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Abstract: In this paper, we investigate a practical numerical method for solving a one-dimensional
two-sided space-fractional diffusion equation with variable coefficients in a finite domain, which
is based on the classical Crank-Nicolson (CN) method combined with Richardson extrapolation.
Second-order exact numerical estimates in time and space are obtained. The unconditional stability
and convergence of the method are tested. Two numerical examples are also presented and compared
with the exact solution.
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1. Introduction

In recent years, fractional differential equations have been of great interest for their
use in modelling problems in physics (for an excellent review, see [1]), biology [2], chem-
istry [3] and even finance [4]. Numerical methods have become the main way to solve
fractional-order equations, since we cannot easily obtain explicit analytical solutions to
fractional-order equations. Several authors have proposed some effective numerical meth-
ods. Liu et al. [5] proposed a novel spatial second-order exact semi-implicit alternating
direction method for the two-dimensional fractional FitzHugh-Nagumo single-domain
model. Li et al. [6] proposed a spectral method for solving a fractional diffusion-absorption-
reaction equation. She et al. [7] studied and analysed the Crank-Nicolson time discretisation
of one- and two-dimensional spatial fractional diffusion equations. Hao et al. [8] studied
the regularity of two-sided fractional diffusion equations with reaction terms and spectral
methods. Li et al. [9] studied the fractional spectral localisation discretization of optimal
control problems governed by spatial fractional diffusion equations. Gunzburger et al. [10]
proposed a stable finite volume element method to approximate the coupled Stokes-Darcy
problem. Ozbilge et al. [11] considered a finite difference scheme for the inverse problem
of time-fractional parabolic partial differential equations with non-local boundary con-
ditions. Feng et al. [12] developed a new fractional finite volume method based on the
nodal basis functions for a two-sided space-fractional diffusion equation. Liu et al. [13]
considered the problem of minimising a non-convex integral function in control, which
is a solution to a control system described by fractional differential equations with mixed
non-convex constraints on the control. Jia et al. [14] considered a fast finite difference
method for a spatial fractional diffusion equation with fractional derivative boundary
conditions. Lai et al. [15] considered the numerical solution of a Riesz spatial fractional
partial differential equation with second order time derivatives. Chen et al. [16] considered
a compact difference scheme for a second-order backward differential formulation of the
fractional-order Volterra equation with a truncation error of order 4 in time and order 4

Mathematics 2023, 11, 1838. https://doi.org/10.3390/math11081838 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11081838
https://doi.org/10.3390/math11081838
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9962-5873
https://orcid.org/0000-0002-9176-8394
https://orcid.org/0000-0001-6658-2187
https://doi.org/10.3390/math11081838
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11081838?type=check_update&version=2


Mathematics 2023, 11, 1838 2 of 15

in space. Ma et al. [17] proposed a new signal smoothing equations, and they introduced
generalized filters by use of memory effects of fractional derivatives. Shiri et al. [18] pro-
posed an interesting Neural Network method for solving diffusion equations. Qu et al. [19]
proposed a weight finite difference scheme for space fractional diffusion equations. There
are some new papers in the fractional differential equations (see [20,21]). Based on the
fractional-order Fick’s law, a fractional-order diffusion model is derived for the space of
variable coefficients with two-sided derivatives in the conserved form. The continuum
equation in one-dimensional form can be written according to the mass conservation law as

∂p(x, t)
∂t

+
∂Q(x, t)

∂x
= f (x, t), (1)

where p(x, t) is the distribution function of the diffusing quantity, Q(x, t) is the diffusion
flux and f (x, t) is the source term. The classical Fick’s law can be extended as follows:

Q(x, t) = −C(x)
∂

∂x

∫ x

a
K+(x, ξ)p(ξ, t)dξ − D(x)

∂

∂x

∫ b

x
K−(x, ξ)p(ξ, t)dξ, (2)

where C(x) and D(x) are non-negative diffusion coefficients. On the interval [a, b], C(x) is
a monotonically decreasing function of x and D(x) is a monotonically increasing function
of x. The kernel functions K+(x, ξ) and K−(x, ξ) are defined as follows{

K+(x, ξ) = 1
Γ(1−α)

(x− ξ)−α a ≤ ξ ≤ x,

K−(x, ξ) = 1
Γ(1−α)

(ξ − x)−α x ≤ ξ ≤ b,
(3)

where 0 < α < 1. Combination of Equations (1) and (2), Chen et al. [22] have derived the
following nonlinear two-sided space fractional diffusion equation with variable coefficients.

