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Abstract: This paper is focused on the inverse problem of identifying the space-dependent source
function and initial value of the time fractional nonhomogeneous diffusion-wave equation from noisy
final time measured data in a multi-dimensional case. A mollification regularization method based
on a bilateral exponential kernel is presented to solve the ill-posedness of the problem for the first
time. Error estimates are obtained with an a priori strategy and an a posteriori choice rule to find
the regularization parameter. Numerical experiments of interest show that our proposed method is
effective and robust with respect to the perturbation noise in the data.
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1. Introduction

Recently, time or space fractional differential equations have attracted intensive at-
tentions. All kinds of models applying fractional partial differential equations have been
successfully used to describe anomalous diffusion phenomena due to nonlocal property of
fractional order derivatives. In the past decades, fractional order partial differential equa-
tions have been widely used in nuclear magnetic resonance, semiconductors, viscoelastic
materials, heterogeneous aquifer, quantum optics, molecular spectroscopy, polymer, porous
media, solid surface diffusion, financial research, and underground fluid flow.

There has been a lot of papers on the theories and applications of fractional order
differential equations; one can refer to Refs. [1,2]. The direct problems for fractional
equations and the inverse problems for space and time fractional equations have been
researched in recent years; refer to Refs. [3–10]. By finding additional data, one can identify
the unknown data for time and space fractional equations; refer to Refs. [11–20]. However,
there are only a few studies on the time fractional diffusion-wave equation. Furthermore,
the work for the inverse problem of this part is still in the preliminary stage. In Ref. [21]
the authors identified time source terms for time fractional inhomogeneous, and nonlinear
wave equations were considered, but only the existence, uniqueness, and a priori estimation
formula of the solution are given, as the posterior case is not given. It is known that the
prior rule depends on prior information, and the accuracy of prior information will affect
the accuracy of the prior regular solution. Whereas the posterior regulation is only related
to the measurement data and has nothing to do with the prior information, which makes
the regular solution obtained by the posterior rule closer to the exact solution than that
obtained by the prior rule. In this paper, we will discuss not only prior rule analysis but also
posterior rule analysis. We give the error estimation and convergence proof, respectively.
Numerical examples are given to verify the results. We introduce several results on the
deterministic case. In addition, there are also some very recent papers on the stochastic
case; if the interested reader wants to see a variety of this topic, one can refer to Refs. [22,23]
and for more related and similar studies one can refer to Refs. [24–29].
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In this article, an inverse space-dependent source problem and the initial value for
a time fractional diffusion-wave equation are studied in a bounded domain. Let Ω be a
bounded domain in Rd with a sufficiently smooth boundary ∂Ω . We will consider the
following time fractional diffusion-wave problem.

∂α
0+u(x, t) + Lu(x, t) = f (x)g(t), x ∈ Ω, 0 ≤ t ≤ T,

u(x, 0) = a(x), x ∈ Ω̄,
∂tu(x, 0) = b(x), x ∈ Ω̄,
u(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T,
u(x, T) = h(x), x ∈ Ω.

(1)

where 1 < α < 2 and ∂α
0+u(x, t) is the left Caputo fractional derivative and L [3,4] is a

symmetric uniformly elliptic operator defined on D(L) = H2(Ω) ∩ H1
0(Ω) and given by

Lu(x, t) = −
d

∑
i,j=1

∂

∂xj
(aij(x)

∂

∂xi
u(x, t)) + c(x)u(x, t), x ∈ Ω. (2)

in which the coefficients satisfy

aij = aji, 1 ≤ i, j ≤ d, ai,j ∈ C1(Ω̄), (3)

σ
d

∑
i=1

ξ2
i ≤

d

∑
i,j=1

aij(x)ξiξ j, (ξ1, . . . , ξd) ∈ Rd, σ > 0, (4)

c(x) ≥ 0, x ∈ Ω̄, c(x) ∈ C(Ω̄). (5)

Here, our purpose is to identify the spatial source f (x) and the initial value a(x), b(x)
in problem (1) from the data as follows:

u(x, T) = h(x), x ∈ Ω. (6)

Since the data h(x) is based on the observation of the physical instruments, there
must be errors, and hδ(x) is the corresponding measurement data. Let the exact data h(x)
be approximated by measurement data hδ(x) such that

|h(x)− hδ(x)| < δ. (7)

