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Abstract: A model of a particle flow forming a copy of some image and the distance between the
copy and the image are estimated using a special probability metric. The ability of the flow of balls to
cover the surface, when grinding the balls, was investigated using formulas of stochastic geometry.
Reconstruction of characteristics of an inhomogeneous Poisson flow by inaccurate observations is
analysed using the Poisson flow point colouring theorem. The dependence of the Poisson parameter
of the distribution of the number of customers in a queuing system with an infinite number of
servers and a deterministic service time on the peak load created by an inhomogeneous input Poisson
flow is estimated. All these models consist of an inhomogeneous Poisson flow of points and marks
glued to each point of the flow and are characterised by their mass, area, volume, observability (or
non-observability), and service time. The presence of an asymptotic power–law relationship between
model objective functions and parameters of mark crushing is established. These results may be
applied in nanotechnology, powder metallurgy, ecology, and consumer services in the implementation
of the “Smart City” program. The proposed approach is phenomenological in nature and is justified
by the results of real observations and experiments.

Keywords: Poisson point flow; stochastic geometry; safety margin; linear regression estimate; plan
of experiment; prediction algorithms; polynomial
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1. Introduction

The Poisson flow of points is widely used in queuing theory, in reliability theory, in
mathematical biology and ecology, in astronomy, and in many other applied
disciplines [1–5]. In this paper, we consider four systems described by inhomogeneous-
labelled Poisson flows [6,7], to the points of which special types of stamps are attached
(glued). The efficiency indicators of the systems and the parameter, characterising the
grinding of grades, and the corresponding increase in the intensity of the flow are intro-
duced. The dependence of the efficiency indicator on this parameter is investigated, and its
asymptotic behaviour is analysed when the grinding parameter tends to infinity. The fast
convergence of the efficiency indicator to zero is proven, which helps, in particular, to draw
important conclusions about the simulated systems.

In the first model, the mark of each Poisson flow point on a flat rectangle or three-
dimensional parallelepiped is its mass. In this way, a model of the image formed by a
printer/copier or a 3D printer is obtained. The accuracy of reproduction by the real density
of the flow of points of ideal density is investigated when the mass grinding parameter
tends to infinity in a specially selected probabilistic metric [8]. This model is closely related
to the tasks of nanotechnology.

In the second model, the mark of a Poisson flow point on a rectangle can be a
square/circle, the centre of which is glued to this point. The set of stamps forms the
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so-called Boolean random set [2,9–13]. This applied model can characterise a surface
covered with sprayed powder particles. As an indicator of efficiency, the mathematical
expectation of the area of the rectangle part that is not covered with stamps is taken. The
rate of convergence of this efficiency indicator to zero is investigated when the grinding
parameter of powder particles tends to infinity. This model is applicable to the assessment
of the quality of coatings created by the powder metallurgy method.

In the third model, the mark of the Poisson flow point on the plane is its colour red or
white. Points coloured red are considered as observable flow points, and points coloured
white are considered as unobservable [1]. The probability of flow points being coloured
red is an unknown parameter that can be interpreted as interfering/hidden [14–17]. When
analysing the flow of observed points, the interfering parameter is eliminated by the
transition from the number of flow points in a certain area to the ratio of the number of
flow points in a certain area to the number of flow points on the entire plane. Convergence
in the probability of the relative frequency of the number of observed points in a certain
region is established when the mathematical expectation of the number of observed points
on the plane tends to infinity. This model arose when comparing the number of tiger tracks
in different years in conditions when some tracks in the snow were invisible [18,19]. As a
result, data on the accounting of animal tracks in a given year become industrial statistics
and require special methods for their processing.

In the fourth model, the mark of a Poisson flow point on a straight line is a segment
of length a, the left end of which is glued to each flow point. In this case, the points
that are the right ends of the segments characterise the moments of leaving the queuing
system of customers after their service during a deterministic time. This paper considers
the case when the intensity of the input Poisson flow of customers into a system with an
infinite number of devices has a pronounced maximum. The possibility of smoothing this
maximum by reducing the service time is being investigated. This problem arises when
analysing consumer service systems and conveyor production systems [20–23]. The task
of smoothing the peak load was also considered in the papers [24–26] in relation to PC
software testing systems. However, in these papers, the assumption was made about a
special relationship between the intensity of the input flow and the intensity of service.