∂p(x, t)
∂t

=
∂

∂x
(C(x)

∂α p(x, t)
∂xα

− D(x)
∂α p(x, t)
∂(−x)α

) + f (x, t),

a ≤ x ≤ b, 0 < α < 1, 0 < t ≤ T,
(4)

where ∂α p(x,t)
∂α(−x) is the right Riemman-Liouville fractional derivatives, ∂α p(x,t)

∂αx is the left
Riemman-Liouville fractional derivatives (see [23,24] for details) defined by

∂α p(x, t)
∂(−x)α

=
−1

Γ(1− α)

∂

∂x

∫ b

x

p(s, t)
(s− x)α

ds, (5)

∂α p(x, t)
∂xα

=
1

Γ(1− α)

∂

∂x

∫ x

a

p(s, t)
(x− s)α

ds. (6)

In this paper, we consider the above one-dimensional fractional two-sided space-fractional
diffusion Equation (4) with the following initial value conditions and Dirichlet boundary
conditions:

p(x, 0) = φ(x), a ≤ x ≤ b, (7)

p(a, t) = p(b, t) = 0, 0 ≤ t ≤ T. (8)

For this new one-dimensional two-sided spatial fractional diffusion equation, Chen et al. [22]
gave a fast semi-implicit difference method. However, the method is only first order accuracy.
To the best of our knowledge, there is limited research on the numerical computation of this
equation with high accuracy based on the classical Crank-Nicolson scheme. This motivates us to
propose in this paper an approach to this equation based on the classical Crank-Nicolson scheme
and combined with a Richard space extrapolation. Our method is second order accuracy in time
and space.



Mathematics 2023, 11, 1838 3 of 15

The remaining work is structured as follows. In Section 2, we present the classical
Crank-Nicolson difference method for the one-dimensional two-sided spatial fractional
diffusion equation and analyse its consistency. In Section 3, we prove the stability and
convergence of the method. The method is then combined with spatial extrapolation.
The convergence accuracy is improved to second order accuracy in time and space. In
Section 4, two numerical experiments are given in order to verify the theoretical analysis of
the method.

2. The Classical CN Difference Scheme for the One-Dimensional Two-Sided
Space-Fractional Diffusion Equation and Its Consistency

For the numerical approximation, define tn = n4t, 0 ≤ tn ≤ T, for n = 0, 1, 2, . . . , N
and xi = a + ih for i = 0, 1, . . . , M, where4t, h are the mesh-width in the time and space
respectively, 4t = T/N, h = (b− a)/M, Ci = C(xi), Di = D(xi), and f n

i = f (xi, tn). Let
Pn

i , pn
i denote the exact and numerical solutions at the grid point (xi, tn) respectively. The

initial conditions are given by p0
i = φi = φ(xi). Similarly, the Dirichlet zero boundary

conditions are given by pn
0 = pn

M = 0, for n = 0, 1, . . . , N.

To approximate ∂α p(x,t)
∂α(−x) and ∂α p(x,t)

∂αx , we use shifted left and standard right Grünwald

formulas [25], respectively, at time tn+1/2 = 1
2 (tn + tn+1). The formulas are as follows:

∂α p(xi, tn+1/2)

∂α(−x)
=

1
(h)α

M−i

∑
s=0

g(α)s Pn+1/2
i+s + O(h),

∂α p(xi, tn+1/2)

∂αx
=

1
(h)α

i+1

∑
s=0

g(α)s Pn+1/2
i+1−s + O(h),

where g(α)s = (−1)s(α
s) is the normalized Grünwald weights. Its properties meet the

following Lemma 1.

Lemma 1 (see [26]). Let 0 < α < 1, the Grünwald weights g(α)s satisfy the properties:

(i)
∞
∑

s=0
g(α)0 = 0 .

(ii) g(α)0 = 1, g(α)s < 0 for s ≥ 1.

(iii)
n
∑

s=0
g(α)s > 0 for any n ≥ 1.

(iv) g(α)s+1 − g(α)s = g(α+1)
s+1 , for s ≥ 1.

(v)
n
∑

s=0
g(α+1)

s < 0 for any n ≥ 1.