The process of identifying source problems for fractional diffusion equations (0 < α < 1)
has been extensively studied. Ref. [9] determined the space-dependent source term from the
final time data in a multi-dimensional case by using the reproducible kernel Hilbert space
method. Zheng and Wei [20] solved the Cauchy problem of the time fractional diffusion
equations on a strip domain by using the Fourier truncation method. Gong and Wei [30]
proposed an integral equation method to identify an inverse time-dependent source term
in a one-dimensional time-fractional diffusion-wave equation. Yang and Qu [31] use the
Fourier truncation method to identify the initial value on non-homogeneous time fractional
diffusion wave equations. However, to the best of our knowledge, there are few studies
on the inverse problems for time fractional diffusion-wave equations. In this chapter,
we identify an inverse space-dependent source function and the initial value from noisy
final time measured data in a special bounded domain. By comparing several methods
in the literature [32], it can be seen that the regular solution obtained by the mollification
regularization method is better than other methods. So, in this article, the mollification
regularization method is used to solve the inverse source problem and initial value problem
of a fractional diffusion-wave equation 1 < α < 2 .
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The paper is organized as following: In Section 2, we present some auxiliary mathe-
matical conclusions. In Section 3, we illustrate a conditional stability and the ill-posedness
of the inverse source problem and initial value problem. A priori and a posteriori parameter
choice rules are given and error estimates are obtained in Section 4. In Section 5, some
numerical examples are carried out to demonstrate the efficiency of the proposed method.
Finally, we give a conclusion in Section 6.

2. Preliminaries

In this section, we introduce the definitions and some lemmas.

Definition 1. The left Caputo fractional derivative is defined by (see [1,3]):

∂α
0+u(x, t) =

1
Γ(n− α)

∫ t

0

∂nu
∂sn (x, s)

1
(t− s)α−n+1 ds, (n = [<(α)] + 1, t > 0),

Definition 2. The Mittag–Leffler function is (see [1]):

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, z ∈ C. (8)

where α > 0, β ∈ C are arbitrary constants.

Lemma 1. If 0 < α < 2 and β ∈ R is arbitrary (see [33]), we will suppose that µ is such that
πα
2 < µ < min{π, πα}. Then there exists a constant C11 = C11(α, β, µ) > 0 such that

|Eα,β(z)| ≤
C1

1 + |z| , µ ≤ |argz| ≤ π. (9)

Lemma 2. If α > 0, λ > 0 and m ∈ N , we have (see [33])

dm

dtm Eα,1(−λtα) = −λtα−mEα,α−m+1(−λtα), t > 0, λ ' n2. (10)

Lemma 3. When 1 < α < 2 and T > 0 are constants, there is a finite point such that
Eα,α(−n2Tα) = 0 (see [33]). Let the set of points of Eα,α(−n2Tα) = 0 be K = {n1, n2, . . . , nN}.

Lemma 4. When 1 < α < 2, there are positive constants C21 and C22 , which only relies on
α, T, and n2, such that (see [33])

C21

n2 ≤ |Eα,1(−n2Tα)| ≤
C22

n2 , n /∈ K. (11)

The even bilateral exponential function is defined as:

Vµ(x) :=
µ

2
e−µ|x|, 0 < µ < 1, x ∈ Rd. (12)

and there is ∫
Rd

Vµ(x)dx :=
∫

Rd

µ

2
e−µ|x|dx = 1, 0 < µ < 1.

Here, we define operator ωµ as follows:

ωµ f (x) := Vµ ∗ f (x) =
∫

Rd
Vµ(t) f (x− t)dt =

∫
Rd

Vµ(x− t) f (t)dt. (13)
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3. A Conditional Stability and Ill-Posedness

In this part, we use the mollification regularization method to determine the space-
dependent source term f (x) and initial value a(x), b(x) for problem (1) by the measure-
ment data u(x, T) = h(x), x ∈ Ω. Consulting Ref. [15], the solution of (1) is

u(x, t) =
∞

∑
n=1

Eα,1(−n2tα)(a, ϕn)ϕn +
∞

∑
n=1

tEα,2(−n2tα)(b, ϕn)ϕn

+
∞

∑
n=1

( f , ϕn)
∫ t

0
g(t− τ)τα−1Eα,α(−n2τα)dτϕn(x). (14)

here (a, ϕn) and (b, ϕn) are Fourier coefficients. ϕn is an orthonormal basis of L2(Ω),
n = 1, 2, . . . .

Remember (., .) as the inner product of L2(Ω), define the following function space.

Hp(Ω) = {ψ ∈ L2(Ω) |
∞

∑
n=1

(1 + n2)p|(ψ, ϕn)|2 < ∞}, (15)

with the norm

‖ψ‖Hp(Ω) = {
∞

∑
n=1

(1 + n2)p|(ψ, ϕn)|2}
1
2 . (16)

Take t = T in Equation (14), we can get the first Fredholm integral formula, which
f , a, b satisfies

A1 f (x) =
∫

Ω
f (ξ)κ1(x, ξ)dξ = w1(x). (17)

A2a(x) =
∫

Ω
a(ξ)κ2(x, ξ)dξ = w2(x). (18)

A3b(x) =
∫

Ω
b(ξ)κ3(x, ξ)dξ = w3(x). (19)

where

κ1(x, ξ) =
∞

∑
n=1

νn(T)ϕn(ξ)ϕn(x), (20)