Such a statement of the question is caused by numerous problems for specialists in the
subject areas when processing and interpreting the data they receive. These include obser-
vations of the long-term operation of copiers, in which the quality of duplicated images
drops sharply. Apparently, this is due to the sintering of copier powder particles during
prolonged heating. The dependence on the particle size was also observed in experiments
to protect ball-bearing rings from collisions with balls by including polymer particles in the
ball-bearing oil. It turned out that with a decrease in the size of these particles, the uptime
of the ball bearing increases markedly. Another task was the observation of geographers for
the detection of animal tracks, depending on meteorological conditions. In particular, the
possibility of detecting a trace is significantly affected by the thickness of the snow cover. In
addition, if such a trace study is carried out over a large area, then the financial conditions
for organising observations also come to the fore. Many data-processing problems arise in
the “Smart City” program. Traffic jams significantly affect the quality of public services.
Therefore, recently, service centres, for example, sports complexes, are switching from
hard copies of user subscriptions to electronic cards. Such maintenance allows users not to
associate the time of their arrival for service with its periodic start.

The study of such phenomena creates an impetus for the development of mathematical
and statistical methods for the analysis of complex systems. Such problems arise from
various practical applications, and the use of mathematical models in solving them turns
out to be a rather complicated procedure. Therefore, it is more convenient to build not
very accurate, but rather easily calculated simulation models, in which the dependence of
performance indicators on model parameters is explicit.

The construction of such models requires the combination of several rather heteroge-
neous mathematical techniques. Here, it is very convenient to model an inhomogeneous
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Poisson flow of points with stamps pasted on them, the parameters of which are weight,
size, etc., characteristics that are related to the intensity of the flow. The construction of
asymptotic relations of the dependence of the efficiency index of such a system on the
parameters of the marks requires the use of inequalities commonly used for probabilistic
metrics when analysing the convergence rate in the limit theorems of probability the-
ory. Formulas of stochastic geometry can also serve as a convenient tool for constructing
such relations, especially in the framework of a Boolean model based on the Poisson flow
construction. Another convenient technique for working with point flows of an inho-
mogeneous Poisson flow is the method of interfering (hidden) parameter. In this case,
we can use well-known methods for analysing statistical samples in the presence of an
interfering parameter. All these circumstances require, when constructing and studying
the systems under consideration, the connection of heterogeneous mathematical elements:
the choice of an inhomogeneous Poisson flow of points, the choice of stamps glued to
the flow points, the choice of the ratio between the intensity of the flow of points and the
characteristic of the brand, the choice of the system efficiency indicator and the choice of
a mathematical method for analysing the dependence of the efficiency indicator on the
parameter of stamps.

The established effects of the convergence of the system efficiency indicator to zero
with the aspiration to infinity of the parameter of grinding marks are new. Methods of
the theory of probability metrics [8], methods of the theory of random sets [2], methods
of the theory of Poisson flows [1], and integral formulas for the parameter of the Poisson
distribution of the number of points of the Poisson flow in a certain segment were used to
study them. A characteristic feature of these models is a special choice of the efficiency in-
dicator, the grinding parameter of the stamps glued to the flow points, and the relationship
between the efficiency indicator and the grinding parameter. The proposed approach is
phenomenological in nature. It is initiated and justified by the results of real observations
and experiments.

2. Proximity of the Poisson Flow of Points to the Intensity Function When Grinding
the Masses of Points

This mathematical model is based on the notion of a Poisson flow of Π points on
r-dimensional Euclidean space Er. The number of points of the Poisson flow in the Lebesgue-
measurable subset A ⊆ Er does not depend on the number of points in any other Lebesgue-
measurable subset B ⊆ Er : A

⋂
B = � and obeys the Poisson distribution with the

parameter Λ(A). Next, we will assume that there exists a piecewise continuous func-
tion λ(x), x ∈ Er such that for any Lebesgue-measurable set A ⊆ Er, the parameter

Λ(A) =
∫

A
λ(x)dx. The function λ(x), x ∈ Er, is called the intensity of the Poisson flow Π.