Thus, we obtain a CN difference scheme for the one-dimensional two-sided space-fractional
diffusion equation at the point (xi, tn+1/2).
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pn+1
i − pn

i
4t

≈ 1
h
(C(x)

∂α p(x, tn+1/2)

∂xα
− D(x)

∂α p(x, tn+1/2)

∂(−x)α
)|xi

xi−1 + f n+1/2
i

=
1
h
(Ci

∂α p(xi, tn+1/2)

∂xα
− Di

∂α p(xi, tn+1/2)

∂(−x)α
)

− 1
h
(Ci−1

∂α p(xi−1, tn+1/2)

∂xα
− Di−1

∂α p(xi−1, tn+1/2)

∂(−x)α
) + f n+1/2

i

≈ 1
2hα+1 [(Ci

i+1

∑
s=0

g(α)s pn+1
i+1−s + Ci

i+1

∑
s=0

g(α)s pn
i+1−s)− (Ci−1

i

∑
s=0

g(α)s pn+1
i−s + Ci−1

i

∑
s=0

g(α)s pn
i−s)]

− 1
2hα+1 [(Di

M−i

∑
s=0

g(α)s pn+1
i+s + Di

M−i

∑
s=0

g(α)s pn
i+s)

− (Di−1

M−i+1

∑
s=0

g(α)s pn+1
i+s−1 + Di−1

M−i+1

∑
s=0

g(α)s pn
i+s−1)]

=
1

2hα+1 [(
i+1

∑
s=0

(Cig
(α+1)
i+1−s − Ci−1g(α+1)

i−s )pn+1
s + Cig

(α)
0 pn+1

i+1 )

+ (
i+1

∑
s=0

(Cig
(α+1)
i+1−s − Ci−1g(α+1)

i−s )pn
s + Cig

(α)
0 pn

i+1)] + pn
i+1

− 1
2hα+1 [

M

∑
s=i

(Di−1g(α)s+1−i − Dig
(α)
s−i)pn+1

s + Di−1g(α)0 pn+1
s )

+ (
M

∑
s=i

(Di−1g(α)s+1−i − Dig
(α)
s−i)pn

s + Di−1g(α)0 pi−1
s )].

After some rearrangements, we can get CN scheme

pn+1
i − pn

i
4t

=
1

2hα+1 [(
i+1

∑
s=0

Cig
(α+1)
i+1−s pn+1

s +
i+1

∑
s=0

Cig
(α)
i−s pn

s )

+ (
i

∑
s=0

(Ci − Ci−1)g(α)i−s pn+1
s +

i

∑
s=0

(Ci − Ci−1)g(α)i−s pn
s )]

− 1
2hα+1 [(

M

∑
s=i−1

Di−1g(α+1)
s+1−i p

n+1
s +

M

∑
s=i−1

Di−1g(α+1)
s+1−i p

n
s )

+ (
M

∑
s=i

(Di−1 − Di)g(α)s−i p
n+1
s +

M

∑
s=i

(Di−1 − Di)g(α)s−i p
n
s )].

(9)

Organize the above equation and write it in the following operators form

(1− δα,x)pn+1
i = (1 + δα,x)pn

i +4t f n+1/2
i , (10)

where the difference operators as

δα,x pn
i =

∆t
2hα+1 [(

i

∑
s=0

(Cig
(α)
i+1−s − Ci−1g(α)i−s)pn

s ) + Cig
(α)
0 pn

i+1]

+
∆t

2hα+1 [(
M

∑
s=i

(Di−1g(α)s+1−i − Dig
(α)
s−i)pn

s ) + Di−1g(α)0 pn
i−1].

It can be further written in the matrix form as follows:

(I − A)Pn+1 = (I + A)Pn +4tFn+1/2, (11)
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where I is (M − 1)× (M − 1) identity matrix; Pn = (pn
1 , pn

2 , ..., pn
M−1) ; Fn+1/2 = ( f n+1/2

1 ,
f n+1/2
2 , ..., f n+1/2

M−1 ); and the matric A = (Ai,s), i, s = 1, 2, . . . , M− 1, is defined by

Ai,s =



η(Di−1g(α)s−i+1 − Dig
(α)
s−i) when s > i + 1,

η(Cig
(α)
0 + Di−1g(α)2 − Dig

(α)
1 ) when s = i + 1,

η(Cig
(α)
1 − Ci−1g(α)0 + Di−1g(α)1 − Dig

(α)
0 ) when s = i,

η(Cig
(α)
2 − Ci−1g(α)0 + Di−1g(α)0 ) when s = i− 1,

η(Cig
(α)
i+1−s − Ci−1g(α)i−s) when s < i− 1,

(12)

where η = ∆t
2hα+1 .