κ2(x, ξ) =
∞

∑
n=1

Eα
1 (−n2Tα)ϕn(ξ)ϕn(x), (21)

κ3(x, ξ) =
∞

∑
n=1

TEα
2 (−n2Tα)ϕn(ξ)ϕn(x). (22)

νn(T) =
∫ T

0
g(T − τ)τα−1Eα,α(−n2τα)dτ,

w1(x) = h(x)− u1(x, T)− u2(x, T, ),

w2(x) = h(x)− u2(x, T)−
∞

∑
n=1

( f , ϕn)νn(T) = u1(x, T),

w3(x) = h(x)− u1(x, T)−
∞

∑
n=1

( f , ϕn)νn(T) = u2(x, T).

Because κ1(x, ξ) = κ1(ξ, x), κ2(x, ξ) = κ2(ξ, x), κ3(x, ξ) = κ3(ξ, x), we know
κ1, κ2, κ3 are self-adjoint operators. Let A∗1 be the adjoint operator of A1 , A∗2 be the
adjoint operator of A2 , and A∗3 be the adjoint operator of A3 , respectively, and use the
orthogonality of {ϕn}∞

n=1 in space l2(Ω). We obtain
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A∗1w1(x) =
∫

Ω
w1(ξ)κ1(x, ξ)dξ, ξ ∈ Ω. (23)

and we have
A∗1A1 ϕn(ξ) = ν2

n(T)ϕn(ξ). (24)

thus, σ1
n = |νn(T)| is the singular value of operator A1. Define:

ψ1
n(x) =

{
ϕn(x), νn(T) ≥ 0,
−ϕn(x), νn(T) < 0.

(25)

we know that {ψ1
n}∞

n=1 is orthonormal on L2(Ω), and satisfies

A1 ϕn(ξ) = σ1
nψ1

n(x) = νn(T)ϕn(x),

A∗1ψ1
n(x) = σ1

n ϕn(ξ) = νn(T)ψ1
n(ξ).

So, the singular system for the operator A1 is (σ1
n ; ϕn; ψ1

n).
By the same token, the singular system for the operators A2 and A3 are (σ2

n ; ϕn; ψ2
n)

and (σ3
n ; ϕn; ψ3

n), here
σ2

n = |Eα,1(−λ2
nTα)|,

ψ2
n(x) =

{
ϕn(x), Eα,1(−n2Tα) ≥ 0,
−ϕn(x), Eα,1(−n2Tα) < 0.

(26)

and
σ3

n = |TEα,2(−n2Tα)|,

ψ3
n(x) =

{
ϕn(x), Eα,2(−n2Tα) ≥ 0,
−ϕn(x), Eα,2(−n2Tα) < 0.

(27)

Remark 1. When κ1 = ∅, κ2 = ∅, κ3 = ∅, the kernel function for operators A1 as in
Equation (17), A2 as in Equation (18), and A3 as in Equation (19). Here, this situation is
regarded as a special case.

Next, the general case will be discussed, which are κ1 6= ∅, κ2 6= ∅, κ3 6= ∅.
When κ1 6= ∅, κ2 6= ∅, κ3 6= ∅, the kernel functions for operators A1,A2,A3 are

expressed as:

κ1(x, ξ) =
∞

∑
n=1,n/∈κ1

νn(T)ϕn(x)ϕn(ξ),

κ2(x, ξ) =
∞

∑
n=1,n/∈κ2

Eα,1(−n2Tα)ϕn(x)ϕn(ξ),

κ3(x, ξ) =
∞

∑
n=1,n/∈κ3

TEα,2(−n2Tα)ϕn(x)ϕn(ξ),

The kernel spaces for the operators A1,A2,A3 are as follows:
(1) When κ1 6= ∅,

N(A1) = span{ϕn : n ∈ κ1}.

When κ1 = ∅,

N(A1) = {0}.

(2) When κ2 6= ∅,
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N(A2) = span{ϕn : n ∈ κ2}.

When κ2 = ∅,

N(A2) = {0}.

(3) When κ3 6= ∅,

N(A3) = span{ϕn : n ∈ κ3}.

When κ3 = ∅,

N(A3) = {0}.

The ranges for operators A1,A2,A3 are written as:

R(A1) = {w1 ∈ L2(Ω) | (w1, ϕn) = 0, n ∈ κ1;
∞

∑
n=1,n/∈κ1

(
(w1, ϕn)

νn(T)
)2 < +∞}.

R(A2) = {w2 ∈ L2(Ω) | (w2, ϕn) = 0, n ∈ κ2;
∞

∑
n=1,n/∈κ2

(
(w2, ϕn)

Eα,1(−n2Tα)
)2 < +∞}.

