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Abstract: In this paper, we derive new properties for the decreasing positive solutions of half-linear
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1. Introduction

Differential equations were and still are the link between mathematics and real-life
phenomena. In different branches of science, differential equations are used to model and
describe life phenomena and problems, see, for example, [1–4]. One of the main branches
of differential equations is the functional differential equations, from which the delay
differential equations (DDE) are derived. DDEs are a better way to describe phenomena
as they take into account the phenomenon’s memory. It is worth noting that the even-
order differential equations appear in mathematical models of various physical, biological,
and chemical phenomena, including, for instance, problems of elasticity, deformation of
structures, or soil settlement.

The study of the asymptotic and oscillatory behavior of solutions of DDEs has been and
still attracts the attention of many researchers. Finding adequate conditions to guarantee
that all differential equation solutions oscillate is one of the main objectives of oscillation
theory. Ladas [5] is one of the earliest monographs on oscillation theory, covering the
findings up until 1984. This book’s main focus is on how deviating arguments affect the
oscillation of solutions; neutral delay equations are not discussed in this book. It should be
noted that monographs [6,7] are important and vital contributions to the oscillation theory.
For further results, techniques, and references, monographs [8,9] covered and summarized
many of the findings reported in the literature up until the past ten years.

Recently, it is easy to notice the many developments in the methods and techniques for
studying the oscillatory behavior of second-order DDEs, see [10–16]. While the differential
equations of higher-order have been studied with development as well, it is much less
compared with what the equations of the second order have enjoyed.
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This study aims to derive new criteria for testing the oscillation of the non-canonical DDE(
a(t) ·

(
v(n−1)(t)

)k
)′

+ ρ(t) ·
(

vk(h(t))
)
= 0, (1)

where t ≥ t0, n ≥ 4 is an even natural number, k ≥ 1 is a result of dividing two odd natural
numbers, and the following assumptions hold:

P1: a, h ∈ C1([t0, ∞), (0, ∞)), ρ ∈ C([t0, ∞), [0, ∞)), h′(t) ≥ 0, h(t) ≤ t, and∫ ∞

t0

a−1/k(υ)dυ < ∞.

A continuous function u that is differentiable n times is said to be a solution to
Equation (1) if it satisfies this equation. In this study, we consider only non-zero solutions
as well as those that do not vanish eventually. A solution of a differential equation is
called an oscillatory solution if it has arbitrary large zeros. Other than that, it is called
non-oscillatory.

Notation 1. For the sake of brevity, we define the following operator and functions:

Λ[F; u, v] =
∫ v

u
F(s)ds,

η0(t) := Λ
[

a−1/k; t, ∞
]

and ηs+1 = Λ[ηs; t, ∞] for s = 0, 1, . . . , n− 3.

In both the delay and advanced cases, Koplatadze et al. [17] found asymptotic classifi-
cation for non-oscillatory solutions of the equation

v(n) + ρ · (v ◦ h) = 0, t ≥ 0. (2)

One of their results for the delay case is that they prove that Equation (2) oscillates if

lim sup
t→∞

[
h ·Λ

[
hn−2 · ρ; t, ∞

]
+ Λ

[
hn−2 · ρ; h, t

]
+

1
h

Λ
[
υ · hn−1 · ρ; 0, h

]]
> (n− 1)!.

In 2011, Agarwal et al. [18] checked the oscillatory behavior of the solutions of the
equation. (∣∣∣v(n−1)

∣∣∣k−1
· v(n−1)

)′
+ F(t, v ◦ h) = 0, (3)

in the canonical case, where k > 0, F ∈ C1([t0, ∞)×R), vF(t, v) > 0 and F(t, v) sgn
v ≥ ρ(t)|v|β for v 6= 0. Using comparison and Riccati substitution techniques, they
obtained various forms of criteria that ensure the oscillation of all solutions. Moreover, they
presented some oscillation condition for the more general equations(∣∣∣v(n−1)

∣∣∣k−1
· v(n−1)

)′
+ F

(
t, v ◦ h, v′ ◦ g

)
= 0,

and (∣∣∣z(n−1)
∣∣∣k−1
· z(n−1)