Theorem 1. The classical CN method defined by Equation (9) is consistent with Equation (4) of
order O((∆t)2 + h).

Proof. The Equation (4) can be rewritten as

∂p(x, t)
∂t

=
dC(x)

dx
∂α p(x, t)

∂xα
+ C(x)

∂α+1 p(x, t)
∂xα+1

− dD(x)
dx

∂α p(x, t)
∂(−x)α

+ D(x)
∂α+1 p(x, t)
∂(−x)α+1 + f (x, t).

(13)

We define the local truncation error term as Rn
i , using Equations (9) and (13), we get

Rn
i =

Pn+1
i − Pn

i
∆t

− 1
2hα+1 [(

i+1

∑
s=0

Cig
(α+1)
i+1−sPn+1

s +
i+1

∑
s=0

Cig
(α)
i−sPn

s )

+ (
i

∑
s=0

(Ci − Ci−1)g(α)i−sPn+1
s +

i

∑
s=0

(Ci − Ci−1)g(α)i−sPn
s )]

− 1
2hα+1 [(

M

∑
s=i−1

Di−1g(α+1)
s+1−iP

n+1
s +

M

∑
s=i−1

Di−1g(α+1)
s+1−iP

n
s )

+ (
M

∑
s=i

(Di−1 − Di)g(α)s−iP
n+1
s +

M

∑
s=i

(Di−1 − Di)g(α)s−iP
n
s )]− f n+1/2

i

=
Pn+1

i − Pn
i

∆t
− ∂p(x, t)

∂t
|n+1/2
i

− 1
2hα

[
i

∑
s=0

(Ci − Ci−1)

h
g(α)i−s(Pn+1

s + Pn
s )−

dC(x)
dx

∂α p(x, t)
∂xα

|n+1/2
i ]

− [
1

2hα+1

i+1

∑
s=0

Cig
(α+1)
i+1−s(Pn+1

s + Pn
s )− (C(x)

∂α+1 p(x, t)
∂xα+1 )|n+1/2

i ]

+
1

2hα
[

M

∑
s=i

(Di − Di−1)

h
g(α)s−i(Pn+1

s + Pn
s )−

dD(x)
dx

∂α p(x, t)
∂(−x)α

|n+1/2
i ]

− [
1

2hα+1

M

∑
s=i−1

Di−1g(α+1)
i+1−s(Pn+1

s + Pn
s )− (D(x)

∂α+1 p(x, t)
∂(−x)α+1 )|n+1/2

i ]

= O((∆t)2 + h).

Thus, the classical CN method is consistent.
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3. Stability and Convergence of the Classical Fractional CN Method

Let p̃n
i (i = 1, 2, . . . , M− 1) be an approximate solution of pn

i with initial conditions p̃0
i

in order to discuss the stability and convergence of the numerical method. Let εn
i = pn

i − p̃n
i ,

en
i = Pn

i − pn
i be defined with the corresponding vectors

εn = (εn
1, εn

2, . . . , εn
M−1), (14)

en = (en
1 , en

2 , . . . , en
M−1). (15)

Theorem 2. On the interval [a, b], if C(x) ≥ 0 monotonically decreases, and D(x) ≥ 0 monotoni-
cally increases, the CN difference scheme defined by Equation (10) is uniquely solvable.

Proof. Since C(x) and D(x) are both non-negative, C(x) is monotonically decreasing,
and D(x) is monotonically increasing, we have Ci−1 ≥ Ci ≥ 0 , Di ≥ Di−1 ≥ 0,
i = 1, 2, . . . , M− 1.

