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Abstract: In this paper, we discuss the waiting-time distribution for a finite-space, single-server
queueing system, in which customers arrive singly following a Poisson process and the server
operates under (a, b)-bulk service rule. The queueing system has a finite-buffer capacity ‘N’ excluding
the batch in service. The service-time distribution of batches follows a general distribution, which
is independent of the arrival process. We first develop an alternative approach of obtaining the
probability distribution for the queue length at a post-departure epoch of a batch and, subsequently,
the probability distribution for the queue length at a random epoch using an embedded Markov
chain, Markov renewal theory and the semi-Markov process. The waiting-time distribution (in
the queue) of a random customer is derived using the functional relation between the probability
generating function (pgf) for the queue-length distribution and the Laplace–Stieltjes transform (LST)
of the queueing-time distribution for a random customer. Using LSTs, we discuss the derivation of the
probability density function of a random customer’s waiting time and its numerical implementations.

Keywords: Poisson input; batch service (a, b)-rule; finite-buffer queue; roots

MSC: 60K25; 68M20; 90B22

1. Introduction

Single-server queueing models have been extensively studied in the literature. How-
ever, many practical situations exist where customers need to be served in batches. Queue-
ing models of this type are called general bulk-service (GBS) queues. Examples of bulk-
service queues can be seen in the unloading and loading of cargoes at a sea port, in
traffic-signal systems, and in a mass transportation system. The GBS rule is stated as
follows. If n (0 ≤ n < a) customers are waiting after the completion of a batch service, then
the server has to wait until the number reaches ‘a′ customers. However, the entire queue is
served if the number of waiting customers in the queue is greater than or equal to a but less
than or equal to b. The first ‘b′ customers will be taken into service if the number present
in the queue is greater than b. This rule has been widely investigated in the literature,
e.g., Chaudhry and Templeton [1] and Dshalalow [2,3]. An excellent survey of various
types of infinite-buffer queues with bulk arrival, bulk service and vacations can be found
in Dshalalow [4]. In general, the analysis of queueing models of this type is difficult, since
their probability generating functions involve unknown probabilities in the numerators.
Neuts [5] discussed the bulk-service queue using the theory of the semi-Markov process
and obtained queue-length distribution. Borthakur [6] studied the bulk-service queue and
derived the stationary probability distribution for the queue length directly as the sum

Mathematics 2023, 11, 1142. https://doi.org/10.3390/math11051142 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11051142
https://doi.org/10.3390/math11051142
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11051142
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11051142?type=check_update&version=2


Mathematics 2023, 11, 1142 2 of 26

of a constant multiplied by geometric terms, where the common ratios are the root of the
associated characteristic equation. Following this, Medhi [7] obtained the waiting-time
density function for M/M(a,b)/1 queue in terms of roots. Later, Easton and Chaudhry [8]
extended these results and discussed the waiting-time distribution for the Ek/M(a,b)/1
queueing system. We can find an elaborate presentation of bulk-service queues in the
books by Chaudhry and Templeton [1] and Medhi [9], where a complete list of references
up to the early 1980s. One may note that it has been reported in the literature that the
analysis of finite-buffer queueing models by solving simultaneous linear equations may
pose some problems for some particular types of queueing models; see the remarks made
by Powell ([10], pp. 64, 141). Chaudhry et al. [11] discussed the computational analysis of
the M/G(a,b)/1 and related non-bulk queues. Brière and Chaudhry [12] analyzed a batch-
service queue with a random service batch size, i.e., M/GY/1 queue. They obtained the
probability distribution for the queue length at different epochs by finding the roots of the
associated characteristic equation. Waiting-time analysis in a finite-buffer M/G/1 queue-
ing model was first investigated by Finch [13] in his pioneering work in this area of research.
However, no analytical results have been reported in the literature on queues to analyze
the waiting-time distribution of a finite-buffer M/G/1-type bulk-service queue. A few
results related to stationary queue-length distributions in a finite-buffer single-server queue
using the roots’ method are addressed in the literature, e.g., see, Chaudhry et al. [14] and
Chaudhry and Goswami [15]. Further, analysis of the finite-buffer bulk-service M/GY/1
queue was performed by Singh [16] and queue-length distributions were obtained. Later,
Chaudhry and Gupta [17] performed the analytic analysis of the finite-buffer bulk-service
M/G(a,b)/1/N queueing model and obtained the queue-length distributions at a post-
departure and arbitrary epochs using the supplementary variable technique. However,
no analytical results have been reported in the literature related to the analysis of the
waiting-time distribution in a finite-buffer M/G/1-type bulk-service queue using roots.

We encounter finite-buffer bulk-service queueing systems in many real-world sce-
narios; see Gold and Tran-Gia [18] for applications related to manufacturing processes.
In telecommunications networks, information units are stored in the system if a server is
busy. If an arrival finds the buffer space full, then the arriving customer is blocked and
considered to be lost. The main interest of the system designer is to provide sufficient
buffer space so that the probability of blocking or loss is small. Thus, the blocking/loss
probabilities are an important measure of concern for a system designer. In cloud comput-
ing, transmissions of user requests are of various types (e.g., data, voice, video, images).
There are many applications which need bulk data to be transferred in the web which are
accessed by a large number of clients at the same time. As per the service level agreement
(SLA) all the requests received by the clients may be processed in bulk. The instances
of the target web application running into virtual machines (VMs) act as service centers
to process the requests in the queue. We figured out the process of client requests in a
single web application with the following features: The inter-arrival times between two
successive client requests may be identified by a Poisson process. When bulk requests
are submitted in the queue, the requests are forwarded to the VM that is currently idle
because of the lack of a sufficient number of requests. The requests are served in batches
with a minimum of a and a maximum of b requests for this VM, where 1 ≤ a ≤ b ≤ N. The
system under consideration contains multiple homogeneous VMs which render service in
order of task request arrivals, i.e., first come, first served (FCFS). For a recent survey of the
system model of bulk service on cloud, the readers are referred to Goswami et al. [19]. In
recent years, considering batch-size-dependent service processes, the finite-buffer capacity
MAP/G(a,b)

r /1/N and infinite-buffer MAP/G(a,b)
r /1 queueing systems have been studied

by Banerjee et al. [20], and Pradhan and Gupta [21], respectively.
This paper carries out the analytic analysis of the finite buffer M/G(a,b)/1/N queue

using the method of the Markov renewal theory, the embedded Markov chain, the semi-
Markov process and the roots. As stated earlier, the service to the queueing system is
provided in batches of minimum size a and maximum size b (1 ≤ a ≤ b). We obtain
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the steady-state, queue-length distribution at post-departure and random epochs. As
stated above, using the functional relationship, we derive the probability density function
for a random customer’s waiting-time distribution (in the queue and in the system). Fi-
nally, to extend the work done by Chaudhry and Gupta [17] for the well-known model
M/G(a,b)/1/N, which deals with the number in the queue, this paper first gives a simple
procedure to get the probability generation function (pgf) of a number in the queue by
using the method of the Markov renewal theory, the embedded Markov chain and the
semi-Markov process. Using the derived pgf, we deal with the probability density function
for the waiting-time distribution (in queue as well as in the system) of a random customer.

2. Brief Description of the M/G(a,b)/1/N Queueing Model and Its
Queue-Length Distributions

In this single-server queueing model, the arrival process of the customers is assumed
to be a Poisson process with an average rate, λ. The queued customers are served in batches
of minimum size, ‘a’, with a maximum threshold size, ‘b’; however, if there are fewer than ‘a’
customers, the server must wait until the queue accumulates ‘a’ customers. The number ‘N’
denotes the buffer capacity of the queueing system, excluding the size of a batch with the
server, and it is assumed that 1 ≤ a ≤ b ≤ N. The service times of batches are independent
identically distributed random variables (i.i.d.r.vs.) denoted by the notation S, where S
has the probability density function (pdf) b(t), cumulative distribution function (DF) B(t),
Laplace–Stieltjes transform (LST) B∗(s) and mean service time E(S) = b1 = −B∗(1)(0),
where G∗(1)(0) is the derivative of G∗(s) evaluated at s = 0. The mean service rate is
µ = 1/b1 or E(S) = 1/µ. The traffic intensity can be obtained as ρ = λb1/b = λ/(µb).
Let us define the conditional probability k j (j ≥ 0), which denotes the probability that j
customers arrive in the queueing system during a service time of a batch. Then,

k j =
∫ ∞

0

e−λv(λv)j

j!
dB(v).

The probability generating function (pgf) of {k j}∞
0 is denoted by K(z). It can be easily seen

that K(z) = B∗(λ − λz); see Keilson and Servi [22] for a detailed derivation. Similarly,
we denote the conditional probability k̂ j (j ≥ 0), which represents the probability that j
customers arrive in the queueing system during a stationary elapsed service time of a batch.
This leads to:

k̂ j = µ
∫ ∞

0

e−λv(λv)j

j!
(1− B(v))dv.