)′
+ F(t, v ◦ h) = 0,

where z := v + p · (v ◦ τ). Using the averaging technique, Xu and Xia [19] established some
oscillation conditions for Equation (3).
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In the even-order equations, the study of the non-canonical case differs from the
canonical case in the probability of the existence of decreasing positive solutions, and this
requires the presence of an additional condition to exclude it. In the canonical and non-
canonical cases, Baculíková et al. [20] used the comparison technique to test the oscillation
of the solutions of the equation

(a · (v(n−1)k)′ + ρ · (G ◦ v ◦ h) = 0, (4)

where G ∈ C([t0, ∞),R), G′(t) ≥ 0, and G(uv) ≥ G(u)G(v) for uv > 0. They excluded
decreasing positive solutions by assuming that there is a $ ∈ C1([t0, ∞)) with $(t) > t,
$′(t) ≥ 0 and ($n−2 ◦ h) < t such that

u′ + a−1/k · (Λ[ρ; t0, t])1/k · (Ln−2 ◦ h) · (u ◦ $n−2 ◦ h) = 0 (5)

is oscillatory, where

$1 = $, $i+1 = $i ◦ $, L1 = $− t and Li+1(t) = Λ[Li; t, $],

for i = 1, 2, . . . , n − 3. Later, in 2013, Zhang et al. [21] set criteria for the oscillation of
Equation (4) when G(u) = uk, where they excluded decreasing positive solutions using the
condition

lim sup
t→∞

Λ

[(
ρ · ρk − (k/(k + 1))k+1(ρ′+)

k+1

ρ · ρk
1

)
; t0, t

]
= ∞, (6)

where
ρ(t) =

1
(n− 3)!

Λ
[
(υ− t)n−3 · η0; t, ∞

]
and

ρ1(t) =
1

(n− 4)!
Λ
[
(υ− t)n−4 · η0; t, ∞

]
.

Very recently, using the comparison technique with a first-order equation, Muhib et al. [22]
introduced a standard that ensures that there are no positive decreasing solutions to (1). They
proved that if there is a ε0 > 0 such that ηk+1

n−2 · ρ ≥ ε0kηn−3(t), and

lim inf
t→∞

Λ
[
ρ · ηk

n−2; h, t
]
>

k(1− ε0)

e
,

then there are no positive decreasing solutions to Equation (1). By using a generalized
Riccati substitution, Moaaz et al. [23] presented a new criterion for oscillation of solutions
of fourth-order quasi-linear differential equations(

a(t)
(
v′′′(t)

)k
)′

+ f (t, v(h(t))) = 0

in the non-canonical case. They utilized an approach that gives rise to two or three
independent conditions, eliminating non-oscillatory solutions. Moreover, they establish
conditions in a non-traditional form (lim sup(·) > 1), while condition (lim sup(·) = ∞)
cannot be applied.

Nabih et al. [24] iteratively deduced new monotonic properties of (). They discuss the
non-canonical case in which there are possible decreasing positive solutions. Then, they
found iterative criteria that exclude the existence of these positive decreasing solutions. Us-
ing these new criteria and based on the comparison and Riccati substitution methods, they
created sufficient conditions to ensure that all solutions of the studied equation oscillate.

In this paper, we extend Koplatadze’s results to DDEs in the non-canonical case.
We begin by setting conditions that exclude positive decreasing solutions to the studied
equation. Then, we derive some new monotonic properties through which we can find
improved relationships between the solution with delay and without delay. In addition,
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we present additional standards that ensure that all solutions to the investigated equation
oscillate. Finally, we apply the new results to some special cases to clarify their importance
and applicability.

2. Positive Decreasing Solutions

In this section, we obtain a new condition that ensures that all positive decreasing
solutions of (1) are excluded. For this, we need the following lemma, which presents
nontraditional monotonic properties of the derivatives of decreasing positive solutions.