According to Lemma 1, then we have Cigα
j+1 ≥ Cig

(α)
j ≥ Ci−1g(α)j , Di−1g(α)j+1 ≥

Di−1g(α)j ≥ Dig
(α)
j , for j ≥ 2. Let ri be the sum of the absolute values of all the elements of

row i of the matrix A excluding the diagonal elements, then we have

ri =
M−1

∑
s=1,s 6=i

|Ai,s|

= η[
i−2

∑
s=1
|Cig

(α)
i+1−s − Ci−1g(α)i−s|+ |Cig

(α)
2 − Ci−1g(α)0 + Di−1g(α)0 |

+ |Cig
(α)
0 + Di−1g(α)2 + Dig

(α)
1 |+

M−1

∑
s=i+2

|Di−1g(α)s−i+1 − Dig
(α)
s−i|]

= η[
i−2

∑
s=1

(Cig
(α)
i+1−s − Ci−1g(α)i−s) + (Cig

(α)
2 − Ci−1g(α)0 + Di−1g(α)0 )

+ (Cig
(α)
0 + Di−1g(α)2 + Dig

(α)
1 ) +

M−1

∑
s=i+2

(Di−1g(α)s−i+1 − Dig
(α)
s−i)]

= η[Ci(
i

∑
s=0

g(α)s − g(α)1 )− Ci−1(
i−1

∑
s=0

g(α)s − g(α)0 )

+ Di−1(
M−i

∑
s=0

g(α)s − g(α)1 )− Di(
M−i

∑
s=0

g(α)s − g(α)0 )]

= η[(Ci − Ci−1)
i−1

∑
s=0

g(α)s + Cig
(α)
i − Cig

(α)
i + Ci−1g(α)i

− (Di − Di−1)
M−1

∑
s=0

g(α)s + Di−1g(α)M−i − Di−1g(α)1 + Dig
(α)
0

− Cig
(α)
i + Ci−1g(α)i − Di−1g(α)1 + Dig

(α)
0 ] = −Ai,i.

(16)

It follows from the above that the eigenvalues of a matrix A have negative real parts
according to Gerschgorin’s theorem [27], when λ is an eigenvalue of A only when 1− λ is
an eigenvalue of the matrix I− A. Thus, the eigenvalue of the matrix A all contain negative
real parts, which implicitly means that every eigenvalue of the matrix I − A has a modulus
large than 1. In addition, we can see that the spectral radius of the matrix I− A is large than
1, so the matrix I − A is reversible [28]. The difference scheme is unique and solvable.
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Theorem 3. On the interval [a, b], if C(x) ≥ 0 monotonically decreases, and D(x) ≥ 0 monotoni-
cally increases, then the CN difference scheme defined by Equation (10) is unconditionally stable
and convergent and exists in a positive constant C > 0 such that ‖en‖∞ ≤ C((4t)2 + h).

Proof. λ is an eigenvalue of the matrix A, if and only if 1− λ is an eigenvalue of the matrix
I − A, if and only if (1 + λ)/(1− λ) is an eigenvalue of the matrix (I − A)−1(I + A). We
know that the eigenvalues of the matrix A all have negative real parts from Theorem 2,
This implicity means that |(1 + λ)/(1− λ)| < 1, and therefore the spectral radius of the
matrix (I − A)−1(I + A) can be obtained to be less than 1. In addition, according to the
relationship between the two-norm of the matrix and the spectral radius of the matrix,
we obtain

‖(I − A)−1(I − A)‖2 = ρ((I − A)−1(I − A)) < 1. (17)

By Equation (10) and the definition of εn, I − A is invertible, we have

εn+1 = (I − A)−1(I − A)εn, (18)

Further, we obtain

‖εn+1‖2 = ‖(I − A)−1(I − A)εn‖2 ≤ ‖(I − A)−1(I + A)‖2‖εn‖2 < ‖εn‖2. (19)

If we repeat the above equation n + 1 times, we obtain the following equation

‖εn+1‖2 < ‖ε0‖2. (20)

Thus, the CN difference scheme defined by Equation (10) is unconditionally stable.
We then consider the convergence of the CN difference scheme. From Equation (10)

and the definition of en, we have

(I − A)en+1 = (I + A)en + ∆tRn, (21)

and
e0 = 0, (22)

where Rn = (Rn
1 , Rn

2 , . . . , Rn
M−1)

T , ‖Rn‖2 ≤ C1((∆t)2 + h) and C1 is a positive constant.
Similarly, we have also developed

‖en+1‖2 < ‖en‖2 + ‖∆tRn‖2. (23)

Repeating the above equation n + 1 times, we have ‖en‖2 < n(∆t)C1((∆t)2 + h). Since
n(∆t) ≤ T, ‖en‖∞ ≤ C((∆t)2 + h).