R(A3) = {w3 ∈ L2(Ω) | (w3, ϕn) = 0, n ∈ κ3;
∞

∑
n=1,n/∈κ3

(
(w3, ϕn)

TEα,2(−n2Tα)
)2 < +∞}.

From Equation (17), for all n, the inverse space source term problem is unique when
νn(T) 6= 0 . However, if n exists such that νn(T) = 0, then the inverse source problem is
not unique. In this case, there are infinitely many solutions to the integral equation and the
solutions are expressed as:

f (x) =
∞

∑
n=1,n/∈κ1

(w1, ϕn)/νn(T)ϕn(x) + ∑
νn=0

Cn ϕn(x), ∀Cn.

However, it only has one optimal approximate solution in L2(Ω) , as follows:

f (x) =
∞

∑
n=1,n/∈κ1

(w1, ϕn)/νn(T)ϕn(x). (28)

Proof. Suppose f (ξ) = ∑∞
n=1 fn ϕn(ξ), putting into Equation (17) with w1 = ∑∞

n=1,n/∈κ1
(w1, ϕn)ϕn, according to the orthonormality of {ϕn}, i t is not hard to obtain the result.

Similarly, the optimal approximate solutions of a(x), b(x) in L2(Ω) are as follows:

a(x) =
∞

∑
n=1,n/∈κ2

(w2, ϕn)/Eα,1(−n2Tα)ϕn(x). (29)

b(x) =
∞

∑
n=1,n/∈κ3

(w3, ϕn)/TEα,2(−n2Tα)ϕn(x). (30)

Using Equations (17)–(19) we can get the above conclusion.
From Ref. [33], we know that A1,A2,A3 are linear compact operators in L2(Ω).

According to the inverse unbounded compact operator, when δ → 0 , it is still not
guaranteed that the solution of the equation converges to the exact solution in a certain
metric space, so we can only seek a good regularization method to get the approximate
solution. So, the inverse source term problem and the initial values we discussed are
ill-posed.
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We define the a priori boundary for f ∈ Hp(Ω)∩ N(A1)
⊥, a ∈ Hp(Ω)∩ N(A2)

⊥, b ∈
Hp(Ω) ∩ N(A3)

⊥ as follows:

‖ f ‖Hp(Ω) ≤ E1, p > 0, E1 > 0. (31)

‖a‖Hp(Ω) ≤ E2, p > 0, E2 > 0. (32)

‖b‖Hp(Ω) ≤ E3, p > 0, E3 > 0. (33)

Lemma 5. If g ∈ C[0, T], m < g(x), m is the smallest value of g in the interval [0 < x < T].
Using Lemmas 2 and 4, we get

|Vn(T) ≥
C21m

n4 .

Proof.

|Vn(T)| = |
∫ T

0
g(T − τ)τα−1Eα,α(−n2Tα)dτ|

≥ |m
∫ T

0
τα−1Eα,α(−n2Tα)dτ|

= | − m
n2 Eα,1(−n2Tα)|

≥ C21m
n4 .

Theorem 1. If for any f (x) ∈ Hp(Ω) ∩ N(A1)
⊥ which satisfies Equation (31), we have

‖ f ‖ ≤ C12E
2

p+2
1 ‖A1 f ‖

p
p+2 , (34)

Here C12 = ( 1
mC21

)
− p

p+2 .

Proof. If f (x) ∈ Hp(Ω) ∩ N(A1)
⊥, there is

f =
∞

∑
n=1,n/∈κ1

( f , ϕn)ϕn.

we use ‖A1 f ‖2 = ∑∞
n=1,n/∈κ1

ν2
n( f , ϕn)2, Lemma 4, and Hölder inequality, we get

‖ f ‖2 =
∞

∑
n=1,n/∈κ1

( f , ϕn)
2 ≤

∞

∑
n=1,n/∈κ1

(|νn(T)|( f , ϕn))
4

p+2

ν2
n(T)

(|νn(T)|( f , ϕn))
2p

p+2

≤ (
∞

∑
n=1,n/∈κ1

( f , ϕn)2

|νp
n(T)|

)
2

p+2 (
∞

∑
n=1,n/∈κ1

|νn(T)|2( f , ϕn)
2)

p
p+2

≤ (
∞

∑
n=1,n/∈κ1

((
n2

C21
)p( f , ϕn)

2))
2

p+2 ‖A1 f ‖
2p

p+2

≤ (
1

mC21
)
− 2p

p+2 E
4

p+2
1 ‖A1 f ‖

2p
p+2 .



Mathematics 2023, 11, 1521 8 of 19

So,

‖ f ‖ ≤ C12E
2

p+2
1 ‖A1 f ‖

p
p+2 ,

Theorem 2. If for any a(x) ∈ Hp(Ω) ∩ N(A2)
⊥ , which satisfies Equation (32), we have

‖a‖ ≤ C
− p

p+2
21 ‖A2a‖

p
p+2 E

2
p+2
2 . (35)

Proof. The proof is similar to the proof of Theorem 1, which is omitted here.