Consider Poisson point flow Π on r-dimensional rectangle X with a continuous
intensity function λ(x) such that

Λ(X) =
∫

X
λ(x)dx < ∞. (1)

If X′ is a Lebesgue-measurable subset in the rectangle X, then a random number
of points n(X′) of the Poisson flow Π in the set X′ has a Poisson distribution with
the parameter

Λ(X′) =
∫

X′
λ(x)dx. (2)

Now let us denote Πm Poisson flow on the rectangle X with the intensity function
mλ(x). Let us put nm(X′) the number of flow points Πm on the set X′ and define random

variables Nm(X′) =
nm(X′)

m
. Here, the random variable Nm(X′) characterises the total

mass of the flow points Πm in the set X′, assuming that the mass of each point is 1/m.
We introduce the distance ρm between the point flow Πm, in which each point has

a mass 1/m, and the intensity function λ(x). To do this, we denote X as the partition
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of the rectangle X by a finite number n(X ) disjoint and Lebesgue-measurable subsets
X′1, . . . , X′n(X ). Let A be the set of all possible such partitions of X ; then, the distance ρm is
determined by the equality

ρm =

(
sup
X∈A

E
n(X )

∑
i=1

(Λ(X′i)− Nm(X′i))
2

)1/2

. (3)

It follows from the properties of the Poisson flow Πm that random variables Nm(X′i),
i = 1, . . . , n(X ) are independent. This property is based on the following statements.

In probability, statistics and related fields, a Poisson point process is a type of random
mathematical object that consists of points randomly located on a mathematical space with
the essential feature that the points occur independently of one another [2]. Consider a
collection of disjoint and bounded subregions of the underlying space. By definition, the
number of points of a Poisson point process in each bounded subregion will be completely
independent of all the others. This property is known under several names such as
complete randomness, complete independence [27], or independent scattering [4,6], and
it is common to all Poisson point processes. In other words, there is a lack of interaction
between different regions and the points in general [28], which motivates the Poisson
process, being sometimes called a purely or completely random process [27].

Therefore, the equalities are fulfilled Λ(X′i) = ENm(X′i),

E
n(X )

∑
i=1

(Λ(X′i)− Nm(X′i))
2 =

n(X )

∑
i=1

E(Λ(X′i)− Nm(X′i))
2 =

=
n(X )

∑
i=1

VarNm(X′i) =
1

m2

n(X )

∑
i=1

mΛ(X′i) =
Λ(X)

m
,

from which, due to Formula (3), we obtain

ρm =

√
Λ(X)

m
. (4)

Relation (4) shows how, when splitting the mass of points of the Poisson flow Πm into
m of identical parts, the distance between the flow Πm and the function λ(x) tends to zero
at m→ ∞.

Remark 1. This ratio can be used to study the quality of work of 2D and 3D printers and copiers de-
pending on the mass of individual flow points, which can be interpreted as the mass of flow particles.

Remark 2. The results obtained in this section have not been previously used in the analysis of
copiers and 2D and 3D printers. They have made it possible to analyse the operation of these
devices during heating and sintering, as well as during the grinding of powder particles used in
these devices.

3. Covering Points of the Poisson Flow on the Plane with Cubes of Variable Size

Suppose there is Poisson point flow Πm with constant intensity mλ, given on the unit
square X, whose one side coincides with the axis of the abscissa. Let a square with a side
of length m−1/3, rotated by a random angle ϕ (between the axis of the abscissa and the
diagonal of the glued square) be glued to each point of the flow Πm. The angle ϕ has a
uniform distribution on the segment [0, π]. Thus, the set of squares glued to X forms a
random set obeying the Boolean model [2].
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Denote Sm as the complement of this random set to the unit square of X. According to
Steiner’s theorem [2], for the mathematical expectation αm of the area of a random set Sm,
the relation is fulfilled

αm = exp(−λm1/3)→ 0, m→ ∞. (5)

Formally, we can assume that every square glued to a flow point Πm on the plane is the
side of a cube parallel to the sputtering plane with a volume 1/m. Then, the mathematical
expectation of the total volume of cubes is βm = λ. In the case, when this total volume
βm = λm−γ, 0 ≤ γ < 1/3, it is not difficult to obtain the ratio

αm = exp(−λm1/3−γ)→ 0, m→ ∞. (6)

The obtained relations show that, when the cubes are crushed while maintaining or
decreasing their average total volume, the area of the random set Sm decreases to zero.

