfies the general boundary
condition: 

<
(
Tνu

)
. ∗ <

(
u
)
+=

(
Tνu

)
. ∗ =

(
u
)
= 0

<
(
Tνu

)
. ∗ <

(
u
)⊥

+=
(
Tνu

)⊥. ∗ =
(
u
)
= 0

<
(
Tνu

)
. ∗ =

(
u
)⊥ −<(Tνu

)⊥. ∗ =
(
u
)
= 0

=
(
Tνu

)
. ∗ <

(
u
)⊥ −=(Tνu

)⊥. ∗ <
(
u
)
= 0

on ∂D. From the definition of G in (38), with the definitions of GD in (42) and GN in (46),
the boundary operator G for IP4 is

GU(z) =



<
(
GN(z)

)
. ∗ <

(
GD(z)

)
+=

(
GN(z)

)
. ∗ =

(
GD(z)

)
<
(
GN(z)

)
. ∗ <

(
GD(z)

)⊥
+=

(
GN(z)

)⊥. ∗ =
(
GD(z)

)
<
(
GN(z)

)
. ∗ =

(
GD(z)

)⊥ −<(GN(z)
)⊥. ∗ =

(
GD(z)

)
=
(
GN(z)

)
. ∗ <

(
GD(z)

)⊥ −=(GN(z)
)⊥. ∗ <

(
GD(z)

)


. (53)

By using the product rule, the Fréchet derivatives of GD in (43), and the Fréchet
derivatives of GN in (47), we have

G′U(z)h =



<
(
G′N(z)h

)
. ∗ <

(
GD(z)

)
+<

(
GN(z)

)
. ∗ <

(
G′D(z)h

)
+=

(
G′N(z)h

)
. ∗ =

(
GD(z)

)
+=

(
GN(z)

)
. ∗ =

(
G′D(z)h

)
<
(
G′N(z)h

)
. ∗ <

(
GD(z)

)⊥
+<

(
GN(z)

)
. ∗ <

(
G′D(z)h

)⊥
+=

(
G′N(z)h

)⊥. ∗ =
(
GD(z)

)
+=

(
GN(z)

)⊥. ∗ =
(
G′D(z)h

)
<
(
G′N(z)h

)
. ∗ =

(
GD(z)

)⊥
+<

(
GN(z)

)
. ∗ =

(
G′D(z)h

)⊥ −<(G′N(z)h
)⊥. ∗ =

(
GD(z)

)
−<

(
GN(z)

)⊥. ∗ =
(
G′D(z)h

)
=
(
G′N(z)h

)
. ∗ <

(
GD(z)

)⊥
+=

(
GN(z)

)
. ∗ <

(
G′D(z)h

)⊥ −=(G′N(z)h
)⊥. ∗ <

(
GD(z)

)
−=

(
GN(z)

)⊥. ∗ <
(
G′D(z)h

)


In summary, the linearized equation for IP4 is (52), where GU(z) is defined in (53) and

G′U(z)h is given in the equation above.

5. Numerical Experiments

We present some numerical examples to show the performance of the proposed
method. Three obstacles will be used: a triangle-shaped obstacle given by

(1 + 0.15 cos 3t)
(

cos t, sin t
)
, t ∈ [0, 2π],

a peanut-shaped obstacle given by√
cos2 t + 0.25 sin2 t

(
cos t, sin t

)
, t ∈ [0, 2π],

and a kite-shaped obstacle given by(
− 0.8 sin t− 0.4 cos 2t, 0.8 cos t

)
, t ∈ [0, 2π].
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We set the parameters in the Navier equation to be ω = 3, µ = 1, λ = 1. In the case of
the Robin boundary condition, we set σ = 2. The incident wave was set to be a plane wave
uinc(x) = deikpx·d + d⊥eiksx·d with incident direction d = (0,−1). The synthetic far-field
data u∞

p (x̂j) and u∞
s (x̂j) were generated at 128 equidistant points x̂j, j = 1, 2, . . . , 128 on the

unit circle by using the boundary integral method in [39] with 2% noise added.
The reconstructions are restricted to the star-shaped domain, that is the reconstructions

Γn, n = 1, 2, . . . in the iterations have the parameterization:

zn(t) = rn(t)(cos t, sin t) + (c(n)1 , c(n)2 ), t ∈ [0, 2π].

where rn(t) is the radius function and (c(n)1 , c(n)2 ) is the location. In our experiments, we
used the radial function:

rn(t) = a(n)0 +
N

∑
j=1

(
a(n)j cos jt + b(n)j sin jt

)
of degree N = 5.

We implemented the algorithm given in Section 4.1 to iteratively reconstruct the
boundaries of the obstacles from the noisy far-field data. There are two steps in each
iteration of the reconstruction algorithm. In the first step, we set Γ̃n to be a contraction of
Γn with parameterization

z̃n(t) = 0.9 rn(t)(cos t, sin t) + (c(n)1 , c(n)2 ), t ∈ [0, 2π].