Theorem 3. If for any b(x) ∈ Hp(Ω) ∩ N(A3)
⊥ which satisfies Equation (33), we have

‖b‖ ≤ (TC21)
− p

p+2 ‖A3b‖
p

p+2 E
2

p+2
3 . (36)

Proof. The proof is similar to the previous theorem as in the proof of Theorem 1.

4. Mollification Regularization and Error Estimates
4.1. An a Priori Approach for Problem (1)

In this section, we utilize mollification method to solve problem (1). The terminal
measurement data in problem (1) is softened by a bilateral exponential function and is
converted into the following question:

∂α
0+uµ,δ(x, t) + Luµ,δ(x, t) = f µ,δ(x)gµ,δ(t), x ∈ Ω, 0 ≤ t ≤ T,

uµ,δ(x, 0) = aµ,δ(x), x ∈ Ω̄,
∂tuµ,δ(x, 0) = bµ,δ(x), x ∈ Ω̄,
uµ,δ(x, t) = 0, x ∈ ∂Ω, 0 ≤ t ≤ T,
uµ,δ(x, T) = (Vµ(x) ∗ h(x)), x ∈ Ω.

(37)

Thus, we get wµ,δ
1 after using the mollification method expressed as

wµ,δ
1 = (Vµ ∗ h)(x)− u1(x, T)− u2(x, T),

and the first Fredholm integral formula becomes

A1 f (x) =
∫

Ω
f (ξ)κ1(x, ξ)dξ = wµ,δ

1 (x).

According to the above, we can get the regular solution of f (x) as

f µ,δ(x) =
∞

∑
νn 6=0

(wµ,δ
1 , ϕn)/νn(T)ϕn(x). (38)

Theorem 4. If the functions f and f µ,δ are uniformly Lipschitz on L2(Ω) , we will assume that
(7) holds. Then we have

‖ f − f µ,δ‖ ≤ n4

C21m
(

1
2

ε2 + 1)δ. (39)

When

n =
δ

E1
, (40)
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we have
‖ f − f µ,δ‖ ≤ 1

C21mE4
1
(

1
2

ε2 + 1)δ5 → 0 as δ→ 0. (41)

Proof. Using the triangle inequality, from the Parseval equality and the properties of the
double integral, we have

‖ f − f µ,δ‖ ≤ ‖ f − f µ‖+ ‖ f µ − f µ,δ‖. (42)

Using Lemma 5, the first part of Equation (42) is as follows:

‖ f − f µ‖ = ‖
∞

∑
νn 6=0

(w1, ϕn)/νn(T)ϕn(x)−
∞

∑
νn 6=0

(wµ
1 , ϕn)/νn(T)ϕn(x)‖

= ‖
∞

∑
νn 6=0

((w1 − wµ
1 ), ϕn)/νn(T)ϕn(x)‖ ≤ n4

C21m
‖w1 − wµ

1‖,

here

‖w1 − wµ
1‖ = ‖h(x)− hµ(x)‖ =

∫
Rd
|h(x)− hµ(x)|2dx

=
∫

Rd
|
∫

Rd
{h(x)Vµ(x− t)− h(t)Vµ(x− t)}dt|2dx,

Let y = x− t, dy = −dt, then we have

|
∫

Rd
{h(x)Vµ(x− t)− f (t)Vµ(x− t)}dt|2 = |

∫
Rd
[h(x)− h(t)]Vµ(y)dy|2

= |
∫

Rd
[h(x)− h(x− y)]Vµ(y)dy|2

=
∫

Rd
|h(x)− h(x− y)|2dy

∫
Rd
|Vµ(y)|2dy

≤ 1
2

∫
Rd
|h(x)− h(x− y)|2dy,

when y ≤ δ, we can get |h(x)− h(x− y)|2 ≤ ε2.
So,

|
∫

Rd
{h(x)Vµ(x− t)− h(t)Vµ(x− t)}dt|2 ≤ 1

2
ε2,

and

‖w1 − wµ
1‖ ≤

∫
Rd
|h(x)− hµ(x)|2dy ≤ 1

2
ε2δ.