Similar to the above result, if we define the pgf of {k̂ j}∞
0 by K̂(z), then it can be seen that

K̂(z) = µ
1−B∗(λ−λz)

λ−λz . The probability distribution for the queue length at a random epoch
can be obtained through relations among post-departure and random epoch probabilities
using the embedded Markov chain, the Markov renewal theory and the semi-Markov
processes. For this, consider the queue at the batch service completion epochs. Let the suc-
cessive batch service completion epochs be marked in the time-axis as t0, t1, t2, . . . The time
epoch just after a service completion may be denoted by t+n . The state of the system at t+n is
defined as {Nq(t+n ), n ≥ 0}, where Nq(t+n ) is the number of customers (0 ≤ Nq(t+n ) ≤ N)
in the queue after the n-th departure epoch of a batch. Thus, {Nq(t+n ), n ≥ 0} becomes
a Markov chain. This irreducible and aperiodic Markov chain becomes ergodic under
any ρ >=< 1. In this discrete-time Markov chain, Nq(t+n+1) is dependent on the ran-
dom variable Nq(t+n ) and another random variable An+1, which is independent of Nq(t+n ).
This gives:

Nq(t+n+1) = min
{(

Nq(t+n )− b
)+

+ An+1, N
}

, (1)
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where
(

x
)+

= max{0, x} and An+1 is the random number of arrivals during the (n + 1)th

batch service time. When n→ ∞, P(An+1 = j) = k j (j ≥ 0). The various elements of the
transition probability matrix (TPM) of this Markov chain are given by:

Pij = P{Nq(t+n+1) = j|Nq(t+n ) = i} =



kj, 0 ≤ i ≤ b, 0 ≤ j ≤ N − 1,

kc
N , 0 ≤ i ≤ b, j = N,

kj−(i−b), j ≥ i− b, b + 1 ≤ i ≤ N, 0 ≤ j ≤ N − 1,

kc
N−(i−b), j ≥ i− b, b + 1 ≤ i ≤ N, j = N,

0, otherwise,

where kc
j = ∑∞

i=j ki (j ≥ 0). Thus, the limiting probabilities are defined as:

p+(j) = lim
n→∞

P{Nq(t+n ) = j}, 0 ≤ j ≤ N.

Now p+(j) (0 ≤ j ≤ N) can be obtained by solving the system of equations P+ = P+P,
where P+ = [p+(0), p+(1), p+(2), · · · , p+(a− 1), p+(a), · · · , p+(N− 1), p+(N)], P is
a (N + 1)× (N + 1) matrix whose elements are Pij, and after simplification of P+ = P+P,
we get:

p+(j) =
b

∑
i=0

p+(i)k j +
min{j, N−b}

∑
r=1

p+(b + r)k j−r, 0 ≤ j ≤ N − 1, (2)

p+(N) =
b

∑
i=0

p+(i)kc
N +

N−b

∑
r=1

p+(b + r)kc
N−r. (3)

Here, it may be noted that we can find the pgf of {p+(n)}N
0 using (2) and (3). Multiplying

(2) by zj and summing over j from 0 to N − 1 and adding (3) after multiplying with zN , we
get after simplification the following expression:

p+∗(z) =
b

∑
r=0

p+(r)
[
K(z)−

∞

∑
i=N+1

kizi
]
+

1
zb

N

∑
j=b+1

p+(j)zj
[
K(z)−

∞

∑
i=N+1

kizi
]
, (4)

where p+∗(z) = ∑N
n=0 p+(n)zn. Simplification of (4) by replacing ∑N

j=b+1 p+(j)zj =

p+∗(z)−∑b
r=0 p+(r)zr in the right-hand side, we obtain:

p+∗(z) =
∑b−1

r=0(z
b − zr)p+(r)K(z)
zb − K(z)

+
∑b−1

r=0(z
r − zb)p+(r)∑∞

i=N+1 kizi − p+∗(z)∑∞
i=N+1 kizi

zb − K(z)
. (5)

One can see that the numerator for the second term of Equation (5) has at least (N + b)
degree in z. Since p+(n) (0 ≤ n ≤ N) is the coefficient of zn in the right-hand side of p+∗(z)
in Equation (5), then one may evaluate p+(n) using the following pgf:

p+∗(z) =
∑b−1

r=0(z
b − zr)p+(r)K(z)
zb − K(z)

, (6)

which is identical with the pgf of post-departure epoch probabilities in an infinite-buffer
M/G(a,b)/1/∞ queueing model with the traffic intensity ρ < 1. The pgf of the infinite-
buffer queueing model was mentioned earlier in the literature, e.g., see Equation (2.1)
in [11] and also see Problem 11 in [1] (pp. 226–227)chaudhry1983first, where one may note
that K(z) = B∗(λ− λz).

At this point, we intend to calculate the post-departure epoch probabilities in terms of
the roots of the associated characteristic equation. Since rational LSTs (see Botta et al. [23])
cover a large number of distributions, we take K(z) = B∗(λ − λz) = B∗(s), where
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s = λ− λz as a rational function in ‘s’. If the LST of the service-time distribution has
a non-rational LST, then the LST can be approximated by rational functions using the Padé
approximation technique.

In view of this, we consider those service-time distributions that have rational LST
of the form B∗(s) = P(s)/Q(s), where the degree of the polynomial Q(s) is m and that of
the polynomial P(s) is y (≤ m). Further, we make this assumption, as has been done by
Botta et al. [23], since this assumption covers a large number of practical cases. Substituting
B∗(λ− λz) = P(λ−λz)

Q(λ−λz) ≡
f (z)
g(z) in Equation (6), one can obtain the corresponding expression

as given below,

p+∗(z) =
∑b−1

r=0(z
b − zr)p+(r) f (z)

zbg(z)− f (z)
. (7)

Since K(z) = f (z)
g(z) , p+∗(z) in Equation (7) becomes a rational function with the denominator

(zbg(z)− f (z)) which is a polynomial of degree (b + m). This polynomial (zbg(z)− f (z))
has (b + m) zeros in the whole complex plane. This leads to the following characteristic
equation (CE):

zbg(z)− f (z) =0, (8)

which has (b + m) roots, namely, γ1 = 1, γi (i = 2, 3, . . . , b + m).

Remark 1. We could have avoided the derivation of pgf p+∗(z), but since it gives a simpler proce-
dure than what is available in the literature, we have included it here for completeness sake. This pgf
is also used in deriving the waiting-time distribution. When software packages such as MAPLE and
MATHEMATICA could not find (see Neuts [24], Kendall [25] and Kleinrock [26]) a large number
of roots (they do now); Chaudhry responded to this (see Chaudhry [27,28]). In this connection, see
also Chaudhry et al. [29]. Here is just one example. It can be solved in many ways, but we are
giving just one method using the package MAPLE:

> restart : with(RootFinding) :
> f := (x− 1) · (x− 2) · (x− 3)4 · (x− 7)3

f := (x− 1)(x− 2)(x− 3)4(x− 7)3

> f solve( f , x, complex)
1., 2., 3., 3., 3., 3., 7., 7., 7.

The CE (8) has b + m roots. As the queueing model under consideration has a finite
buffer, the following three cases arise depending on ρ:

• Case 1 (ρ < 1) : Using Rouché’s theorem, it can be shown that Equation (8) has b
roots inside and on the unit circle |z| = 1 and the remaining m roots: γi (i = b + 1,
b + 2, . . . , b + m) are in the region |z| > 1.

• Case 2 (ρ = 1) : As in Case 1, among the remaining m roots, one root (say, γb+1) is
equal to one, and the other roots: γi (i = b + 2, b + 3, . . . , b + m) stay in the region
|z| > 1.

• Case 3 (ρ > 1) : As above, among the remaining m roots, one root (say, γb+1) is inside
the interval (0, 1), and the other roots: γi (i = b + 2, b + 3, . . . , b + m) are in the
region |z| > 1.

One may observe that as ρ (> 0) increases, from the remaining m roots of the CE (8),
one positive real root gets closer to the origin from right to left. The above three cases have
been discussed below.