Equations (36) and (37) were solved considering 128 points over the closed curve Γ̃n.
Then, the total field u, its normal derivative ∂u/∂ν, and its tangential derivative ∂u/∂τ can
be computed at 128 discrete points on Γn using the discrete form of (35). In the second step,
since the shift function h(t) has the same form as zn(t),

h(t) =
[

a(h)0 +
N

∑
j=1

(
a(h)j cos jt + b(h)j sin jt

)]
(cos t, sin t) + (c(h)1 , c(h)2 ), t ∈ [0, 2π],

the linearized Equation (39) can be discretized into a linear system of 2N + 3 real variables
a(h)0 , c(h)1 , c(h)2 , and a(h)j , b(h)j , j = 1, 2, . . . , N. One should consider both the real part and
imaginary parts of the linear system to obtain real solutions. In the computation of the
discrete system of (39), if ∂2u/∂ν2, ∂2u/∂τ2, and ∂2u/∂τ∂ν occur in the expressions of G′,
one can use the difference method or the second derivatives of (35) to solve them. Our
experiments used the difference method to solve ∂2u/∂ν2, ∂2u/∂τ2, and ∂2u/∂τ∂ν based
on ∂u/∂ν and ∂u/∂τ. Tikhonov regularization was used in the solution of (36) and (37)
and in the solution of the linearized Equation (39), and the regularization parameters were
determined by the L-curve method [40].

In the following figures, the blue solid lines are the exact boundaries, the red dashed
lines are the reconstructions, and the black dotted lines are the initial guesses of
the boundaries.

5.1. Examples for IP1

For the inverse problem IP1, the Dirichlet boundary condition is known to be satisfied
on the exact boundary of the obstacle. The hybrid method for IP1 is used in this subsection,
that is the linearized Equation (40) was used in the algorithm.

Figure 1 displays reconstructions of the rigid triangle: The left panel shows the
reconstruction result, and the initial guess is a circle with radius 0.5 centered at (−0.1, 0.2).
The right panel is the plot of ‖u‖L2(Γn)

against the number of iterations n. We can see that
the Dirichlet boundary condition is satisfied increasingly well on the n-th approximation Γn
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as n increases. Similar reconstruction results for the rigid peanut and rigid kite are shown
in Figure 2.
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Figure 1. Reconstruction of the triangle with Dirichlet BC by the hybrid method for IP1. Left:
reconstruction result after 9 iterations. Right: plot of ‖u‖L2(Γn) against the number of iterations n.
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Figure 2. Reconstructions of the peanut and the kite with Dirichlet BC by the hybrid method for IP1.
Left: reconstruction result for the rigid peanut after 50 iterations. Right: reconstruction result for the
rigid kite after 13 iterations.

5.2. Examples for IP2

For the inverse problem IP2, the Neumann boundary condition is known to be satisfied
on the exact boundary of the obstacle. The hybrid method for IP2 is used in this subsection,
that is the linearized Equation (44) was used in the algorithm.

Figure 3 displays the reconstructions of the cavity triangle. The left panel shows the
reconstruction result when the initial guess is a circle with radius 0.5 centered at (−0.1, 0.2);
the right panel is the plot of ‖Tνu‖L2(Γn)

against the number of iterations n. We can see
that the Neumann boundary condition is satisfied increasingly well on Γn as the iteration
number n increases. Similar reconstruction results for the cavity peanut and cavity kite are
shown in Figure 4.
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Figure 3. Reconstruction of the triangle with Neumann BC by the hybrid method for IP2. Left:
reconstruction result after 34 iterations. Right: plot of ‖Tνu‖L2(Γn) against the number of iterations n.
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Figure 4. Reconstructions of the peanut and the kite with Neumann BCs by the hybrid method for
IP2. Left: reconstruction result for the peanut after 50 iterations. Right: reconstruction result for the
kite after 24 iterations.

5.3. Examples for IP3

For the inverse problem IP3, the Robin boundary condition is known to be satisfied on
the exact boundary of the obstacle. The hybrid method for IP3 is used in this subsection,
that is the linearized Equation (48) is used in the algorithm.

Figure 5 displays reconstructions of the triangle with the Robin boundary condition:
The left panel shows the reconstruction result when the initial guess is a circle with radius
0.5 centered at (−0.1, 0.2). The right panel is the plot of ‖Tνu + iσu‖L2(Γn)

against the
number of iterations n. We can see that the Robin boundary condition is increasingly
satisfied on the n-th approximation Γn as n increases. Similar reconstruction results for the
peanut-shaped obstacle with the Robin boundary condition and the kite-shaped obstacle
with the Robin boundary condition are shown in Figure 6.
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Figure 5. Reconstructions of the triangle with Robin BC by the hybrid method for IP3. Left:
reconstruction result after 35 iterations. Right: plot of ‖Tνu + iσu‖L2(Γn) against the number of
iterations n.
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Figure 6. Reconstructions of the peanut and kite with Robin BCs by the hybrid method for IP3. Left:
reconstruction result for the peanut after 20 iterations. Right: reconstruction result for the kite after
20 iterations.