Remark 3. Along with shredding cubes, the proposed approach can be applied to coating a flat
surface with shredding balls. In this case, instead of squares, circles are considered, which are
projections of balls with a diameter of m−1/3 on the plane. Then, the relations are fulfilled

αm = exp(−πλm1/3/4)→ 0, m→ ∞, βm = πλ/6. (7)

Remark 4. Such limiting ratios can be useful in analysing the quality of the coating obtained by
powder metallurgy. Another possible application of these results may be to evaluate the coating of
the ice surface with notches in order to reduce the possibility of people sliding on it.

Remark 5. The results of this section are based on the analysis of powder metallurgy processes.
They show that the grinding of powder particles makes it possible to increase the protective properties
of the particle layer on the metal surface. This one is being investigated analytically. The results
are very difficult to repeat using the equations of gas dynamics and the processes of gluing solid
particles to a metallic surface. The results of this section are the development of well-known results
in the field of stochastic geometry, which continue to develop to date [11].

4. Method of Eliminating the Interfering Parameter in Statistics of Poisson Points Flow

Let the Lebesgue-measurable and disjoint regions be distinguished on the plane
Gk, k = 1, . . . , n. Poisson point flow Π with continuous intensity λ(x) is given, and the
relations are fulfilled

λk =
∫

Gk

λ(x)dx < ∞, k = 1, . . . , r, λ =
r

∑
k=1

λk.

Denote Λk =
λk

λ
and consider the flow Πm with the intensity function mλ(x). Let

each point of the flow Πm be independent of other points and, from its coordinates with
probability p, enter the flow Πm. Then, the flow Πm due to the point colouring theorem of
the Poisson flow [1] is Poisson with intensity pmλ(x). Therefore, the number nk of flow
points Πm in the subdomain Gk has a Poisson distribution with the parameter pmλk, and

the sum n =
r

∑
k=1

nk has a Poisson distribution with the parameter pmλ.

Theorem 1. The convergence in probability of the random variable Nk =
nk
n

to the parameter Λk

is valid when m→ ∞.

Proof. Due to the properties of the Poisson distribution, the relations are fulfilled

Enk = Var nk = pmλk, k = 1, . . . , r; En = Var n = pmλ. (8)
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It follows from the equalities (8) that

Var
nk

pmλk
=

1
pmλk

, Var
n

pmλ
=

1
pmλ

.

From Chebyshev’s inequality, we obtain that for any ε, 0 < ε < 1, and for m→ ∞

P
(

1− ε ≤ nk

pmλk
≤ 1 + ε

)
≥ 1− 1

pmλkε2
→ 1, k = 1, . . . , r,

(9)

P
(

1− ε ≤ n
pmλ

≤ 1 + ε

)
≥ 1− 1

pmλε2
→ 1.

Using Formulas (8) and (9), it is not difficult for any ε, 0 < ε <
1
2

, to obtain
the inequality

P
(

1− 2ε ≤ Nk
Λk
≤ 1 + 4ε

)
≥ P

(
1− ε

1 + ε
≤ Nk

Λk
≤ 1 + ε

1− ε

)
≥ 1− 1

pmλkε2
− 1

pmλε2
. (10)

From the inequality Λk ≤ 1, and from Formula (10), we obtain the relation

P(−2ε ≤ Nk −Λk ≤ 4ε) ≥ 1− 1
pmλkε2 −

1
pmλε2 → 1, m→ ∞. (11)

This proves the statement of Theorem 1.

Therefore, the relation Nk, for m → ∞, is a consistent estimate of the parameter Λk,
free of probability p, playing the role of an interfering parameter in this problem.