• We first discuss the case when ρ < 1. For this case, when the traffic intensity of
the queueing model under consideration is less than one, i.e., ρ < 1, one can use
Equation (6) to find the post-departure epoch probabilities as described below. The
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unknown probabilities {p+(r)}b−1
r=0 on the right-hand side of the pgf in Equation (7)

can be obtained by using the roots of Equation (8), i.e., γ1 = 1 and γ2, γ3, . . . , γb.
This leads to:

b−1

∑
r=0

(γb
i − γr

i )p+(r) f (γi) =0, i = 2, 3, . . . , b, (9)

and:

p+∗(1) =

[
d
dz [∑

b−1
r=0(z

b − zr)p+(r) f (z)]
]

z=1[
d
dz [z

bg(z)− f (z)]
]

z=1

= 1. (10)

Therefore, for ρ < 1, using the partial fraction p+∗(z) can be written as follows:

p+∗(z) =D
∑b−1

r=0(z
b − zr)p+(r) f (z)

zbg(z)− f (z)
= D

b+m

∑
i=b+1

l̂i
z− γi

, (11)

where D is the normalizing constant and l̂i’s are the constant coefficients of the partial
fraction. Now, extracting the coefficients of zn from the right-hand side of (11), one
can obtain the post-departure epoch probabilities as:

p+(n) =D
b+m

∑
i=b+1

−l̂i
γn+1

i

, n = 0, 1, 2, . . . , N, (12)

where:

l̂i =
∑b−1

r=0(γ
b
i − γr

i )p+(r) f (γi)[
d
dz [z

bg(z)− f (z)]
]

z=γi

, i = b + 1, b + 2, . . . , b + m.

One can obtain the unknown D in Equation (12) using the normalization condition as
stated before and is given by:

D =
(
−

b+m

∑
i=b+1

l̂i
γi

1− γ
−(N+1)
i

1− γ−1
i

)−1
, when ρ < 1. (13)

• For ρ = 1, we assume γb+1 = 1, and in this case, Equations (11) and (12) are valid.
The only exception is that l̂b+1 may be obtained as follows:

l̂b+1 =

[
d2

dz2 [∑
b−1
r=0(z

b − zr)p+(r) f (z)]
]

z=1[
d2

dz2 [zbg(z)− f (z)]
]

z=1

→ 1 ↑,

and:

D =
(
− l̂b+1(N + 1)−

b+m

∑
i=b+2

l̂i
γi

1− γ
−(N+1)
i

1− γ−1
i

)−1
, when ρ = 1. (14)

It is also important to note that the normalization condition (10) does not work when
the traffic intensity ρ = 1 as z = 1 is a repeated root of multiplicity two for the
characteristic Equation (8). Thus, when ρ = 1, one may use Equations (16)–(18), which
express the probabilities {p+(j)}N

j=b in terms of the probabilities {p+(r)}b−1
r=0 and then

one may use the normalization condition as p+∗(1) = ∑N
j=0 p+(j) = 1. Alternatively,

one can use the following normalization condition for ρ = 1:



Mathematics 2023, 11, 1142 7 of 26

p+∗(1) =

[
d2

dz2 [∑
b−1
r=0(z

b − zr)p+(r) f (z)]
]

z=1[
d2

dz2 [zbg(z)− f (z)]
]

z=1

= 1. (15)

• Lastly, we discuss the case when ρ > 1. As p+∗(z) is convergent/analytic inside |z| <
γb+1, the first b roots of the characteristic Equation (8) inside the region |z| < γb+1
should be the zeros of the numerator polynomial on the right-hand side of Equation (7).
The unknown probabilities {p+(r)}b−1

r=0 on the right-hand side of the pgf in Equation
(7) can be obtained by the set of linear Equations (9). This set of homogeneous linear
equations is not sufficient to give non-trivial solution for the unknown probabilities
{p+(r)}b−1

r=0 and thus one must use normalization condition along with the above
system of simultaneous Equations (9) in the following way. Thus, when ρ > 1, one
should use Equations (2) and (3) by expressing the probabilities {p+(j)}N

j=b in terms

of the probabilities {p+(r)}b−1
r=0 as follows:

p+(b) =
p+(0)

k0
−

b−1

∑
i=0

p+(i), (16)

p+(b + j) =
p+(j)−∑b

i=0 p+(i)k j −∑
j−1
r=1 p+(b + r)k j−r

k0
, j = 1, 2, . . . , N − b− 1, (17)

p+(N) =
∑b

i=0 p+(i)kc
N + ∑N−b−1

r=1 p+(b + r)kc
N−r

1− kc
b

, (18)

and then one may use the normalization condition as follows:

N

∑
j=0

p+(j) = 1, (19)

where the probabilities {p+(j)}N
j=b must be expressed in terms of the unknown prob-

abilities {p+(r)}b−1
r=0 using the above Equations (16)–(18). The solution of the above

system of linear Equations (9) and (19) gives the unknown probabilities {p+(r)}b−1
r=0

and from the above expressions (16)–(18) one can get the probabilities {p+(j)}N
j=b in

terms of the known probabilities {p+(r)}b−1
r=0 . It may be noted that the above procedure

of finding post-departure epoch probabilities works when ρ <=> 1. One may remark
here that the above proposed recursive scheme (16)–(18) may sometimes be unstable,
mainly when we are dealing with a very high buffer capacity (N → ∞) and due to the
negative sign involved in the right-hand side of the recursive Equations (16) and (17).
One may note here that it is possible to find post-departure epoch probabilities in
closed form similar to the cases ρ <= 1 after getting the unknown probabilities
{p+(r)}b−1

r=0 by using the above procedure. For this, we multiply both sides of Equation
(7) by the factor (z− γb+1) and obtain the following equation:

p+∗(z)(z− γb+1) =
∑b−1

r=0(z
b − zr)p+(r) f (z)(z− γb+1)

zbg(z)− f (z)
. (20)

Now, the left/right hand side of Equation (20) is convergent/analytic inside and on
the unit circle |z| = 1. Thus, one may write Equation (20) in the following way:

p+∗(z)(z− γb+1) =
∑b−1

r=0 (z
b − zr)p+(r) f (z)(z− γb+1)

zbg(z)− f (z)
= q0 + q1z +

b+m

∑
i=b+2

li
z− γi

, (21)
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where q0, q1, and li’s are the constant coefficients of the partial fraction. Equating the
coefficient of the like powers of z in both sides of Equation (21) after a little algebraic
calculation, we obtain:

p+(0) =−
∑b+m

i=b+2
−li
γi

+ q0

γb+1
, (22)

p+(1) =−
∑b+m

i=b+2
−li
γ2

i
+ q1

γb+1
, (23)

p+(n) =−
∑b+m

i=b+2
−li

γn+1
i
− p+(n− 1)

γb+1
, n = 2, 3, . . . , N − 1, (24)

where:

li =
∑b−1

r=0(γ
b
i − γr

i )p+(r) f (γi)(γi − γb+1)[
d
dz [z

bg(z)− f (z)]
]

z=γi

, i = b + 2, b + 3, . . . , b + m.

Let the coefficient of z0 and z from the Taylors’ series expansion of the right hand side
of Equation (20) be c0 and c1. Now, q0 = c0 − ∑b+m

i=b+2
−li
γi

and q1 = c1 − ∑b+m
i=b+2

−li
γ2

i
.

The last probability p+(N) can be found using the normalization condition (19) and is
given by: p+(N) = 1−∑N−1

j=0 p+(j).

Thus, one can obtain post-departure epoch probabilities successfully for all possible
values of offered load or traffic intensity ρ for this queueing model under consideration.

Remark 2. It may be remarked here that all the probabilities p+(i) (0 ≤ i ≤ N) can also be
computed by solving the system of linear equations p+P = p+ (see [17], p. 98) using the
GTH algorithm or the RG-factorization technique (extensions of the matrix-analytic methods, see
Neuts [30] and Li [31]), where p+ = [p+(0), p+(1), · · · , p+(N)] and P is the transition
probability matrix of the Markov chain at the embedded post-departure epochs of a batch. In that
case, the computational complexities of the GTH algorithm and the RG-factorization technique
can be computed as O((N + 1)4), (see [32]) and O(N3) (see Li et al. [33]), respectively. On the
other hand, in the case of the roots’ method, which is adopted in this paper, the main goal is to
calculate the m + b roots of the associated characteristic Equation (8) with the probability generating
function given by Equation (7). Without a loss of generality, we assume that the degree of the
characteristic Equation (8) is m + b. It should be mentioned here that we can numerically locate
the roots of a polynomial using Newton’s method. The root extraction using Newton’s method
and multiplication of two numbers has equal complexity, see [34]. That is, if we want to calculate
roots of the characteristic equation up to d1 digits accuracy, then the computational complexity of
per root extraction will be at most O(d2

1). The next part is to evaluate b unknowns by solving b
simultaneous linear equations. There are several methods used to solve simultaneous equations, e.g.,
Cramer’s rule, Gaussian elimination, LU decomposition, etc. One of the most efficient methods to
determine the b unknowns is LU decomposition with complexity O(b3). The last part is a partial
fraction decomposition which has computational complexity at most O(m2) (see Xin [35]), where
m is the degree of the denominator polynomial of the corresponding rational function. From our
computational experience, we have seen that when the buffer capacity N becomes large and since
b ≤ N, both the GTH algorithm and the RG-factorization technique take much longer to compute
the post-departure epoch probabilities {p+(r)}N

r=0 than the roots’ method used in this paper. Further,
the roots’ method also gives explicit closed-form analytic results. In Section 5, we have presented a
comparison of computation time for above discussed three methods.
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Lemma 1. The expression for the probability that the server is busy (ρ
′
) is given by:

ρ
′
=

E(S)
T

=
1

µT
, (25)

where T is mean inter-departure time of service batches. An expression for T may be obtained as
follows:

T =E(S) +
a−1

∑
i=0

p+(i) ·
( a− i

λ

)
. (26)

Proof. The server’s state can be either busy or idle at any instant. As T is the mean inter-
departure time of service batches, 1/T corresponds to the departure rate. Since T is the
mean inter-departure time, it can be derived by considering two cases, (1) when the server
is busy and (2) when the server is idle. Thus:

T =E(S)
(

1−
a−1

∑
i=0

p+(i)
)
+

a−1

∑
i=0

p+(i) ·
( a− i

λ
+ E(S)

)
, (27)

which after simplification gives (26). The probability that the server is busy is given by
Equation (25), which is the proportion of time the server is busy divided by the mean
inter-departure time.