5.4. Examples for IP4

For the inverse problem IP4, the boundary condition is unknown, and the hybrid
method for IP4 is based on the artificial general boundary condition (8). For all the ex-
periments in this subsection, the boundary conditions of the obstacles were not used
in the reconstruction algorithm; they were only used in the generation of the synthetic
far-field data.

Figure 7 displays reconstructions of the triangle-shaped obstacle with the Dirichlet
boundary condition: the left panel shows the reconstruction result when the initial guess
is a circle with radius 0.5 centered at (−0.1, 0.2); the right panel is the plot of ‖GU(zn)‖L2

against the number of iterations n. We can see that the artificial boundary condition is
increasingly satisfied on the n-th approximation Γn as n increases. Similar reconstructions
for the peanut with the Neumann boundary condition and kite with the Robin boundary
condition are shown in Figures 8 and 9, respectively. Figure 10 shows the reconstruction
results for these three obstacles with the other two boundary conditions.

The hybrid iterative method also works with different initial guesses and different
incident waves. Figure 11 shows the reconstruction results when we changed the initial
guess to be B0.8(0, 0), which is a circle with radius 0.8 centered at the origin. Figure 12
shows the reconstruction results when we changed the incident direction to (1, 0).

For the case of an acoustic wave, a local convergence result for the hybrid method
was established in [31]. For the case of an elastic wave, we can also observe the local
convergence of the hybrid method from Figures 1, 3, 5, and 7–9.
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Figure 7. Reconstructions of the triangle with Dirichlet BC by the hybrid method for IP4. Left: recon-
struction result after 13 iterations. Right: plot of ‖GU(u)‖L2(Γn) against the number of iterations n.
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Figure 8. Reconstructions of the peanut with Neumann BC by the hybrid method for IP4. Left: re-
construction result after 12 iterations. Right: plot of ‖GU(u)‖L2(Γn) against the number of iterations n.
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Figure 9. Reconstructions of the kite with Robin BC by the hybrid method for IP4. Left: reconstruction
result after 13 iterations. Right: plot of ‖GU(u)‖L2(Γn) against the number of iterations n.
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Figure 10. Reconstruction results of three obstacles with different boundary conditions by the
hybrid method for IP4: (a) reconstruction of the triangle with Neumann BC after 14 iterations;
(b) reconstruction of the triangle with Robin BC after 16 iterations; (c) reconstruction of the peanut
with Dirichlet BC after 24 iterations; (d) reconstruction of the peanut with Robin BC after 37 iterations;
(e) reconstruction of the kite with Dirichlet BC after 15 iterations; (f) reconstruction of the kite with
Neumann BC after 13 iterations.
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Figure 11. Reconstruction results by the hybrid method for IP4 with the initial guess B0.8(0, 0):
(a) reconstruction of the triangle with Dirichlet BC after 8 iterations; (b) reconstruction of the peanut
with Neumann BC after 9 iterations; (c) reconstruction of the kite with Robin BC after 7 iterations.
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Figure 12. Reconstruction results by the hybrid method for IP4 with the incident direction (1, 0):
(a) reconstruction of the triangle with Dirichlet BC after 18 iterations; (b) reconstruction of the peanut
with Neumann BC after 13 iterations; (c) reconstruction of the kite with Robin BC after 30 iterations.
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6. Conclusions

In this paper, we considered four inverse elastic scattering problems of reconstructing
obstacles using the far-field of a single incident wave. For the first three inverse elastic
scattering problems, the boundary conditions of the obstacles are available. By introduc-
ing Fréchet derivatives of the tangential operator and tangential derivative operator, we
extended the hybrid method for inverse acoustic scattering problems to the case of in-
verse elastic scattering problems. For the fourth inverse elastic scattering problem with
the boundary condition unknown, by introducing a general boundary condition and an-
alyzing the equivalence of the general boundary condition and three commonly used
boundary conditions, we extended the hybrid method to solve the fourth inverse elastic
scattering problem.

As far as we know, the existing iterative methods for inverse elastic obstacle scattering
problems require forward solvers and, therefore, need the boundary condition of the
obstacle. In this paper, we established an iterative method that can reconstruct obstacles
with or without known boundary conditions. This is significant because one can determine
the shapes of obstacles even when the physical properties of the obstacles are not available.
The numerical experiments showed the efficiency of the method.

In the future, with the theoretical results regarding the boundary conditions and
Fréchet derivatives of the boundary operators, we hope to propose iterative methods for
more inverse obstacle problems with complicated boundary conditions.
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