Thus, we obtain

‖ f − f µ‖ ≤ n2

C21m
‖w1 − wµ

1‖ ≤
n4

2C21m
ε2δ. (43)
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The second part of Equation (42) is:

‖ f µ − f µ,δ‖ ≤ n2

C21m
‖wµ

1 − wµ,δ
1 ‖ =

n2

C21m
‖hµ − hµ,δ‖

≤ n2

C21m

∫
Rd
[h(x− t)Vµ(t)− hδ(x− t)Vµ(t)]dt

=
n4

C21m
δ
∫

Rd
Vµ(t)dt =

n4

C21m
δ. (44)

By combining the estimates of Equations (43) and (44), we obtain Equation (39)

Theorem 5. If the functions a(x) and aµ,δ are uniformly Lipschitz on L2(Ω) , we will assume
that (7) holds. Then we have

‖a(x)− aµ,δ‖ ≤ n2

C21
(

1
2

ε2 + 1)δ. (45)

When

n =
δ

E2
, (46)

we have
‖a(x)− aµ,δ‖ ≤ 1

C21E2
2
(

1
2

ε2 + 1)δ3 → 0 as δ→ 0. (47)

Proof. Using the triangle inequality, from the Parseval equality and the properties of the
double integral, there is

‖a− aµ,δ‖ ≤ ‖a− aµ‖+ ‖aµ − aµ,δ‖. (48)

Using Lemma 4, the first part of Equation (48) is as follows:

‖a− aµ‖ = ‖
∞

∑
n=1,n/∈κ2

(w2, ϕn)/Eα,1(−n2Tα)ϕn(x)−
∞

∑
n=1,n/∈κ2

(wµ
2 , ϕn)/Eα,1(−n2Tα)ϕn(x)‖

= ‖
∞

∑
n=1,n/∈κ2

((w2 − wµ
2 ), ϕn)/Eα,1(−n2Tα)ϕn(x)‖ ≤ n2

C21
‖w2 − wµ

2‖

here

‖w2 − wµ
2‖ = ‖h(x)− hµ(x)‖ = ‖w1 − wµ

1‖ ≤
1
2

ε2δ.

So,

‖a− aµ‖ ≤ n2

C21

1
2

ε2δ. (49)
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The second part of Equation (48) is:

‖aµ − aµ,δ‖ ≤ n2

C21
‖wµ

2 − wµ,δ
2 ‖ =

n2

C21
‖hµ − hµ,δ‖

≤ n2

C21

∫
Rd
[h(x− t)Vµ(t)− hδ(x− t)Vµ(t)]dt

=
n2

C21
δ
∫

Rd
Vµ(t)dt =

n2

C21
δ. (50)

By combining the estimates of Equations (49) and (50), we obtain Equation (45)

Theorem 6. If the functions b(x) and bµ,δ are uniformly Lipschitz on L2(Ω) , we will assume
that (7) holds and use Lemma 2. We then have

‖b(x)− bµ,δ‖ ≤ n2

C21T
(

1
2

ε2 + 1)δ. (51)

When

n =
δ

E3
, (52)

we have
‖b(x)− bµ,δ‖ ≤ 1

C21TE3 (
1
2

ε2 + 1)δ3 → 0 as δ→ 0. (53)

The proof is similar to the proof of Theorem 5, which is omitted here.

4.2. An a Posteriori Approach for Problem (1)

According to the Morozov inconsistency principle [34], the posterior regularization
parameter selection rule is given, that is, the solution n of the following equation is selected
as the posterior regularization parameter, where we define:

‖Vµ ∗ hδ − hδ‖ = τδ. (54)

Here, Vµ ∗ hδ = hµ,δ.

Lemma 6. Below are the following inequalities:

‖Vu ∗ hδ − h‖ ≤ (τ + 1)δ,

(55)

Proof.

‖Vu ∗ hδ − h‖ = ‖Vu ∗ hδ − hδ + hδ − h‖
≤ ‖Vu ∗ hδ − hδ‖+ ‖hδ − h‖
≤ τδ + δ ≤ (τ + 1)δ. (56)

Therefore, Lemma 6 is proved.

Lemma 7. If δ > 0, then the functions

q(µ) = ‖Vu ∗ hδ − hδ‖.
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have the following properties:

(1)q(µ) is continuous f unction;

(2) lim
µ→∞

q(µ) = ‖hδ‖;

(3) lim
µ→0

q(µ) = 0;

(4)q is a strictly increasing f unction.

The proof of this lemma is similar to Ref. [35]. We omit the proof here.

Theorem 7. Let f (x) be the exact solution of problem (1), and f µ,δ(x) be the regular approxima-
tion solution of problem (1). The Inequalities (7) and (11) hold. Then, we have

‖ f − f µ,δ‖ ≤ n4

C21m
(τ + 1)δ. (57)

When the regularization parameter n is chosen as (40), we have

‖ f − f µ,δ‖ ≤ 1
C21mE4

1
(τ + 1)δ5 → 0 as δ→ 0. (58)

Proof.

‖ f − f µ,δ‖ = ‖
∞

∑
n=1,n/∈κ1

(w1, ϕn)

Vn(T)
ϕn −

∞

∑
n=1,n/∈κ1

(wµ,δ
1 , ϕn)

Vn(T)
ϕn‖

≤ ‖
∞

∑
n=1,n/∈κ1

(w1 − wµ,δ
1 , ϕn)

Vn(T)
ϕn‖

≤ n4

C21m
‖w1 − wµ,δ

1 ‖ =
n4

C21m
‖h− hµ,δ‖

≤ n4

C21m
(τ + 1)δ.