Probability Distribution for Queue Length at a Random Epoch

We develop relation between a distribution and the probability that the number of
customers in the queue at the embedded Markov points (post-departure epochs) using
the argument of the Markov renewal theory and the semi-Markov process. In terms of
notations, the random or arbitrary epoch probabilities are defined as follows:

p0(n) = lim
t→∞

P{Nq(t) = n, ξ(t) = 0}, 0 ≤ n ≤ a− 1, (28)

p1(j) = lim
t→∞

P{Nq(t) = j, ξ(t) = 1}, 0 ≤ j ≤ N, (29)

where Nq(t) is the number of customers in the queue at time t and ξ(t) is the server’s state
at time t. If at time epoch t the server is busy, then ξ(t) = 1, and if at time epoch t the
server is idle with i ((0 ≤ i < a) customers waiting for service, then ξ(t) = 0. Therefore,
p1(n) (0 ≤ n ≤ N) denotes the probability of n customers in the queue (excluding the
size of a batch in service) when the server is busy and p0(n) (0 ≤ n ≤ a− 1) denotes the
probability of n customers in the queue when the server is idle, where ‘1’ stands for busy
state of the server; and ‘0’ stands for idle state of the server.

Theorem 1. The random-epoch (or arbitrary-epoch) probabilities {p0(n) (0 ≤ n ≤ a− 1) and
p1(j) (0 ≤ j ≤ N)} and post-departure-epoch probabilities {p+(n) (0 ≤ n ≤ N)} are related by:

p0(n) =p0(n− 1) +
1

λT
p+(n), 0 ≤ n ≤ a− 1, (30)

p1(j) =
1

µT

[ b

∑
i=0

p+(i)k̂ j +
min{j, N−b}

∑
r=1

p+(b + r)k̂ j−r

]
, 0 ≤ j ≤ N − 1, (31)

p1(N) =
1

µT

[ b

∑
i=0

p+(i)k̂c
N +

N−b

∑
r=1

p+(b + r)k̂c
N−r

]
, (32)

where p0(−1) = 0 and k̂c
j = ∑∞

i=j k̂i (j ≥ 0).
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Proof. Using rate-in, rate-out, we can consider the state {Nq(t) = n, ξ(t) = 0} in the
limiting case of t→ ∞. This can change by arrivals or service completions. Thus, we have:

λp0(n) = λp0(n− 1) +
1
T

p+(n), 0 ≤ n ≤ a− 1. (33)

The left-hand side of Equation (33) is the rate of leaving out of the state {n, 0} by an arrival,
while the first term of the right-hand side is the entering rate to the state {n, 0} after an
arrival and the second term is the entering rate to the state {n, 0} after a departure. After a
little simplification of (33), we get (30). Using rate-in, rate-out, we now consider the state
{Nq(t) = n, ξ(t) = 1} in the limiting case when t→ ∞. This can change by service comple-
tions. As k̂ j is the probability of number of customers that arrive following an embedded
Markov point until stationary elapsed service time, then we have the following result:

µ lim
t→∞

P{Nq(t) = j, ξ(t) = 1} =µp1(j) =
1
T

b

∑
i=0

p+(i)k̂ j +
1
T

j

∑
r=1

p+(b + r)k̂ j−r,

0 ≤ j ≤ N − 1. (34)

On the left-hand side of (34), we are leaving the state {j, 1} and on the right-hand side of
(34), we are entering into the corresponding state {j, 1}. After simplifying (34), we obtain
(31). An exactly similar argument as used in Equation (31) derives Equation (32).

One may note that the results derived in Equations (30) and (31) are actually the same
as those presented by Chaudhry and Gupta [17]; see Appendix A for this derivation. The
rate-in and rate-out principle used to derive Equations (30) and (31) are much simpler than
the supplementary variable method used in [17]. Moreover, one can check the correctness
of the numerical results obtained by both the methods. Hereafter, let us define the pgf
of {p1(j)}N

0 by Pqb(z) = ∑N
j=0 p1(j)zj, which is the pgf of the random epoch probabilities

{p1(j)}N
0 when the server is busy. Using (31) and (32), one can check that Pqb(1) =

∑N
j=0 p1(j) = 1

µT , which is equal to ρ
′

as derived in Lemma 2. One can check the fact that

Pqb(1) = 1−∑a−1
i=0 p0(i) using Equations (30) and (25) in the following way:

1−
a−1

∑
i=0

p0(i) =
1

µT
, (35)

which is, in fact, true as 1
µT represents ρ

′
which denotes the probability that the server is

busy, i.e.:
N

∑
n=0

p1(n) = 1−
a−1

∑
i=0

p0(i) = ρ
′
.

Moreover, it is interesting to note from Equation (35) that:

1/T = [µ(1−
a−1

∑
i=0

p0(i))] =
[ 1

µ
+

a−1

∑
i=0

p+(i).
( a− i

λ

)]−1
. (36)

Finally, one may note that using the fact that Poisson arrivals see time average (PASTA),
the pre-arrival epoch probabilities are equal to the random epoch probabilities {p0(n) (0 ≤
n ≤ a − 1) and p1(j) (0 ≤ j ≤ N)}. Therefore, the probability of loss or blocking of a
random arrival customer is given by Ploss = p1(N).

3. Waiting-Time (In Queue) Distribution for a Random Customer

Let us denote V(n)
q as the waiting time in the queue of a random customer who belongs

to those customers served in the n-th batch. Further, let Wq(t) = limn→∞ P(V(n)
q ≤ t) and
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in the limiting case as n→ ∞, we denote V(n)
q by Vq. Let us define W∗q (s) =

∫ ∞
0 e−stdWq(t)

with <(s) ≥ 0. Now, following Chaudhry and Templeton [36], one can observe that during
the busy or idle state of the server, the total probability of arrivals during the waiting time
(in queue) of a random customer is equal to the total probability of possible number of
customers waiting in the queue. Thus, considering the random nature of arrivals and
busy/idle state of the server, we obtain:

a−1

∑
i=0

p0(i)zi + Pqb(z) =W∗q (λ
′ − λ

′
z), (37)

where λ
′
(= λ(1− Ploss)) which is the customer’s actual arrival rate due to finite-buffer

capacity. We note that differentiating (37) with respect to z and setting z = 1, we obtain
Little’s law as follows:

Lq =
a−1

∑
i=0

ip0(i) +
N

∑
n=0

np1(n) = λ
′
E(Vq). (38)

From Equation (37) using s = λ
′ − λ

′
z, after a little algebraic manipulation, we obtain:

W∗q (s) =
a−1

∑
i=0

p0(i)
(

1− s
λ
′

)i
+

N

∑
j=0

p1(j)
(

1− s
λ
′

)j
. (39)

Now, using Padé approximation of the right-hand side of Equation (39), one may ap-

proximate W∗q (s) by the rational function P̂(s)
Q̂(s)

. We assume the degree of the numerator

P̂(s) as r0 and that of the denominator Q̂(s) as rd (> r0). One can check the correct-

ness of Padé approximation using the fact that P̂(0)
Q̂(0)

= ∑N
n=0 p1(n) + ∑a−1

i=0 p0(i) = 1 and

− d
ds{

P̂(s)
Q̂(s)
}|s=0 =

∑a−1
i=0 ip0(i)+∑N

n=0 np1(n)
λ
′ =

Lq

λ
′ . Further, one can improve the Padé approxi-

mation using those two criteria. Since W∗q (s) is convergent or analytic in <(s) ≥ 0, the rd

zeros of the denominator Q̂(s) may be assumed as s1, s2, . . . , srd with <(si) < 0. Using
partial fractions, the right-hand side of Equation (39) may be written in the following form:

W∗q (s) '
P̂(s)
Q̂(s)

=
rd

∑
j=1

k j

s− sj
. (40)

Now, Equation (40) leads to the following equation:

wq(t) =
rd

∑
j=1

k je
sjt, t > 0, with <(sj) < 0, (41)

where k j =
P̂(sj)[

d
ds [Q̂(s)]

]
s=sj

,

where j = 1, 2, . . . , rd.