Remark 1. ptn
x is the Richardson extrapolated solution (see [27,28]), then can be computed from

ptn
x = 2ptn

x,h/2 − ptn
x,h, where x is a common grid point on both the fine and the coarse meshes, and

ptn
x,h, ptn

x,h/2 are the CN solutions at the point x using the coarse grid (grid with h) and the fine
grid (grid size h/2), respectively. In this way, we can obtain second-order accuracy both in space
and time.

Proof. The error in the right-shifted and left standard Grunwald formulas are K1h +
K2(h)2 + O((h)3) (see [25]), where K1 and K2 are positive constant independent of h. Ac-
cording to Richardson extrapolation method (see [27]), at a grid size h and h/2,we apply
the CN method, we can get the Richardson extrapolated solution ptn

x = 2ptn
x,h/2 − ptn

x,h, and
Richardson extrapolated solution has local truncation error C((∆t)2 + h2), according to
Lax’s Equivalence Theorem (see [29]), we obtain second-order accuracy both in time and
space. The detailed steps to get Richardson’s extrapolated solution are as follows:
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Step 1: On the spatially coarse grid h, solve using this CN difference format method
to obtain the numerical solution ptn

x,h on the coarse grid.

Step 2: On the spatially fine grid h/2 with the same ∆t, solve again using this CN
difference format method to obtain the numerical solution ptn

x,h/2 on the fine grid.

Step 3: The Richard extrapolation solution, which can be written in the following form
ptn

x = 2ptn
x,h/2 − ptn

x,h.

4. Numerical Example

In this section, we carry out two numerical experiments to demonstrate the effective-
ness of the second-order accurate finite difference method. ‖eN

h ‖∞ the maximum error of
the Crank-Nicolson numerical solution, ‖eN−ex

h ‖∞ the maximum error of the corresponding
extrapolated Crank-Nicolson numerical solution.

Example 1 (Parabolic case [22]). The following two-sided space-fractional diffusion equation was
considered

∂p(x, t)
∂t

=
∂

∂x
(C(x)

∂α p(x, t)
∂xα

− D(x)
∂α p(x, t)
∂(−x)α

) + f (x, t),

a ≤ x ≤ b, 0 < α < 1, 0 ≤ t ≤ T.
(24)

The finite domain is [0, 1]. The nonnegative diffusion coefficient C(x) = 1−x2

2 , D(x) = 1+x2

2 . The
source term f (x, t) is given by

f (x, t) = −e−t[x2(1− x)2 − xq(x, α) +
1− x2

2
q(x, 1 + α)− xq(1− x, α) +

1 + x2

2
q(1− x, 1 + α)], (25)

here

q(x, t) =
Γ(5)

Γ(5− α)
x4−α − 2Γ(4)

Γ(4− α)
x3−α +

Γ(3)
Γ(3− α)

x2−α. (26)

The exact solution to this problem is

p(x, t) = e−tx2(1− x)2, (27)

which satisfies the initial function

φ(x) = x2(1− x)2, (28)

and the Dirichlet boundary conditions are

p(0, t) = p(1, t) = 0. (29)

In the numerical experiments, we consider four different α in the case, respectively.

Table 1 shows the convergence rates of the numerical solutions of Example 1 with
α = 0.2, 0.4, 0.6 at the time T = 1. The numerical solution matches the exact analytical
solution of the fractional differential equation. It shows stability and a convergence order
of O((∆t)2 + h) . Figure 1 shows the numerical solution in Crank-Nicolson format and the
exact solution of Example 1, where α = 0.2, ∆t = h = 2−7 at time T = 1. Figure 2 shows
the numerical solution in Crank-Nicolson format and the exact solution of Example 1,
where α = 0.4, ∆t = h = 2−7 at time T = 1. Figure 3 shows the numerical solution in
Crank-Nicolson format and the exact solution of Example 1, where α = 0.6, ∆t = h = 2−7

at time T = 1. The numerical solution compares well with the exact analytic solution to the
fractional partial differential equation in this test case.



Mathematics 2023, 11, 1838 9 of 15

Table 1. Error behaviors and rate with α = 0.2, 0.4, 0.6 at time T = 1 for Example 1.