Lemma 1. Assume that v is an eventually positive decreasing solution of (1). Then, eventually,

(−1)s

(
v(n−2−s)(t)

ηs(t)

)′
≥ 0, for s = 0, 1, . . . , n− 2. (7)

Proof. Suppose that v is an eventually positive decreasing solution of (1). Since v is
eventually positive and h→ ∞ as t→ ∞, we have that v ◦ h is also positive. Thus, from (1),(

a ·
(

v(n−1)
)k
)′
≤ 0. (8)

According to Lemma 1.1 in [25], which classifies the signs of derivatives of positive
solutions, the class of decreasing positive solutions achieves

(−1)sv(s)(t) > 0, for s = 0, 1, . . . , n− 1. (9)

Using (8) and (9), we get

−v(n−2)(t) ≤ Λ
[
v(n−1); t, ∞

]
= Λ

[
a−1/k ·

(
a ·
(

v(n−1)
)k
)1/k

; t, ∞

]
≤ a1/k(t)v(n−1)(t)η0(t). (10)

Therefore, (
v(n−2)

η0

)′
=

η0 · v(n−1) + a−1/k · v(n−2)

η2
0

≥ 0,

which leads to

−v(n−3)(t) ≥ Λ
[
v(n−2); t, ∞

]
= Λ

[
η0

v(n−2)

η0
; t, ∞

]

≥ v(n−2)(t)
η0(t)

η1(t).

Then, (
v(n−3)

η1

)′
=

η1 · v(n−2) + η0 · v(n−3)

η2
1

≤ 0.

Repeating the same approach, we get the desired result.
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Theorem 1. If

lim sup
t→∞

[
(ηn−2 ◦ h)Λ

[
ρ

η1−k
n−2

; t0, h

]
+ Λ

[
ηk

n−2 · ρ; h, t
]

+
1

(ηn−2 ◦ h)
Λ
[
ηk

n−2 · ρ · (ηn−2 ◦ h); t, ∞
]]

> k, (11)

then there are no eventually positive decreasing solutions of Equation (1).

Proof. Suppose the contrary that v is an eventually positive decreasing solution of (1). As
in the proof of Lemma 1, we get that (9) and (10) hold. Applying the operator Λ[ · ; t, ∞]
(n− 3) times to (10), we arrive at

v′ ≤ a1/k · v(n−1) · ηn−3. (12)

By applying Λ[ · ; t, ∞] one more time, we obtain

v ≥ −a1/k · v(n−1) · ηn−2. (13)

Now, let w := a1/k · v(n−1) · ηn−2 + v, which from (13) gives w ≥ 0. Then,

w′ =
(

a1/k · v(n−1)
)′
· ηn−2 − a1/k · v(n−1) · ηn−3 + v′.

Hence, from (12), we arrive at

w′ ≤
(

a1/k · v(n−1)
)′
· ηn−2 ≤ 0. (14)

From (1) and (13), we find

−ρ ·
(

vk ◦ h
)

=

((
a1/k · v(n−1)

)k
)′

= k
(

a1/k · v(n−1)
)k−1(

a1/k · v(n−1)
)′

≥ k
vk−1 ◦ h

ηk−1
n−2

(
a1/k · v(n−1)

)′
,

and so, (
a1/k · v(n−1)

)′
≤ −1

k
ηk−1

n−2 · ρ · (v ◦ h). (15)

Applying Λ[ · ; t1, t] to (15), we have

a1/k(t)v(n−1)(t) ≤ −1
k

Λ
[
ηk−1

n−2 · ρ · (v ◦ h); t1, t
]
. (16)

Combining (14) and (15), we get

w′ ≤ −1
k

ηk
n−2 · ρ · (v ◦ h).

By applying Λ[ · ; t, ∞] to the last inequality, we obtain

w(t) ≥ 1
k

Λ
[
ηk

n−2 · ρ · (v ◦ h); t, ∞
]
,

which, from the definition of w, yields



Mathematics 2023, 11, 1282 6 of 12

v(t) ≥ −a1/k(t)v(n−1)(t)ηn−2(t) +
1
k

Λ
[
ηk

n−2 · ρ · (v ◦ h); t, ∞
]
.

Hence, from (16), we arrive at

v(t) ≥ 1
k

ηn−2(t)Λ
[
ηk−1

n−2 · ρ · (v ◦ h); t1, t
]
+

1
k

Λ
[
ηk

n−2 · ρ · (v ◦ h); t, ∞
]
,

and, thus,

k v ◦ h ≥ (ηn−2 ◦ h)Λ
[
ηk−1

n−2 · ρ · (v ◦ h); t1, h
]
+ Λ

[
ηk

n−2 · ρ · (v ◦ h); h, ∞
]

≥ (ηn−2 ◦ h)Λ
[
ηk−1

n−2 · ρ · (v ◦ h); t1, h
]
+ Λ

[
ηk

n−2 · ρ · (v ◦ h); h, t
]

+Λ
[
ηk

n−2 · ρ · (v ◦ h); t, ∞
]
. (17)

From Lemma 1, we have that (7) holds. It follows form (7) that

(v ◦ h)(u) ≥ (ηn−2 ◦ h)(u)
(ηn−2 ◦ h)(t)

(v ◦ h)(t).