Remark 3. Here, we demonstrate how to practically approximate W∗q (s) by the rational func-
tion using the Padé approximation through a numerical example. For this purpose, we con-
sider PH-type service-time distribution with the representation (βββ, TTT), where βββ = (0.2, 0.8) and

TTT =

(
−2 0
0 −4

)
, so that µ = 3.333333. The other parameters are taken as a = 2, b = 5, λ = 10
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with ρ = λ
b·µ = 0.6. After computing p0(i)’s and p1(j)’s, the effective arrival rate of customers can

be obtained as λ′ = λ(1− Ploss) = 8.928835. From Equation (39), we get:

W∗q (s) =0.217096 + 0.234453(1− 0.111997s) + 0.108621(1− 0.111997s)2

+ 0.090139(1− 0.111997s)3 + 0.075175(1− 0.111997s)4 + 0.062991(1− 0.111997s)5

+ 0.045634(1− 0.111997s)6 + 0.031130(1− 0.111997s)7 + 0.018954(1− 0.111997s)8

+ 0.008689(1− 0.111997s)9 + 0.107117(1− 0.111997s)10

We have used the ‘pade’ command in MAPLE 2015 and approximated W∗q (s) as P̂(s)
Q̂(s)

where:

P̂(s) = 1 + 0.928374s + 0.498682s2 + 0.147040s3 + 0.127709s4

Q̂(s) = 1 + 0.443441s + 0.991992s2 + 0.140031s3 + 0.125392s4 + 0.572475s5.

Moreover, the correctness of the approximation can be checked by using the criteria given after the
Equation (39):

P̂(0)
Q̂(0)

= 1.000000, and − d
ds

{ P̂(s)
Q̂(s)

}
|s=0 = 0.350604 =

Lq

λ′
.

All of the roots of Q̂(s) have real parts less than zero, which makes W∗q (s) convergent in <(s) > 0.

Then we proceed further after writing P̂(s)
Q̂(s)

in terms of partial fractions.

Remark 4. One may note here that inversion of the LST presented in Equation (39) may be
done using several other methods of inverting the LSTs (or transforms) reported in the literature
(see the excellent reviews on the numerical transform inversion by Abate and Whitt [37] and
Abate et al. [38]). Abate and Whitt [37] use the Fourier-series method to invert the generating
functions and the LSTs numerically. The Fourier-series method involves numerically integrating
a standard inversion integral employing the trapezoidal rule. The greatest difficulty in this case
is approximately calculating the infinite series obtained from the inversion integral. However, the
method described above is free of such an approximation of numerical integration.

Moments: Moments of order k (≥ 1) for Vq can be obtained using (41) as follows:

E[Vk
q ] =

∫ ∞

0
tk · wq(t)dt =

∫ ∞

0
tk ·

rd

∑
j=1

k je
sjtdt, where <(sj) < 0, k ≥ 1, (42)

where <(sj) < 0. Alternatively, one can get the k-th moment of the queueing-time distribu-
tion by differentiating (39) k times with respect to s and then setting s = 0 in the following
way:

E[Vk
q ] =(−1)k

[ dk

dsk

{
W∗q (s)

}]
s=0

= (−1)k
[ dk

dsk

{ a−1

∑
i=0

p0(i)
(

1− s
λ
′

)i
+

N

∑
j=0

p1(j)
(

1− s
λ
′

)j}]
s=0

, k ≥ 1, (43)

which may work as a check on correctness of the moments obtained via (42).
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Sojourn-time distribution: Sojourn-time distribution of a random customer is its queueing
time, plus its batch service time. Therefore, the LST of sojourn time of random customer
W∗(s) is given by:

W∗(s) =W∗q (s)× B∗(s). (44)

Using (41), we can invert W∗(s). It gives the pdf w(t) of the sojourn time distribution of a
random customer and is given by:

w(t) =
∫ t

0

rd

∑
j=1

k je
sju · b(t− u)du, t ≥ 0, (45)

where <(sj) < 0. Now, using the probability density function w(t), one can get a moment
of order k for the random variable V (sojourn time in the system for a random customer) as
E[Vk] =

∫ ∞
0 tkw(t)dt which may be described as follows:

E[Vk] =
∫ ∞

0
tk
∫ t

0

rd

∑
j=1

k je
sju · b(t− u)dudt, where <(sj) < 0, k ≥ 1. (46)

The cumulative distribution function (CDF) of the queueing and sojourn times may be
obtained by the following results:

Wq(t) =
∫ t

0
wq(u)du =

∫ t

0

rd

∑
j=1

k je
sjudt, t > 0, where <(sj) < 0, (47)

W(t) =
∫ t

0

∫ v

0

rd

∑
j=1

k je
sju · b(v− u)dudv, t ≥ 0, where <(sj) < 0. (48)

4. Applications of the Queueing Model in the Performance Evaluation of
Blockchain Systems

In a blockchain system, client transactions must wait for servers (e.g., miner, valida-
tor or orderer) to provide service (e.g., mining, validating or ordering) and finally get
confirmed/served. One can find a detailed literature survey and a description of the perfor-
mance evaluation of blockchain systems by Fan et al. [39]. Different consensus processes of
blockchain systems can be modelled as different types of queueing systems. In a queueing
system, the most important part is the quantitative evaluation of its performance measures,
such as what is the expected number of transactions in the system, what is the transaction
throughput of the system, and what is the average waiting time in the queue or in the
system (i.e., sojourn time). In the blockchain called Bitcoin [40], the ledger is maintained
and updated by the mining process. In the mining process, a bunch of nodes, called miners,
compete to solve challenging puzzle-like problems, which consume much computation
power. Transactions issued by users are grouped into a container called a block. The
mining competition winner who first finds the algorithmic puzzle answer specialized for
the block has the right to add the new block to the blockchain and gets incentives accord-
ingly. Kawase and Kasahara [41] first built a modified M/GB/1 queue (see Chaudhry and
templeton [36] for the performance analysis of the M/GB/1 queueing model) with batch
service to model the Bitcoin mining process. Li et al. [42] introduced a new blockchain
queueing model by decomposing the mining process into two exponential service stages:
block generation and blockchain-building processes. The sum of both stages’ times is re-
garded as the transaction confirmation time, which a general service-time distribution may
represent. The distribution of the key performance indicators, such as the the transaction
waiting time, may be defined by the random amount of time a transaction has to wait
before it gets confirmation; see Geissler et al. [43] for details. Geyer et al. [44] modelled the
solo ordering process of Hyperledger Fabric as an M/MB/1 queueing system. To solve
this model, the authors borrowed the results from the waiting time analysis of a general
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bulk service queueing model M/M(a,b)/1 (see Medhi [7]). They considered the batch size
range as either a = b = B or a = 1 and b = B. Following the above discussions, we propose
the queue length and waiting time analysis of a more general bulk-service M/G(a,b)/1/N
queue to analyse the performance of a blockchain queueing system which includes the
possibility that the buffer capacity N → ∞. See the following Figure 1.

Figure 1. M/G(a,b)/1/N blockchain queueing model.

5. Numerical Results

In this section, the validity of the results obtained in the previous sections has been
tested through numerical experiments. Several numerical experiments have been carried
out for different model parameters in this connection. Out of them, a few numerical
examples are presented in this section. The experiments have been carried out using
MAPLE 2015 for Windows 10 (64-bit) OS environment. The results have been presented
in this paper up to six decimal places due to a lack of space. However, upon specific
requests, the authors can provide high-precision numerical calculations exhibited through
MAPLE coding.

Example 1. Here we will examine the case of traffic intensity (ρ) greater than 1. We construct a
PH type distribution as the service-time distribution with the representation (β3β3β3, T3T3T3) to serve that

purpose, where β3β3β3 = (0.2, 0.4, 0.1, 0.3), T3T3T3 =


−3 1 0 1
1 −5 1 0
0 2 −4 2
1 0 1 −4

 with µ = 1.619870. The

other parameters are chosen as λ = 20, N = 20, a = 3, b = 10 and ρ = 1.234667. Proceeding in a
similar fashion mentioned in the above sections, we get the denominator of Equation (7) as:

80000z14 − 384000z13 + 689800z12 − 549610z11 + 163885z10 + 8000z3 − 29140z2 + 35364z− 14299. (49)

In this case, Equation (8) has eleven roots inside and on the unit disk and three roots out-
side the unit disk; γ1 = 1.00000, γ2 = −0.745122, γ3 = −0.615642 − 0.425348i, γ4 =
−0.615642 + 0.425348i, γ5 = −0.267744− 0.709653i, γ6 = −0.267744 + 0.709653i, γ7 =
0.190352 − 0.754816i, γ8 = 0.190352 + 0.754816i, γ9 = 0.620330 − 0.531710i, γ10 =
0.620330 + 0.531710i, γ11 = 0.967206, γ12 = 1.168465, γ13 = 1.223421 and γ14 = 1.331440.
The values of p+(n) and p1(n) are given in Table 1, from which the loss probability of a random
arrival customer can be obtained as Ploss = p1(20) = 0.313256.