Remark 6. Using Inequalities (11), we can assume that p = p(m) = m−δ, 0 ≤ δ < 1, and
establish convergence by probability Nk to Λk at m→ ∞.

Remark 7. This problem arises when comparing accounts of the number of animal tracks in the
snow when the interfering parameter takes on different values caused by different meteorological
and economic characteristics in different years.

Remark 8. The results obtained in this section show that the analysis of traces of rare animals re-
quires more careful processing of the results obtained. This becomes especially important when traces
are investigated over a large area and data collection turns into an industrial statistics procedure.

5. Peak Loads in the Queuing System M|D|∞
Consider a queuing system with a nonstationary Poisson input flow of intensity

λ(t), t ≥ 0, with a deterministic service time a and an infinite number of servers. Let the
intensity of Poisson input flow λ(t), 0 ≤ t ≤ T, be a continuously differentiable function,
and at the point t∗, 0 < t∗ < T − a has a single extremum maximum.

Denote n(t) as the number of customers in the queuing system at time t. It is obvious
that the random variable n(t) has a Poisson distribution with the parameter

Λ(t) =
∫ t

max(0,t−a)
λ(u)du. (12)

Designate λ(t∗) = λ∗, Λ∗ = sup
0≤t≤T

Λ(t).

Let us investigate the dependence of the efficiency indicator Λ∗ on the parameters
λ∗, a. First, focus on the analysis of the smoothing of the peak load determined by the



Mathematics 2023, 11, 1881 7 of 10

intensity of the input stream λ(t), with a decrease in the parameter a. It is obvious that the
inequality is true

Λ∗ ≤ aλ∗. (13)

Thus, reducing the parameter a leads to a decrease in the value of Λ∗.
Let us now proceed to a more detailed study of the dependence Λ∗ on the parameter

a. From Formula (12), it follows that the equalities are fulfilled

Λ(t) =
∫ t

0
λ(u)du 0 ≤ t ≤ a, Λ(t) =

∫ t

t−a
λ(u)du, a ≤ t ≤ T. (14)

Now calculate the derivative of twice piecewise continuously differentiable function
Λ(t) for t 6= a :

Λ̇(t) = λ(t), 0 ≤ t < a ≤ T, Λ̇(t) = λ(t)− λ(t− a), a < t ≤ T. (15)

Theorem 2. The function Λ(t) has a single extremum-= maximum t∗ on the segment [0, T] and
a ≤ t∗ ≤ t∗ + a.

Proof. It follows from Formula (15) that the inequalities are satisfied

Λ̇(t) ≥ 0, 0 ≤ t < a; Λ̇(t) ≤ 0, t∗ + a ≤ t ≤ T. (16)

(1) Assume that 0 ≤ t∗ ≤ a, λ(0) ≥ λ(a). From (16), we have that the function Λ(t) is
non-decreasing on [0, a] and non-increasing on [t∗ + a, T]. Calculate now

sup
a<t≤t∗+a

Λ̇(t) = sup
a<t≤t∗+a

(λ(t)− λ(t− a)) ≤ sup
a<t≤t∗+a

λ(t)− inf
a<t≤t∗+a

λ(t− a) =

= λ(a)− inf
0<t≤t∗

λ(t) = λ(a)− λ(0) ≤ 0.

Consequently, the function Λ(t) has single extremum maximum at the point t∗ = a.
(2) Assume that 0 ≤ t∗ ≤ a, λ(0) ≤ λ(a),; then, from (15) and (16), we have that Λ̇(a+ 0) =
λ(a)− λ(0) ≥ 0, Λ̇(t∗ + a) ≤ 0. Now calculate

sup
a≤t≤t∗+a

Λ̈(t) = sup
a<t≤t∗+a

λ̇(t)− inf
a<t≤t∗+a

λ̇(t) ≤ 0. (17)

Hence, we obtain the existence of a single root of the function Λ̇(t) and thus a single
extremum maximum t∗ for the function Λ(t) and the inequality a ≤ t∗ ≤ t∗ + a.
(3) If a ≤ t∗, then from Formulas (15) and (16), we have

Λ̇(t) ≥ 0, 0 ≤ t < a; Λ̇(t) ≥ 0, a < t ≤ t∗; Λ̇(t) ≤ 0, t∗ + a ≤ t ≤ T.