Thus, (17) becomes

k ≥ (ηn−2 ◦ h)Λ
[
ηk−1

n−2 · ρ; t1, h
]
+ Λ

[
ηk

n−2 · ρ; h, t
]

+
1

(ηn−2 ◦ h)
Λ
[
ηk

n−2 · ρ · (ηn−2 ◦ h); t, ∞
]
,

which contradicts assumption (11).

It is easy to notice the importance of the monotonic properties of the positive solution
in obtaining the exclusion criterion. By extending the approach followed in [10], these
properties can be iteratively improved, as in the following lemmas.

Lemma 2. Assume that v is an eventually positive decreasing solution of (1). If there exists a
δ0 > 0 such that

ρ(t) ≥ kδ
ηn−3(t)
ηk+1

n−2(t)
, (18)

then, eventually, (
v

ηδ
n−2

)′
≤ 0.

Proof. Suppose that v is an eventually positive decreasing solution of (1). From Lemma 1
and its proof, we get that (7), (9), and (10) hold.
First, we need to prove that limt→∞ v(t) = 0. From the fact that v(t) > 0 and v′(t) < 0, we
have that limt→∞ v(t) = c ≥ 0. Now, we suppose that c > 0. Then, (v ◦ h)(t) ≥ c, for t
large enough. We can see that (15) and (16) hold if we proceed as we did in the proof of
Theorem 1. From (16) and (18), we arrive at

a1/k(t)v(n−1)(t) ≤ − c
k

Λ
[
ηk−1

n−2 · ρ; t1, t
]

≤ −cδΛ

[
ηn−3(t)
η2

n−2(t)
; t1, t

]

= −cδ

(
1

ηn−2(t)
− 1

ηn−2(t1)

)
. (19)
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Since limt→∞ η−1
n−2(t) = ∞, we obtain that η−1

n−2(t)− η−1
n−2(t1) ≥ lη−1

n−2(t) for l ∈ (0, 1)
and t large enough. Thus, from (12) and (19), we find

v′(t) ≤ a1/k(t)v(n−1)(t)ηn−3(t) ≤ −cδl
ηn−3(t)
ηn−2(t)

,

and after applying Λ[ · ; t1, t] to this inequality, we conclude that

v(t) ≤ v(t1)− cδl ln
ηn−2(t1)

ηn−2(t)
→ ∞ as t→ ∞,

which is a contradiction. Therefore,

lim
t→∞

v(t) = 0. (20)

Next, applying Λ[ · ; t1, t] to (15), we have

a1/k(t)v(n−1)(t) ≤ a1/k(t1)v(n−1)(t1)−
1
k

Λ
[
ηk−1

n−2 · ρ · (v ◦ h); t1, t
]

≤ a1/k(t1)v(n−1)(t1)−
1
k

v(t)Λ
[
ηk−1

n−2 · ρ; t1, t
]
,

which from (18) yields

a1/k(t)v(n−1)(t) ≤ a1/k(t1)v(n−1)(t1)− δv(t)
(

1
ηn−2(t)

− 1
ηn−2(t1)

)
. (21)

It follows from (20) that a1/k(t1)v(n−1)(t1) + δv(t)/ηn−2(t1) ≤ 0. Then,

a1/k · v(n−1) ≤ − δv
ηn−2

. (22)

Combining (12) and (22), we see that

ηn−2 · v′(t) ≤ ηn−2 ·
(

a1/k · v(n−1)
)
· ηn−3 ≤ −δv · ηn−3. (23)

This implies (
v

ηδ
n−2

)′
=

ηn−2v′ + δηn−3v
ηδ+1

n−2

≤ 0.

This is the desired result.