Using the procedure discussed in the paper the CDF of queueing-time distribution Wq(t) for
the model is obtained as follows:

Wq(t) =0.999999− 3.32859e−2.99754t + 2.32864e−2.07443t cos(2.46909t)

− 1.31795e−2.07443t sin(2.46909t), t > 0.
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Moreover, using the method discussed in the paper the CDF of sojourn-time distribution W(t) for
the model is obtained as follows:

W(t) =0.999999 + 0.150422e−6.66337t + 0.0602525e−4.47452t

− 0.0268614e−3.36865t − 4.26332e−1.49347t + 2.33519e−2.99754t

+ 0.744376e−2.07443t cos(2.46909t) + 1.36014e−2.07443t sin(2.46909 ∗ t), t ≥ 0. (50)

Table 1. Computation of post-departure epoch probabilities and random epoch probabilities (when
the server is busy) for Example 1 with the parameters λ = 20, µ = 1.619870, a = 3, b = 10, N = 20
and ρ = 1.234667.

n p+(n) p1(n) n p+(n) p1(n)

0 0.028418 0.023753 11 0.034051 0.051154
1 0.027992 0.024237 12 0.035143 0.048347
2 0.027893 0.024816 13 0.036286 0.045447
3 0.028048 0.025475 14 0.037480 0.042453
4 0.028402 0.026200 15 0.038723 0.039359
5 0.028914 0.026983 16 0.040014 0.036162
6 0.029554 0.027819 17 0.041355 0.032858
7 0.030299 0.028702 18 0.042743 0.029443
8 0.031132 0.029630 19 0.044184 0.025912
9 0.032041 0.030600 20 0.324318 0.313256
10 0.033016 0.053875 - - -

p0(0) = 0.002270, p0(1) = 0.004507, p0(2) = 0.006736.

Example 2. Let us take the service time as Pareto power tail distribution (see Ramsay [45], and
Roughan et al. [46]) having the distribution function B(t) = 1− (1 + t)α−1, where α = 1.5, so
that µ = 0.5. To find the Laplace–Stieltjes transformation of the service-time distribution using
Padé approximation in the following way:

B∗(λ− λz) = lim
N→∞

N

∑
n=0

zn
∫ ∞

0

(λt)n

n!
e−λtb(t)dt = lim

N→∞

N

∑
n=0

zncn, |z| 6 1, (51)

where limN→∞ ∑N
n=0 cn = 1 ↑, and B∗(λ− λz) has a probabilistic interpretation. Now the Padé

approximation is applied to the function B∗(λ− λz). After using the Padé approximation of the
function, we get a function B∗(s) by replacing λ− λz = s. For more details, see Avram et al. [47].
Using the above procedure B∗(s) can be obtained as follows:

B∗(s) u 0.00681 + 0.00608s + 0.00088s2

0.00681 + 0.01969s + 0.00552s2 + 0.00059s3 . (52)

Moreover, let us take other parameters as a = 4, b = 11 and λ = 9 so that ρ = λ
b·µ = 1.636364.

Using the method described in the preceding sections, we obtained the CDF of the queueing time
and sojourn time of a random customer in the M/Pareto(4,11)/1/20 queue. Now we take the
characteristic Equation (8) as follows:

0.42684z14 − 1.72726z13 + 2.35122z12 − 1.05762z11 + 0.07113z2 − 0.19698z + 0.13265 = 0 (53)

In this case, Equation (8) has twelve roots inside and on the unit disk and two roots outside
the unit disk; γ1 = 0.99999, γ2 = −0.76442− 0.21674i, γ3 = −0.76442 + 0.21674i, γ4 =
−0.54018− 0.58975i, γ5 = −0.54018 + 0.58975i, γ6 = −0.15091− 0.79690i, γ7 = −0.15091 +
0.79690i, γ8 = 0.30129− 0.77441i, γ9 = 0.30129 + 0.77441i, γ10 = 0.698677− 0.50934i, γ11 =
0.698677 + 0.50934i, γ12 = 0.95335, γ13 = 1.50214− 0.34752i and γ14 = 1.50214 + 0.34752i.
The values of p+(n) and p1(n) are given in the Table 2, from which the loss probability of a random
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arrival customer can be obtained as Ploss = p1(20) = 0.48373. Using the procedure discussed in
the paper the CDF of queueing-time distribution Wq(t) is obtained as follows:

Wq(t) =0.999987− 0.999986e−0.534383tcos(0.375759t)

− 2.25306e−0.534383tsin(0.375759t), t > 0. (54)

Moreover, using the method discussed in the paper the CDF of the sojourn-time distribution W(t)
is obtained as follows:

W(t) =0.99998− 0.01082e−4.51669tcos(3.12265t) + 0.01657e−4.51669tsin(3.12265t)

− 2.54227e−0.38563t + 1.55311e−0.53438tcos(0.37576t)

− 0.66818e−0.534383tsin(0.375759t), t ≥ 0. (55)

Table 2. Computation of post-departure epoch probabilities and arbitrary epoch probabilities (when
the server is busy) for Example 1 with the parameters λ = 9, µ = 0.5, a = 4, b = 11, N = 20 and
ρ = 1.636364.

n p+(n) p1(n) n p+(n) p1(n)

0 0.039995 0.015206 11 0.027209 0.037136
1 0.033106 0.014958 12 0.028567 0.035579
2 0.028170 0.015058 13 0.029995 0.033943
3 0.024985 0.015412 14 0.031490 0.032226
4 0.023199 0.015950 15 0.033052 0.030424
5 0.022451 0.016617 16 0.034684 0.028533
6 0.022435 0.017378 17 0.036392 0.026549
7 0.022917 0.018210 18 0.038180 0.024467
8 0.023728 0.019100 19 0.040052 0.022283
9 0.024757 0.040034 20 0.408697 0.483735
10 0.025931 0.038620 - - -

p0(0) = 0.002180, p0(1) = 0.003985, p0(2) = 0.005521, p0(3) = 0.006884.

Example 3. We consider matrix-exponential (ME) service time with the representation b(x) =

αexT S, where α = (4π2 + 1, 0, 0), T =

 0 1 0
0 0 1

−4π2 − 1 −4π2 − 3 −3

, and S = (0, 0, 1)t with

µ = 0.952917. One may note that we have picked the service-time distribution from the paper of
Akar [48] where he uses the state space method to analyse waiting-time distribution of ME/ME/1.
The other parameters are taken as λ = 17.152511, N = 20, a = 4, b = 11 so that ρ = 1.636364.
The characteristic Equation (8) is obtained as follows:

5046.416z14 − 16021.87z13 + 17633.11z12 − 6698.132z11 + 40.47841 = 0, (56)

which gives one roots γ1 = 1.000000, eleven roots inside the unit disk, and two roots out side the
unit circle. We write those roots as γ2 = −0.544626− 0.145851i, γ3 = −0.544626 + 0.145851i,
γ4 = −0.404969− 0.405222i,γ5 = −0.404969 + 0.405222i, γ6 = −0.151554− 0.573269i,
γ7 = −0.151554 + 0.573269i, γ8 = 0.170621− 0.606064i, γ9 = 0.170621 + 0.606064i, γ10 =
0.515050 − 0.475234i, γ11 = 0.515050 + 0.475234i, γ12 = 0.903618, γ13 = 1.051120 −
0.371486i, γ14 = 1.051120 + 0.371486i. The value of p+(n) and p1(n) are given in Table 3,
from which the loss probability of a random arrival customer can be obtained as Ploss = p1(20) =
0.425405.
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Table 3. Computation of post-departure epoch probabilities and arbitrary epoch probabilities (when
the server is busy) for Example 3 with the parameters λ = 17.1525, µ = 0.95291, a = 4, b = 11, N = 20
and ρ = 1.636364.

n p+(n) p1(n) n p+(n) p1(n)

0 0.001159 0.010570 11 0.029512 0.044812
1 0.003243 0.012151 12 0.031757 0.043051
2 0.005972 0.013721 13 0.034298 0.041149
3 0.009064 0.015284 14 0.037253 0.039083
4 0.012264 0.016862 15 0.040715 0.036826
5 0.015375 0.018491 16 0.044761 0.034344
6 0.018268 0.020220 17 0.049444 0.031603
7 0.020885 0.022100 18 0.054801 0.028564
8 0.023235 0.024187 19 0.060862 0.025189
9 0.025383 0.047969 20 0.454308 0.425405
10 0.027432 0.046448 - - -

p0(0) = 0.000064, p0(1) = 0.000244, p0(2) = 0.000575, p0(3) = 0.001077.