Analogously with (17), we lead to

Λ̇(t∗) ≥ 0, Λ̇(t∗ + a) ≤ 0; sup
t∗≤t≤t∗+a

Λ̈(t) ≤ 0.

Consequently, we obtain the existence of a single extremum maximum t∗ for the function
Λ(t) and the inequality a ≤ t∗ ≤ t∗ ≤ t∗ + a, and thus Theorem 2 is proved.

Let us now proceed to illustrate the results obtained in a numerical example. Suppose
that for some T > a > 0, the function

λ(t) =
exp(−(t− b)2/(2c))√

2πc
, 0 < t < T − a, λ(t) = 0, t ≤ 0 or T − a ≤ t. (18)

Then, for T = 10, b = 5, c = 1, the function Λ(t) looks like this.
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Figure 1 shows how when the parameter a increases, the maximum Λ∗ and the point
t∗ increase.

Figure 1. Graphs of functions λ(t) (dotted line), Λ(t) (solid line).

Remark 9. Such a task arises when modelling sports complexes, cinemas, and production conveyor
systems.

Remark 10. The results obtained in this section arose when comparing the previous one, based on
hard copy subscriptions with periodic access of users to the service system, and the new one, using
electronic cards and allowing users at any time that was convenient for them. The known methods
of calculating queuing systems with variable input flow intensity [29,30] are quite complex, and
their application for the M|D|∞ system seems superfluous.

6. Discussion

As possible extensions of the problems considered in this paper, there may be a transi-
tion from the Poisson flow model of points to more complex and, perhaps, more adequate
models of point flows. The construction of asymptotic relations for the dependence of the
flow intensity on the parameter of stamps is not always convenient. It uses very strict
requirements for a small (large) parameter characterising the stamp glued to the point
(mass, size, probability of detection, time of service of stamps). In the application plan, it
may be sufficient to relax these requirements. Such a weakening may lead to a transition
from the asymptotic analysis of these dependencies to numerical calculations. There may
also be a situation when the presence of a small (large) parameter in the models may not be
completely appropriate to the model under consideration. For example, in nanotechnology
models, the aspiration to zero of the size or mass of particles contradicts physical conditions.
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This circumstance requires greater caution when constructing a mathematical model of the
analysed system and, as a consequence, greater selectivity when choosing a mathematical
research method. The results obtained in this paper are applied to the analysis of new
technical systems. These systems periodically arise in various applied fields and become a
source of new problems at the junction of mathematical modelling and system analysis.

7. Conclusions

A model of the flow of particles forming a copy of some image was considered, and
it is shown how the distance between the image formed by them and the original image
decreases when the particles are crushed. The ability of flow particles to close the surface
protected by them during their grinding was investigated. A model for restoring the
characteristics of an inhomogeneous Poisson flow with inaccurate observation of flow
points and with increasing flow intensity was analysed. The dependence of the Poisson
parameter of the distribution of the customer number in a queuing system with an infinite
number of servers and a deterministic service time on the peak load created by the Poisson
input flow was estimated.

The obtained results indicate the presence of power–law upper bounds for various
efficiency indicators, depending on the parameter characterising the grinding of stamps
glued to the flow points. They were confirmed by observations of the studied systems.
The established effects of the convergence of the system efficiency indicator to zero with
the aspiration to infinity of the parameter of grinding marks were obtained. These results
were established using methods of the theory of probability metrics, methods of the theory
of random sets, methods of the theory of Poisson flows and their colouring points, and
on integral formulas for the parameter of the Poisson distribution of the point numbers
in the Poisson flow on a certain segment. A characteristic feature of these models is a
special choice of the efficiency indicator, the grinding parameter of the stamps glued to
the flow points, and the relationship between the efficiency indicator and the grinding
parameter. The results presented in this paper may be applied in nanotechnology, in
powder metallurgy, in ecology, and in consumer services during the implementation of
the “Smart City” program. The proposed approach is phenomenological in nature and is
justified by the results of real observations and experiments.
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