Lemma 3. Let v is a solution of (1), v is eventually positive and decreasing, and there is a δ ∈ (0, 1)
such that (18) holds. If there are m ∈ N and λ > 1 such that δi < δi+1 < 1 for i = 0, 1, . . . , m− 1,
and ηn−2(h(t)) ≥ ληn−2(t), then (

v

ηδm
n−2

)′
≤ 0, (24)

eventually, where δ0 = δ and

δi+1 =
δλδi

1− δi
, i = 0, 1, . . . , m− 1.

Proof. Suppose that v is an eventually positive decreasing solution of (1). From the proof
of Theorem 1, we get that (12), (13), and (15) hold.
First, we need to prove that limt→∞

(
v(t)η−δ0

n−2(t)
)
= 0. From the fact that v(t)η−δ0

n−2(t) > 0
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and
(

v(t)η−δ0
n−2(t)

)′
≤ 0, we have that limt→∞

(
v(t)η−δ0

n−2(t)
)
= c1 ≥ 0. Now, we suppose

that c1 > 0. Then,
v(t)η−δ0

n−2(t) ≥ c1, (25)

for t ≥ t1, where t1 large enough. Now, we define the function

ψ :=
a1/k · v(n−1) · ηn−2 + v

ηδ0
n−2

,

which from (13) gives ψ ≥ 0, eventually. Then,

ψ′ =

(
a1/k · v(n−1)

)′
· ηn−2 − a1/k · v(n−1) · ηn−3 + v′

ηδ0
n−2

+
a1/k · v(n−1) · ηn−2 + v

ηδ0+1
n−2

δ0ηn−3.

Hence, from (12) and (15), we arrive at

ψ′ ≤ −1
k

ηk
n−2 · ρ · (v ◦ h)

ηδ0
n−2

+ δ0

ηn−3 ·
(

a1/k · v(n−1)
)

ηδ0
n−2

+ δ0
ηn−3 · v
ηδ0+1

n−2

.

It follows from (18) that

ψ′ ≤ −δ0
ηn−3 · (v ◦ h)

ηδ0+1
n−2

+ δ0

ηn−3 ·
(

a1/k · v(n−1)
)

ηδ0
n−2

+ δ0
ηn−3 · v
ηδ0+1

n−2

,

with the fact that v′(t) < 0 yields

ψ′ ≤ δ0

ηn−3 ·
(

a1/k · v(n−1)
)

ηδ0
n−2

. (26)

From the proof of Lemma 2, we obtain that (23) holds. Using (13) and (25), inequality
(26) becomes

ψ′ ≤ −δ2
0

ηn−3

ηn−2
· v

ηδ0
n−2

≤ −δ2
0c1

ηn−3

ηn−2
. (27)

Integrating (27) from t1 to t, we find

ψ(t1) ≥ δ2
0c1 ln

ηn−2(t1)

ηn−2(t)
.

Then, ψ(t1)→ ∞ as t→ ∞, is a contradiction. Therefore, c1 = 0.
Next, applying Λ[ · ; t1, t] to (15), we get

a1/k(t)v(n−1)(t) ≤ a1/k(t1)v(n−1)(t1)−
1
k

Λ
[
ηk−1

n−2 · ρ · (v ◦ h); t1, t
]
. (28)

From Lemma 2, we get that
(

v(t)η−δ0
n−2(t)

)′
≤ 0. Thus, (28) turns into

a1/k(t)v(n−1)(t) ≤ a1/k(t1)v(n−1)(t1)−
1
k

Λ

[
ηk−1

n−2 · ρ ·
ηδ0

n−2 ◦ h

ηδ0
n−2

· v; t1, t

]

≤ a1/k(t1)v(n−1)(t1)−
1
k

v(t)

ηδ0
n−2(t)

·Λ
[
ηk−1

n−2 · ρ ·
(

ηδ0
n−2 ◦ h

)
; t1, t

]
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with (18) gives

a1/k(t)v(n−1)(t) ≤ a1/k(t1)v(n−1)(t1)− δ
v(t)

ηδ0
n−2(t)

·Λ
[

ηn−3(t)

η2−δ0
n−2 (t)

·
ηδ0

n−2 ◦ h

ηδ0
n−2

; t1, t

]

≤ a1/k(t1)v(n−1)(t1)− δλδ0
v(t)

ηδ0
n−2(t)

·Λ
[

ηn−3(t)

η2−δ0
n−2 (t)

; t1, t

]

≤ a1/k(t1)v(n−1)(t1)−
δλδ0

1− δ0

v(t)

ηδ0
n−2(t)

·
(

1

η1−δ0
n−2 (t)

− 1

η1−δ0
n−2 (t1)

)
.

