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Abstract: In the past several single classifiers, homogeneous and heterogeneous ensembles have been
proposed to detect the customers who are most likely to churn. Despite the popularity and accuracy
of heterogeneous ensembles in various domains, customer churn prediction models have not yet
been picked up. Moreover, there are other developments in the performance evaluation and model
comparison level that have not been introduced in a systematic way. Therefore, the aim of this study
is to perform a large scale benchmark study in customer churn prediction implementing these novel
methods. To do so, we benchmark 33 classifiers, including 6 single classifiers, 14 homogeneous, and
13 heterogeneous ensembles across 11 datasets. Our findings indicate that heterogeneous ensembles
are consistently ranked higher than homogeneous ensembles and single classifiers. It is observed that
a heterogeneous ensemble with simulated annealing classifier selection is ranked the highest in terms
of AUC and expected maximum profits. For accuracy, F1 measure and top-decile lift, a heterogenous
ensemble optimized by non-negative binomial likelihood, and a stacked heterogeneous ensemble are,
respectively, the top ranked classifiers. Our study contributes to the literature by being the first to
include such an extensive set of classifiers, performance metrics, and statistical tests in a benchmark
study of customer churn.
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1. Introduction

Customer retention has proven to be valuable for a company in several ways [1]. First,
customer retention will make sure that companies can focus on keeping their existing
customers happy instead of attracting new risky customers. Second, satisfied customers
spread positive word-of-mouth and thereby attracting potential leads. The same holds
for dissatisfied customers who can share negative experiences, meaning that it is vital to
keep customers happy. Third, long-term customers are also more loyal and less costly to
serve given the knowledge of their previous demands. Finally, it is around five or six times
cheaper to retain customers than to acquire them. Hence, successful customer retention
does not only reduce costs but can also induce an increase in profit [2].

Because of the significant financial implications of correctly predicting customer
churn [1,2], customer churn prediction (CCP) models have become utterly important in
customer relationship management (CRM) to identify the customers who are most likely to
terminate their relationship [3]. As a result, there has been a lot of focus on developing new
methods to improve the accuracy of the churn predictions [2]. Traditionally, CCP models
are divided into single classifiers and ensembles. Among the plethora of single classifiers,
logistic regression and decision trees are the two most popular techniques because of
their simplicity, interpretability, and reasonable performance [4,5]. Other important single
classifiers for predicting churn are naive Bayes, support vector machines, and neural
networks [6].
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Besides single classifiers, ensembles such as random forest and adaboost have proven
to yield superior performance compared to single classifiers in various studies [7,8]. There
are two kinds of ensembles, namely, homogeneous and heterogeneous [9]. Homogeneous
ensembles combine the same base classifier using different sampling methods [10,11].
Heterogenous ensembles are a combination of different base classifiers, which can be single
classifiers but also homogeneous ensembles.

Despite the fact that there are two kinds of ensembles, homogeneous ensembles have
been getting the most attention in CCP literature. This is a missed opportunity since
large scale benchmark studies in related domains have proven the value of heterogeneous
ensembles [9,12]. Given the comparative little attention to heterogeneous ensembles in CCP,
several design issues remain unclear. Besides the inclusion of heterogenous ensembles in
the set of classifiers, there are several other recent advances in predictive analytics that have
received little attention in large scale CCP benchmark studies, namely, (1) the introduction
of highly competitive methods such as the logit leaf [13], lightGBM [14], and catboost [15];
(2) the different type of performance metrics including profit-based model evaluation [16];
and (3) the use of both statistical and Bayesian hypothesis testing to compare classifier
performance [17].

Our contributions are the following:

• We provide a comprehensive overview of the state-of-the-art ensemble methods in
CCP and conduct the largest benchmark study to date. More specifically, we compare
6 single classifiers, 14 homogeneous ensembles, and 13 heterogeneous ensembles
across 11 public and private data sets. By using several open-source data sets we
ensure that our results are replicable and generalizable.

• We include several novel classifiers that have not yet been included in large scale
benchmark studies. Especially, gradient boosting implementations such as lightGBM
and catboost have received comparatively little attention in CCP. However, these mod-
els have empirically demonstrated to outperform other classifiers in other domains
(e.g., [18,19]).