α = 0.2 α = 0.4 α = 0.6

∆t = h ‖eN
h ‖∞ Rate ‖eN

h ‖∞ Rate ‖eN
h ‖∞ Rate

2−3 7.5340 × 10−3 - 4.2000 × 10−3 - 1.9000 × 10−3 -
2−4 4.2214 × 10−3 1.78 2.4000 × 10−3 1.75 1.2000 × 10−3 1.83
2−5 2.2199 × 10−3 1.90 1.3000 × 10−3 1.85 6.565 × 10−4 1.58
2−6 1.1356 × 10−3 1.95 6.4325 × 10−4 2.02 3.4039 × 10−4 1.93
2−7 5.7351 × 10−4 1.98 3.2425 × 10−4 1.98 1.7301 × 10−4 1.97

Figure 1. The numerical solution for the Crank-Nicolson scheme and exact solution for Example 1
with α = 0.2, ∆t = h = 2−7 at time T = 1.

Figure 2. The numerical solution for the Crank-Nicolson scheme and exact solution for Example 1
with α = 0.4, ∆t = h = 2−7 at time T = 1.
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Figure 3. The numerical solution for the Crank-Nicolson scheme and exact solution for Example 1
with α = 0.6, ∆t = h = 2−7 at time T = 1.

To check the speed of convergence of this method, we start with ∆t = h = 2−3. To
obtain an extrapolated CN solution on this grid size, in the first step the problem is solved
numerically ptn

x,h on a coarse grid with ∆t = h = 2−3 and in the second step a finer grid
size is created using the same and in the second step a finer grid size is created using the
same ∆t but halving h (∆t = 2−3,h = 2−4). The third step is to calculate the extrapolation
solution for the points on the coarse grid as ptn

x = 2ptn
x,h/2 − ptn

x,h.
For Example 1 with T = 1 and α = 0.8, Table 2 shows the absolute error in the

numerical solution. The second column shows the absolute value of the maximum error in
the numerical solution. The third column shows the rate of reduction of the error as the
mesh is refined. It shows the order of convergence as O((∆t)2 + h). The fourth column
shows the maximum absolute error for the Crank-Nicholson extrapolation. The last column
shows the error rate of these extrapolated solutions. We note that the order of convergence is
second order O((∆t)2 + h2). Figure 4 shows the numerical solution for the Crank-Nicolson
scheme and the extrapolated Crank-Nicolson scheme and rate for Example 1 with α = 0.8,
∆t = h = 2−6 at time T = 1.

Table 2. Error behaviors and rate for the Crank-Nicolson scheme and exact solution for Example 1
with α = 0.8 at time T = 1.

∆t = h ‖eN
h ‖∞ Rate ‖eN−ex

h ‖∞ Rate

2−3 7.7198 × 10−4 - 7.4596 × 10−4 -
2−4 4.0338 × 10−4 1.91 1.7406 × 10−4 4.29
2−5 2.4992 × 10−4 1.61 4.1151 × 10−5 4.23
2−6 1.3734 × 10−4 1.82 9.7767 × 10−6 4.21



Mathematics 2023, 11, 1838 11 of 15

Figure 4. The numerical solution for the Crank-Nicolson scheme and the extrapolated Crank-Nicolson
scheme and rate for Example 1 with α = 0.8, ∆t = h = 2−6 at time T = 1.

Example 2 (Linear case [22]). The following two-sided space-fractional diffusion equation was
considered

∂p(x, t)
∂t

=
∂

∂x
(C(x)

∂α p(x, t)
∂xα

− D(x)
∂α p(x, t)
∂(−x)α

) + f (x, t),

a ≤ x ≤ b, 0 < α < 1, 0 ≤ t ≤ T.
(30)

The finite domain is [0, 1]. The nonnegative diffusion coefficient C(x) = 2− x, D(x) = 2 + x. The
source term f (x, t) is given by

f (x, t) = −e−t[x2(1− x)2 − q(x, α) + (2− x)q(x, 1 + α)− q(1− x, α) + (2 + x)q(1− x, 1 + α)], (31)

here

q(x, t) =
Γ(5)

Γ(5− α)
x4−α − 2Γ(4)

Γ(4− α)
x3−α +

Γ(3)
Γ(3− α)

x2−α. (32)

The exact solution to this problem is

p(x, t) = e−tx2(1− x)2, (33)

which satisfies the initial function

φ(x) = x2(1− x)2, (34)

and the Dirichlet boundary conditions are

p(0, t) = p(1, t) = 0. (35)

In the numerical experiments, we consider four different α values in the case, respectively.