Using the fact that limt→∞

(
v(t)η−δ0

n−2(t)
)
= 0, we find

a1/k · v(n−1) ≤ −δ1
v

ηn−2
.

From (23), we arrive at ηn−2 · v′ ≤ −δ1ηn−3 · v, and, hence,(
v

ηδ1
n−2

)′
≤ 0.

If δ1 < 1, then we can repeat the same previous procedures and, thus, we get (24).

Theorem 2. Assume that there is a δ ∈ (0, 1) such that (18) holds. If there are m ∈ N and λ > 1
such that δi < δi+1 < 1 for i = 0, 1, . . . , m− 1, ηn−2(h(t)) ≥ ληn−2(t), and

lim sup
t→∞

[(
η1−δm

n−2 ◦ h
)
·Λ
[
ηk−1

n−2 · ρ ·
(

ηδm
n−2 ◦ h

)
; t1, h

]
+
(

η−δm
n−2 ◦ h

)
·Λ
[
ηk

n−2 · ρ ·
(

ηδm
n−2 ◦ h

)
; h, t

]
+
(

η−1
n−2 ◦ h

)
·Λ
[
ηk

n−2 · ρ · (ηn−2 ◦ h); t, ∞
]]

> k, (29)

then there are no eventually positive decreasing solutions of Equation (1).

Proof. Suppose the contrary that v is an eventually positive decreasing solution of (1). As

in the proof of Theorem 1, we arrive at (17). From the facts that
(

v(t)η−1
n−2(t)

)′
≥ 0 and(

v(t)η−δm
n−2 (t)

)′
≤ 0, we get

v(h(s)) ≥
ηδm

n−2(h(s))

ηδm
n−2(h(t))

v(h(t)) for s ≤ t,

and

v(h(s)) ≥ ηn−2(h(s))
ηn−2(h(t))

v(h(t)) for s ≥ t.

Therefore, (17) becomes

k ≥
(

η1−δm
n−2 ◦ h

)
·Λ
[
ηk−1

n−2 · ρ ·
(

ηδm
n−2 ◦ h

)
; t1, h

]
+
(

η−δm
n−2 ◦ h

)
·Λ
[
ηk

n−2 · ρ ·
(

ηδm
n−2 ◦ h

)
; h, t

]
+
(

η−1
n−2 ◦ h

)
Λ
[
ηk

n−2 · ρ · (ηn−2 ◦ h); t, ∞
]
,

which contradicts assumption (29).
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3. Asymptotic Behavior and Oscillation

Based on the proofs of Lemmas 2 and 3, we can directly obtain the following result:

Lemma 4. Assume that there exists a δ ∈ (0, 1) such that (18) holds. If there are m ∈ N and
λ > 1 such that δi < δi+1 < 1 for i = 0, 1, . . . , m− 1, and ηn−2(h(t)) ≥ ληn−2(t), then all
eventually positive decreasing solution of (1) converge to zero, moreover,

lim
t→∞

v(t)

ηδm
n−2(t)

= 0.

Based on the assumption that the solution v of Equation (1) is ultimately positive,
according to Lemma 1.1 in [25], positive solutions can be classified into the following three
classes:

(a) v(i) > 0 for i = 0, 1, n− 1 and v(n) < 0;
(b) v(i) > 0 for i = 0, 1, n− 2 and v(n−1) < 0;
(c) (−1)iv(i) > 0 for i = 0, 1, . . . , n− 1.

In the following, we review some of the previous results in the literature that provided
criteria that ensure the oscillation of the solutions of Equation (1).

Theorem 3. ([20], Theorem 4 with f (x) = xk). Assume that the DDEs

φ′ + ρ ·
(

`0hn−1

(n− 1)!
(
a1/k ◦ h

))k

· (φ ◦ h) = 0 (30)

and

ϕ′ +
`1

(n− 2)!a1/κ
·Λ1/k

[
ρ ·
(

hn−2
)k

; t0; t
]
· (ϕ · h) = 0, (31)

are oscillatory, for some `0, `1 ∈ (0, 1). If there is a $ ∈ C1([t0, ∞)) with $(t) > t, $′(t) ≥ 0 and
($n−2 ◦ h) < t such that the DDE (5) is oscillatory, then all solutions of (1) are oscillatory.