Theorem 8. Let a(x) be the exact solution of problem (1), and aµ,δ(x) be the regular approxima-
tion solution of problem (1). The Inequalities (7) and (11) hold. Then, we have

‖a− aµ,δ‖ ≤ n2

C21
(τ + 1)δ. (59)

When the regularization parameter n is chosen as (46), we have

‖a− aµ,δ‖ ≤ 1
C21E2

2
(τ + 1)δ3 → 0 as δ→ 0. (60)

The proof is similar to Theorem 4.

Theorem 9. Let b(x) be the exact solution of problem (1), and bµ,δ(x) be the regular approxima-
tion solution of problem (1). The Inequalities (7) and (11) hold. Then, we have

‖b− bµ,δ‖ ≤ n2

C21T
(τ + 1)δ. (61)
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When the regularization parameter n is chosen as (52), we have

‖b− bµ,δ‖ ≤ 1
C21TE2

3
(τ + 1)δ3 → 0 as δ→ 0. (62)

The Proof is similar with Theorem 4.

5. Numerical Aspect
Numerical Implementation

In this section, numerical examples are used to verify the validity of the mollification
regularization method with a bilateral exponential kernel under an a priori and an a
posteriori regularization parameter choice rule, respectively. All the computations related
to the problem were performed via MALAB2017b.

In the following experiments, the discrete interval is [−10, 10], sample point N = 100 .
The numerical test results of the prior and posterior regularization methods are compared.

Assume that the sequence h(xi)
N
i=1 denotes samples from the function h(x) on an

equidistant grid. Subsequently, a perturbation with a randomly uniform distribution is
added to each data. Meanwhile, perturbation data can be obtained:

hδ = h + εrand(size(h)), (63)

where
h = (h(x1), . . . , h(xN))

T , xi = (i− 1)∆x,

∆x =
1

N − 1
, i = 1, 2, . . . , N.

Then, the total noise δ can be measured in the sense of the Root Mean Square Error
based on

δ := ‖hδ − h‖l2 =

√√√√ 1
N

N

∑
i=1

(hδ
i − hi)2. (64)

Here, the random number sequences are created by “rand(.)”, with elements being
pseudo-random numbers that show a homogeneous distribution. A random entries array
is returned by rand (size(h)), whose size is equal to that of h. Here, rel(pr) is the relative
error between the exact solution and the regular solution under the prior rules. rel(po) is
the relative error between the exact solution and the regular solution under the posterior
rules.

Example 1. We consider the following Cauchy problem of a space-dependent source function f (x).

f (x) = 10 sin(3πx)e−x5
+ xα(1− x)4 (65)

Example 2. We consider the following Cauchy problem of initial value a(x) of the time-fractional
non homogeneous diffusion equation.

a(x) =


0, −10 ≤ x ≤ −5,
x + 5, − 5 ≤ x ≤ 0,
5− x, 0 ≤ x ≤ 5,
0, 5 ≤ x ≤ 10.

(66)
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Example 3. Consider a discontinuous function of the initial value b(x) .

b(x) =


−1, −10 ≤ x ≤ −5,
1, − 5 ≤ x ≤ 0,
−1, 0 ≤ x ≤ 5,
1, 5 ≤ x ≤ 10.

(67)

The comparison of the numerical effectiveness using a priori and a posteriori parame-
ter choice rules for α = 1.4 and α = 1.8 are shown in Figures 1–13. As can be seen from the
above figures, the regularization inversion method provided in this chapter can accurately
reconstruct the spacial source term f (x) and the initial value a(x), b(x). In Tables 1–3
we can see that both of the rules achieve satisfactory effects for three examples. We also
find that the error between the exact solution and the regularized solution decreases as the
noise level decreases. It can also be seen from the tables that the a posteriori result in our
method is better than the a priori result. Table 4 shows the elapsed time for Examples 1–3
programs under the same conditions (α = 1.8, δ = 0.5). Here the parameter in Morozov’s
inconsistency principle is set as τ = 1.1 .

Table 1. The relative error of Example 1.

Error Level δ rel(pr) (α = 1.4) rel(po) (α = 1.4) rel(pr) (α = 1.8) rel(po) (α = 1.8)

1 × 10−1 0.2362 0.069 0.2352 0.0070

1 × 10−2 0.2361 7.6050 × 10−4 0.2351 6.7405 × 10−4

Table 2. The relative error of Example 2.

Error Level δ rel(pr) (α = 1.4) rel(po) (α = 1.4) rel(pr) (α = 1.8) rel(po) (α = 1.8)

1 × 10−1 0.0507 0.0504 0.0462 0.0417

1 × 10−2 0.0106 0.0047 0.0108 0.0048

Table 3. The relative error of Example 3.