Using the procedure discussed in the paper the CDF of queueing-time distribution Wq(t) is
obtained as follows:

Wq(t) =0.999999− 0.9999994e−1.185375tcos(0.8279833t)

− 2.372224e−1.185375tsin(0.8279833t), t > 0. (57)

Moreover, using the method discussed in the paper the CDF of the sojourn-time distribution W(t)
is obtained as follows:

W(t) =0.999992− 0.127843e−0.440013tcos(0.30778t)− 3.03358e−0.440013tsin(0.30778t)

− 0.00186616e−tcos(6.28318t) + 0.000838452e−tsin(6.28318t)− 0.870283e−t, t ≥ 0. (58)

We have conducted an experiment to compare the results between Examples 2 and 3. We have plotted
a graph depicting N versus Ploss, see Figure 2. However, here, we have considered a very high arrival
rate (λ = 17.15251) for the matrix-exponential service-time distribution and λ = 9 for Pareto
service-time distribution. In addition, ρ is the same for both the cases and greater then one. Here, we
increase the value of N and as a result the loss probability slowly decreases in matrix-exponential
case, but in the case of the Pareto service-time distribution the loss probability is higher than that of
the matrix-exponential, service-time distribution.

Figure 2. Effect of N on loss probabilities.
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In Figure 3, we have plotted a graph of N versus mean sojourn time, when the distribution
follows matrix-exponential, as well as the Pareto service-time distribution. Moreover, here we
consider the same traffic intensity (ρ = 1.636364) for both the service-time distributions. One can
observe from Figure 3 that the mean sojourn time for the Pareto service-time distribution is higher
than that of the matrix-exponential, service-time distribution and both of them rise linearly upward.

Figure 3. Effect of N on mean sojourn time.

Example 4. Let us take the service time distribution as PH-type having the representation (β1β1β1, T1T1T1),

where β1β1β1 = (0.25, 0.75) and T1T1T1 =

(
−1 0
0 −2

)
, so that µ = 1.6. Moreover, let us take other

parameters as a = b = 5, λ = 6 with ρ = λ
b·µ = 0.75. Using the method described in the preceding

sections, we obtained the CDF of the sojourn time of a random customer for the M/PH2/1/20
queue. To present a numerical comparison, we have used the CDF values of the sojourn time obtained
in Example 4 of Yu and Tang [49]. In our example, if we take buffer space high (say, N = 300), our
model behaves almost as an infinite-buffer, single-server queue, as the traffic intensity (ρ = 0.75) is
less than one. From Table 4 and Figure 4, it can be observed that while the buffer size (N) is large,
the values of the sojourn time CDF almost match the results of the infinite-buffer queue as obtained
in [49]. Substituting k = 1 into Equation (46), we get the value of the expectation of the sojourn
time in the system for a random customer, E[V] = 1.626046 when N = 20. If we take N = 300, the
expectation can be obtained as E[V] = 2.153832. We also calculated E[V] = 2.153820 using the
sojourn time CDF obtained from [49]. The denominator (28.0z5− 45.0z6 + 18.0z7− 6.25+ 5.25z)
of Equation (7) when equated to zero gives one root equal to 1, four roots inside the unit disk and
two roots outside the unit circle. γ6 = 1.080640, γ7 = 1.265100. Using these γi’s, p+∗(z) can be
expressed by applying the partial-fraction method, as follows:

p+∗(z) = D
( l̂6

z− γ6
+

l̂7
z− γ7

)
, (59)

where D = 1.000000, l̂6 = −0.066828, l̂7 = −0.045404.
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Table 4. Comparison among the CDF of sojourn times from Example 4 with the parameters λ = 6,
µ = 1.6, a = 5, b = 5, N = 20/300 and ρ = 0.75.

W(t) from W(t) from W(t) from
t Present Paper with N = 20 Present Paper with N = 300 Yu and Tang [49] with N → ∞

2 0.689965 0.618004 0.610358
4 0.975235 0.858918 0.856842
6 0.996731 0.946573 0.945808
8 0.999626 0.979706 0.979418

10 0.999957 0.992289 0.992180
12 0.999994 0.997070 0.997029
14 0.999999 0.998887 0.998871
16 0.999999 0.999577 0.999571

For Table 4, a mathematical expression of W(t) for N = 300 is as follows:

W(t) =(−0.058873e−0.78404t sin(3.74003t)− 0.0000129996e1.79961t − 0.973426e1.51618t

+ 0.194208e−0.78404t cos(3.74003t)− 0.423864e0.356990t + 0.999999e2t

+ 0.203411− 0.000312514et)e−2t, t ≥ 0.

Almost similar expressions have been obtained for all other cases, and hence, those are sometimes not
presented in the paper.

Figure 4. Comparison among the CDF of the sojourn times for different values of N from Example 4
of Yu and Tang [49].

Example 5. In this example, we consider phase-type (PH) service-time distribution with the

representation (β2β2β2, T2T2T2), where β2β2β2 = (0.1, 0.6, 0.3), T2T2T2 =

−2 2 0
3 −5 0
0 0 −4

 with µ = 1. The

other parameters are taken as λ = 10, N = 20, a = 3, b = 10, and ρ = 1. We have from the
denominator of (7) as 250z13 − 1025z12 + 1380z11 − 609z10 + 60z2 − 160z + 104, when equated
to zero gives two roots equal to 1, nine roots inside the unit disk, and two roots outside the unit
circle. γ12 = 1.395684, γ13 = 1.636619. Using these γi’s, p+∗(z) can be expressed by applying
the partial-fraction method, as follows:

p+∗(z) = D

(
l̂11

z− 1
+

l̂12

z− γ12
+

l̂13

z− γ13

)
, (60)
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where the values of D, l̂11, l̂12, and l̂13 can be obtained from Equation (14) and partial fraction
method as:

D = −0.386247, l̂11 = 0.131752, l̂12 = −0.048451, l̂13 = −0.035298.

The obtained results are given in Table 5. From the table, the loss probability of a random arrival
customer can be observed as Ploss = p1(20) = 0.221596. The CDF of queueing-time distribution
Wq(t) for the model is obtained using the approach discussed in the paper as follows:

Wq(t) =0.999998− 1.92626e−2.12386t cos(0.744301t)− 7.89988e−2.12386t sin(0.744301t)

+ 0.926266e−1.1913t cos(2.05986t) + 1.26064e−1.1913t sin(2.05986t), t > 0.

Moreover, using similar methodology conferred in the paper, the CDF of sojourn-time distribution
W(t) for the model is obtained as follows:

W(t) =[−5.0501e1.87614t sin(0.744301t) + 0.861564e2.8087t sin(2.05986t)

+ 1.68092e1.87614t cos(0.744301t)− 0.183397e2.8087t cos(2.05986t)

− 0.0876947e−2.37228t − 1.44189e3.37228t

+ 0.999999e4t − 0.967939]e−4t, t ≥ 0.

Table 5. Computation of post-departure epoch probabilities and random epoch probabilities (when
the server is busy) for Example 5 with the parameters λ = 10, µ = 1, a = 3, b = 10, N = 20 and ρ = 1.

n p+(n) p1(n) n p+(n) p1(n)

0 0.029150 0.045410 11 0.050509 0.044813
1 0.036192 0.046814 12 0.050621 0.039850
2 0.040896 0.047768 13 0.050699 0.034880
3 0.044057 0.048419 14 0.050755 0.029904
4 0.046194 0.048866 15 0.050794 0.024925
5 0.047648 0.049174 16 0.050821 0.019943
6 0.048641 0.049388 17 0.050841 0.014959
7 0.049324 0.049537 18 0.050855 0.009973
8 0.049796 0.049640 19 0.050864 0.004987
9 0.050123 0.049713 20 0.050871 0.221596
10 0.050350 0.049764 - - -

p0(0) = 0.002858, p0(1) = 0.006406, p0(2) = 0.010415.

Putting k = 1 and 2 in Equation (42), we obtain the following:

E[Vq] = 1.315271, E[V2
q ] = 2.318872, and

Var(Vq) = 0.588934.

Similarly, a moment of order n can be obtained for the sojourn time in the system for a random
customer by substituting k = 1 and k = 2 in Equation (46):

E[V] = 2.315271, E[V2] = 7.874414, and

Var(V) = 2.513934.

We have plotted loss probability (Ploss) and mean sojourn time (E[V]) against the buffer size N by
varying it from 10 to 45 in Figure 5, from which it is apparent that as the system capacity rises,
Ploss decreases and the mean sojourn time increases linearly apparently.
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Figure 5. Buffer size (N) versus mean sojourn time (E[V]) and N versus loss probability (Ploss).