Theorem 4. ([21], Theorem 2.1 with α = β). Assume that the DDE (30) is oscillatory, and

lim sup
t→∞

Λ

[(
ρ · ηk

0 ·
(

`2hn−2

(n− 2)!

)k

− (k/(k + 1))k+1

η0 · a1/k

)
; t0, t

]
= ∞, (32)

for some `0, `2 ∈ (0, 1). If (6) holds, then every solution of (1) is oscillatory.

To obtain our oscillation criteria, we combine the criteria that exclude cases (a) and
(b) of the derivatives of the positive solution with the conditions obtained in the previous
section.

Theorem 5. Assume that (11) holds, and the DDEs (30) and (31) are oscillatory, for some `0, `1 ∈
(0, 1). Then, all solutions of (1) are oscillatory.

Theorem 6. Assume that (11) and (32) hold for some `2 ∈ (0, 1), and the DDE (30) is oscillatory,
for some `0 ∈ (0, 1). Then, all solutions of (1) are oscillatory.

Theorem 7. Assume that (18) holds for some δ ∈ (0, 1), and there are m ∈ N and λ > 1 such that
δi < δi+1 < 1 for i = 0, 1, . . . , m− 1, ηn−2(h(t)) ≥ ληn−2(t), and (29) holds. If the DDEs (30)
and (31) are oscillatory, for some `0, `1 ∈ (0, 1), then all solutions of (1) are oscillatory.

Theorem 8. Assume that (18) holds for some δ ∈ (0, 1), and there are m ∈ N and λ > 1 such that
δi < δi+1 < 1 for i = 0, 1, . . . , m− 1, ηn−2(h(t)) ≥ ληn−2(t), and (29) holds. If (32) holds for
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some `2 ∈ (0, 1), and the DDE (30) is oscillatory, for some `0 ∈ (0, 1), then all solutions of (1) are
oscillatory.

Example 1. Consider a special case of Equation (1), namely the fourth-order DDE(
t5(υ′′′(t)))′ + ρ0tυ(h0t) = 0, (33)

where t ≥ 1, ρ0 > 0 and h0 ∈ (0, 1). It is easy to verify that a(t) = t5, ρ(t) = ρ0t and h(t) = h0t.
Then, we have η2 = 1

36t2 .
If we let δm = 0.5, then Equations (30) and (31) are oscillatory if

ρ0 >
16h2

0

e ln 1
h0

,

and
ρ0 >

8
h2

0e ln 1
h0

,

respectively. Condition (11) reduces to

ρ0 >
36(

1 + ln 1
1/h0

) .

By Theorem 6, Equation (33) is oscillatory if

ρ0 > max

 16h2
0

e ln 1
h0

,
8

h2
0e ln 1

h0

,
36(

1 + ln 1
h0

)
. (34)

Remark 1. From Theorem 2.4 in [23] it follows that (33) is oscillatory if

ρ0 > max

{
12,

8
h2

0
,

6h2
0

e ln(1/h0)

}
. (35)

For h0 = 1/2, criteria (34) and (35) reduce to ρ0 > 21.262 and ρ0 > 32.0, respectively. Thus, our
results improve the results in [23].

4. Conclusions

Numerous phenomena can be modeled but the resulting differential equations are
frequently nonlinear and cannot be solved in closed form. Therefore, it is very useful to
study the qualitative properties of these equations. The study of qualitative characteristics
helps understand, interpret, and analyze these phenomena.

In this work, we focus on studying some properties of positive decreasing solutions of
an even-order delay differential equation. The non-canonical case was taken into account,
as the canonical case guarantees that there are no positive decreasing solutions of the
studied equation. A new condition that ensures that there are no decreasing positive
solutions has been added. Moreover, we improved the properties of the studied separation
of solutions so that we can obtain criteria of iterative nature. It would be interesting, as a
future research issue, to extend the results of this paper to the neutral and advanced cases.
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