Table 3 shows the convergence rates for the numerical solutions of Example 2 with
α = 0.2, 0.4, 0.6 at the time T = 1. In this test case the numerical solution agrees well with
the exact analytical solution of the fractional order partial differential equation. It shows
stability and a convergence order of O((∆t)2 + h). Figure 5 shows the numerical solution
in Crank-Nicolson format and the exact solution of Example 2 with α = 0.2, ∆t = h = 2−7

at time T = 1. Figure 6 shows the numerical solution in Crank-Nicolson format and the
exact solution of Example 4.2 with α = 0.4, ∆t = h = 2−7 at time T = 1. Figure 7 shows



Mathematics 2023, 11, 1838 12 of 15

the numerical solution in Crank-Nicolson format and the exact solution of Example 2 with
α = 0.6, ∆t = h = 2−7 at time T = 1. The numerical solution compares well with the exact
analytic solution to the fractional partial differential equation in this test case.

Table 4 shows the absolute error in the numerical solution for Example 2 at time T = 1
and α = 0.8. The second column shows the absolute value of the maximum error in the
numerical solution. The third column shows the rate of reduction of the error as the mesh
is refined. It shows the order of convergence as O((∆t)2 + h). The fourth column shows the
maximum absolute error for the Crank-Nicholson extrapolation. The last column shows
the error rate of these extrapolated solutions. We note that the order of convergence is
second order O((∆t)2 + h2). Figure 8 shows the numerical solution for the Crank-Nicolson
scheme and the extrapolated Crank-Nicolson scheme and rate for Example 2 with α = 0.8,
∆t = h = 2−6 at time T = 1.

Table 3. Error behaviors and rate with α = 0.2, 0.4, 0.6 at time T = 1 for Example 2.

α = 0.2 α = 0.4 α = 0.6

∆t = h ‖eN
h ‖∞ Rate ‖eN

h ‖∞ Rate ‖eN
h ‖∞ Rate

2−3 8.3000 × 10−3 - 3.8000 × 10−3 - 1.3000 × 10−3 -
2−4 5.0000 × 10−3 1.66 2.3000 × 10−3 1.75 9.1101 × 10−4 1.43
2−5 2.7000 × 10−3 1.85 1.2000 × 10−3 1.85 5.1674 × 10−4 1.76
2−6 1.4000 × 10−3 1.93 6.4069 × 10−4 2.02 2.7250 × 10−4 1.90
2−7 7.1602 × 10−4 1.96 3.2564 × 10−4 1.98 1.3953 × 10−4 1.95

Table 4. Error behaviors and rate for the Crank-Nicolson scheme and exact solution for Example 2
with α = 0.8 at time T = 1.

∆t = h ‖eN
h ‖∞ Rate ‖eN−ex

h ‖∞ Rate

2−3 7.1922 × 10−4 - 6.5386 × 10−4 -
2−4 1.8018 × 10−4 3.99 1.5769 × 10−4 4.15
2−5 1.3921 × 10−4 1.29 3.7662 × 10−5 4.19
2−6 8.2345 × 10−5 1.69 8.2345 × 10−5 4.57

Figure 5. The numerical solution for the Crank-Nicolson scheme and exact solution for Example 2
with α = 0.2, ∆t = h = 2−7 at time T = 1.
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Figure 6. The numerical solution for the Crank-Nicolson scheme and exact solution for Example 2
with α = 0.4, ∆t = h = 2−7 at time T = 1.

Figure 7. The numerical solution for the Crank-Nicolson scheme and exact solution for Example 2
with α = 0.6, ∆t = h = 2−7 at time T = 1.
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Figure 8. The numerical solution for the Crank-Nicolson scheme and the extrapolated Crank-Nicolson
scheme and exact solution for Example 2 with α = 0.8, ∆t = h = 2−6 at time T = 1.

5. Conclusions

In this paper, we have considered a two-sided spatial fractional order diffusion equa-
tion with variable diffusion coefficients from a fractional Fick’s law. Although finite
difference estimates for the fractional order derivatives have been elusive, a high precision
convergence method for the superdiffusion equation is feasible by applying the extrapola-
tion to the Crank-Nicolson method and the Richardson method, in combination with the
Grünwald estimates using shifts. We can obtain second-order accurate numerical estimates
in time and space using the CN and Richardson extrapolation methods. We then consider
more general cases, such as the case where C(x) and D(x) are not monotonic, or higher
accuracy differential methods. We also look at numerical solutions of this equation for
different boundary conditions, such as fractional boundary conditions.
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