Example 6. Medhi [7] deals with the waiting-time distribution for the M/M(a,b)/1 queueing
model under steady-state. In this example, we have analysed this model and compared it with the
results of [7]. Here, the service time is assumed to be exponentially distributed with a mean of 1

µ

and B∗(s) = µ
µ+s . Let us take the parameters as a = 3, b = 6, N = 200, λ = 6.7, and µ = 1.7

with ρ = λ
bµ = 0.656863. Following a similar procedure, as described in the examples mentioned

earlier, we have obtained the following results and compared our results with that of [7] in Table 6.
Moreover, we have calculated the CDF of the waiting time in the queue and compared it with the
results of [7]. Using the procedure discussed in the paper, Wq(t) is obtained as follows:

Wq(t) =0.999999− 0.0177191e−5.20699t − 0.125600e−5.10225t cos(10.5612t)

− 0.257258e−5.10225t sin(10.5612t)− 0.856680e−0.905312t

+ 0.0000107034e−0.335552t, t > 0.

Using [7], Wq(t) is obtained as follows:

Wq(t) =1.000000− 0.856711e−0.90531t − 0.434749e−6.7t + 0.360203e−7.60531t − 1.45641e−6.7tt

+ 1.28304te−7.60531t, t > 0.

The results have been exhibited in Table 7 and Figure 6.

Table 6. Performance measures of different quantities with that of [7].

Quantities Expression Results Obtained from Results Obtained from
the Present Paper Medhi [7]

Expected waiting time E(Vq) 0.974087 0.974087
in the queue

Second order moment of Vq E(V2
q ) 2.093599 2.105153

Expected sojourn time E(V) 1.562322 1.562322
in the system
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Table 7. Comparison between numerical results for CDF of queueing time of a random customer
from Example 1 with the parameters λ = 6.7, µ = 1.7, a = 3, b = 6, N = 200 and ρ = 0.656863.

Wq(t) from Wq(t) from
t the Present Paper Medhi [7]

2 0.859884 0.859882
4 0.977085 0.977084
6 0.996252 0.996252
8 0.999387 0.999387
10 0.999900 0.999900
12 0.999984 0.999984
14 0.999997 0.999997

Figure 6. Comparison of CDF of queueing time obtained from this paper against that of Medhi [7].

Example 7. In reference [49], the sojourn-time distribution for the M/M[a]/1 queueing model
under steady-state was numerically illustrated with the parameters a = b = 4, λ = 3.0, and
µ = 1.0, and ρ = 0.75. Reference [49] p. 1511, obtained the expression for W(t) as follows:

W(t) = 1.0 + 0.237540e−3t + 0.339631te−3t + 0.162036t2e−3t − 1.237543e−0.377695t, t ≥ 0.

Using the procedure discussed in this paper W(t) is obtained as follows:

W(t) =0.999999 + (0.141648e−0.23297t sin(7.12046t) + 0.183803e−6.82028t

+ 0.0214328e−0.23297t cos(7.12046t)− 1.20519e0.622305t

+ 0.0000105754e0.767445t − 0.0000332082)e−t, t ≥ 0.

Using Medhi [7], W(t) is obtained as follows:

W(t) =0.999999− 0.0420232e−3.37770tt2 − 0.882464e−3.37770tt− 1.20518e−0.3777t

− 0.621137e−3.37770 − 0.204900e−t + 0.562490e−3.0tt2

+ 1.31248e−3.0tt + 1.03123e−3.0t, t ≥ 0.
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In this example, we have analysed this model and compared it with [7]’s results. Here, the
service time is assumed to be exponentially distributed with a mean of 1

µ = 1.0 and B∗(s) = 1.0
1.0+s .

Following a similar procedure, as described in the aforementioned examples, we have obtained the
following results taking N = 300 and compared our results with that of [49] in Table 8. Also, we
have compared them with the results of [7]. The results have been exhibited in Table 8. Further,
it can be seen that E(V) = 3.147639 exactly matches with that of [7] while E(V) = 3.147645 is
given in [49].

Table 8. Comparison among the CDF of sojourn times from Example 7 with the parameters λ = 3,
µ = 1.0, a = b = 4, N = 300 and ρ = 0.75.

W(t) from W(t) from W(t) from
t Present Paper with N = 300 Medhi [7] Yu and Tang [49]

2 0.445537 0.415938 0.418568
4 0.733605 0.730294 0.726828
6 0.874932 0.874503 0.871656
8 0.941281 0.941208 0.939701

10 0.972411 0.972401 0.971670
12 0.987037 0.987036 0.986690
14 0.993910 0.993910 0.993746
16 0.997139 0.997139 0.997062
18 0.998656 0.998656 0.998620
20 0.999368 0.999368 0.999351

E(V) = 3.147639 E(V) = 3.147639 E(V) = 3.147645

Computation Time Comparison

Finally, the computation time for determining the queue-length distribution at a
post-departure epoch of a batch in an M/PH(3,10)/1/N queueing system using the roots’
method, the GTH algorithm and the RG-factorization technique (extensions of the matrix-
analytic method) have been compared. The computation time for these three techniques
(which are already discussed in the previous remark) has been presented graphically in
Figure 7. We used MAPLE 2015 in a PC with Intel(R) Core i7 processor @3.40 GHz with
8 GB RAM and the Windows 10 environment for this experiment. The PH representation
is taken the same as used for Example 1. The mean arrival rate (λ) is taken as λ = 20.
The buffer capacity (N) varies from 11 to 25, and for each case, the computation time (in
seconds) has been noted down for computing the stationary queue-length distribution at a
post-departure epoch of a batch. The computation times against each buffer capacity are
presented in Figure 7. Moreover, from Figure 7, it may be observed that the computation
time using the roots’ method is lower than that of the RG-factorization technique. Further,
from Figure 7, one can also see that the computation time for the roots’ method and GTH
algorithm are almost the same in the given range of the buffer capacity. One may observe
that the computation time using the roots’ method and GTH algorithm is almost parallel
to the x-axis in the given range of N, see Figure 7.
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Figure 7. Computation time for different techniques with varying number of servers.

6. Conclusions

In this paper, the finite-buffer, bulk-service queue has been analysed, and the steady-
state probability distributions at random- and post-departure epochs have been obtained.
For this purpose, the roots of the characteristic equation are used. After that, the functional
relation between the pgf of the queue-length distribution and the LST of the queueing-time
distribution have been used to obtain the queueing time distribution when the server is busy.
Moreover, we obtain the probability density functions of the sojourn time and the queueing-
time distributions. The analysis of the stationary probabilities for the batch arrivals and
batch service queues have problems in dealing with waiting-time distributions. Instead of
the Poisson arrival process, one may consider a non-renewal (batch) arrival process (MAP
or BMAP arrival processes) to the same bulk-service queue studied in this paper, and in
such a case, the stationary distributions may be achieved using a solution procedure similar
to the present article. The analysis of stationary probability vectors for the corresponding
batch size dependent bulk-service service queues, such as BMAP/MSP(a,b)

n /1/N (∞) and
BMAP/G(a,b)

n /1/N (∞) are interesting problems and may attract researchers’ attention in
the near future.
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Appendix A

Remark A1. It may be remarked here that the results derived in Equations (30) and (31) are
actually the same as the corresponding expressions for these probabilities derived in Equations (2.18)
and (2.19) presented by Chaudhry and Gupta [17], respectively. This fact can be verified as follows:
Solving n linear equations given by (30) with n unknowns p0(n) (0 ≤ n ≤ a− 1), we obtain:
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p0(n) =
1

λT

n

∑
i=0

p+(i) =
∑n

i=0 p+(i)
ρb + ∑a−1

i=0 (a− i)p+(i)
, (A1)

where λT = ρb + ∑a−1
i=0 (a− i)p+(i) using Equation (26). Equation (A1) is exactly the same as

Equation (2.18) in [17]. Next, consider the following pgf as described before:

K̂(z) '
∞

∑
i=0

k̂izi =µ
1− B∗(λ− λz)

λ− λz
=

µ

λ

(
1−

∞

∑
i=0

kizi
)
(1 + z + z2 + · · · ), (A2)

where K(z) = B∗(λ− λz) ' ∑∞
i=0 kizi. Now, comparing the coefficients of the like powers of z in

both sides of Equation (A2), we obtain:

k̂n =
µ

λ
(1−

n

∑
i=0

ki), n ≥ 0. (A3)

Substituting k̂n from Equation (A3) on the right-hand side of Equation (31), using Equation (2)
and after simplification, we get:

p1(n) =
∑

min{b+n,N}
i=n+1 p+(i)

ρb + ∑a−1
i=0 (a− i)p+(i)

, 0 ≤ n ≤ N − 1, (A4)

which is exactly the same expression as given by Equation (2.19) in [17].
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