Error Level δ rel(pr) (α=1.4) rel(po) (α = 1.4) rel(pr) (α = 1.8) rel(po) (α = 1.8)

1 × 10−1 0.6094 0.0224 0.6095 0.0212

1 × 10−2 0.6091 0.0025 0.6091 0.0024

Table 4. Running times of Example 1, Example 2, and Example 3.

Example α = 1.8 δ Running Time (s)

eg. 1 1.8 0.5 0.186

eg. 2 1.8 0.5 0.163

eg. 3 1.8 0.5 0.177

We use different noisy levels with δ = 0.5, 1× 10−1, 1× 10−2, respectively, to study
the numerical stability of our algorithm. Three tables show the results from different error
levels of the problem. We notice that the results of the Error Norm depend not only on the
error level δ but also on the fractional order α .

Figures 1–3 present the exact initial value and the reconstructed initial value a(x)
when α = 1.4 and α = 1.8, respectively, and we can see that the numerical results match
the exact ones quite well under δ = 0.5, 1× 10−1 and δ = 1× 10−2. It can be seen from
Figures 4 and 5 that our regularization method is stable and efficient. Figures 6–8 illustrate
the exact solution and approximate solution of the initial value b(x) at δ = 0.5, 1× 10−1

and δ = 1× 10−2. Figures 9–10 show the error results, from which it can be seen that the
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method proposed in this paper is stable and effective for the identification of the initial
value b(x) . Figures 11–13 present the exact source function and the numerical solutions
of f (x) when α = 1.4 and α = 1.8. It can be seen from Figures 14–16 that the proposed
method is suitable for source item identification, and our findings are stable and effective
under both prior and posterior rules.

(a) (b)

Figure 1. (a) δ = 1× 10−1 . (b) δ = 1× 10−2 . The exact solution and the regularized solution of a(x)
when α = 1.4.

(a) (b)

Figure 2. (a) δ = 1× 10−1 . (b) δ = 1× 10−2 . The exact solution and the regularized solution of
a(x) when α = 1.8.

Figure 3. (a) δ = 0.5, α = 1.4 . (b) δ = 0.5, α = 1.8 . The exact solution and the regularized solution
of a(x).

(a) (b)

Figure 4. (a) priori error. (b) posteriori error. The errors of a(x) when δ = 0.5, α = 1.4.

(a) (b)

Figure 5. (a) A priori error. (b) A posteriori error. The errors of a(x) when δ = 1× 10−1, α = 1.8.
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(a) (b)

Figure 6. (a) δ = 1× 10−1 . (b) δ = 1× 10−2 . The exact solution and the regularized solution of b(x)
when α = 1.4.

(a) (b)

Figure 7. (a) δ = 1× 10−1 . (b) δ = 1× 10−2 . The exact solution and the regularized solution of b(x)
when α = 1.8.

Figure 8. (a) δ = 0.5, α = 1.4 . (b) δ = 0.5, α = 1.8. The exact solution and the regularized solution
of f (x).

(a) (b)

Figure 9. (a) A priori error. (b) A posteriori error. The errors of b(x) when δ = 0.5, α = 1.4.

(a) (b)

Figure 10. (a) A priori error. (b) A posteriori error. The errors of b(x) when 1× 10−1, α = 1.8.

(a) (b)

Figure 11. (a) δ = 1× 10−1 . (b) δ = 1× 10−2 . The exact solution and the regularized solution of
f (x) when α = 1.4.
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(a) (b)

Figure 12. (a) δ = 1× 10−1 . (b) δ = 1× 10−2 . The exact solution and the regularized solution of
f (x) when α = 1.8.

Figure 13. (a) δ = 0.5, α = 1.4 . (b) δ = 0.5, α = 1.8 . The exact solution and the regularized
solution of f (x).

(a) (b)

Figure 14. (a) A priori error. (b) A posteriori error. The errors of f (x) when δ = 0.5, α = 1.4 .

(a) (b)

Figure 15. (a) A priori error. (b) A posteriori error. The errors of f (x) when δ = 0.5, α = 1.8.

(a) (b)

Figure 16. (a) A priori error. (b) A posteriori error. The errors of f (x) when δ = 1× 10−1, α = 1.8.

6. Conclusions

In this article, we propose a novel regularization method based on the bilateral kernel,
to solve a Cauchy problem of a multi-dimensional time fractional diffusion-wave equation
in a special bounded domain. We studied an inverse space-dependent source term and the
initial value from the noisy final time measured data. The error estimates are given under
prior and posterior rules. The numerical examples above show the numerical stability of
the proposed method. Furthermore, our approach of the posterior rule is superior to the
prior rule and the accuracy of the procedure is quite acceptable.
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