• We develop novel heterogeneous ensembles using a wide variety of base classifiers
and advanced classifier selection methods that have not been used in previous work.
For the base classifier pool, we apply several powerful classifiers into the heteroge-
neous ensemble framework [20]. For the classifier selection methods, research has
mainly adopted heuristic search procedures such as hill climbing [21]. To the best of
our knowledge, we are the first to compare advanced meta-heuristic and statistical
optimization procedures to perform classifier selection.

• We use five different types of evaluation metrics that each measure a different aspect
of CCP model performance, namely, overall statistical performance, performance for
top ranked would-be churners, and profit-driven performance.

• Both frequentist and Bayesian hypothesis tests are applied to test the significance
of our results. More specifically, the Friedman test with the Rom’s procedure [22]
and the Bayesian signed-rank test with region of practical significance (ROPE) are
performed [23].

The remaining paper is structured as follows. We start by discussing prior research
in CCP. Next, we present the different classifiers and go over the experimental set-up.
Finally, we present the results and give our definitive conclusion and recommendations for
future research.

2. Related Work
2.1. Ensemble Methods

Ensemble methods are a popular way to increase the predictive accuracy of single
classifiers. Ensemble methods are often referred to as multi-classifier systems since they
combine the strengths of multiple classifiers to achieve better performance than the best
individual classifier [24]. From a theoretical point-of-view, ensemble methods solve the sta-
tistical, computational, and representational problems associated with single classifiers [25].
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In essence, these theories state that multiple classifiers filter out faulty hypotheses, over-
come local optima, and cover different parts of the input space, thereby complementing
each other’s deficiencies and increasing predictive performance [24]. Research has con-
cluded that the performance of ensemble methods are driven by diversity and accuracy [26].
Diversity means that the constituent members of an ensemble should reach different de-
cisions to increase performance. Ideally, an ensemble strives for high accuracy of the
individual members combined with high level of disagreement between the members.

Creating an ensemble method includes two steps: determining the base classifiers
and combining the outputs of the individual base classifiers [9]. Homogeneous ensembles
pool together predictions of the same base classifier to achieve better predictions [9]. The
main idea behind homogeneous ensembles is to create differences among the individual
members by promoting data-driven diversity. Data-driven diversity can be created by
partitioning the data or feature space such that it is different for each model [26]. The most
well-known data-driven diversity generators are bagging, random subspaces, boosting,
and rotation forest [9]. Since the constituent members of the ensemble should be sensitive
to small changes, decision trees are among the most popular base classifiers.

Heterogeneous ensembles combine different base classifiers and add another step to
the ensemble creation process, namely, classifier selection or classifier pruning [11]. After
creating the initial base classifier pool, heterogeneous ensembles intelligently select the
optimal set of classifiers before combining their outputs. Classifier selection can thus be
tackled as an optimization problem with the objective of reaching maximum accuracy
(or any other performance metric). By doing so, heterogeneous ensembles promote both
high accuracy (i.e., only highly performant members enter the ensemble) and diversity
(i.e., different base classifiers cover different parts of the solution space). The included base
classifiers can be either single classifiers or homogeneous ensembles [25]. Since theory
states that ensembles are likely to perform better than the individual quality of the best
possible constituent member, heterogeneous ensembles should theoretically outperform
homogeneous ensembles.

In sum, the difference between homogeneous and heterogeneous ensembles are
twofold. First, the base classifiers in homogeneous ensembles are always the same single
classifiers, and diversity is created via variations in the input data or features. Heterogenous
ensembles start from a pool of different classifiers and create diversity via variations in clas-
sifiers and input data. Second, homogenous ensembles give an equal weight to the results
of each base classifier by simply combining the responses of each individual model. Het-
erogeneous ensembles intelligently select which classifiers to include in the final ensemble
and attribute a higher weight to more performant members in the final combination.

2.2. Ensemble Methods in Customer Churn

Customer churn prediction is a procedure to allocate a probability to churn to a
customer based on the relationship between historical data and future tendencies [27].
Customer churn prediction can be considered as a binary classification problem in which
the performance depends on the quality of the historical data and the chosen classifier [28].
Previous research has shown that there is a direct link between the chosen classifier and
the return on investment of a retention campaign [2,5]. As a result, several single classifiers,
homogenous and heterogeneous ensembles, have been proposed to accurately predict
customer churn.

Table 1 summarizes research on customer churn prediction literature based upon the
used classifiers, performance metrics, and statistical tests. To include all relevant articles,
we searched in the major journal databases, such as Elsevier, IEEE Xplore, SpringerLink,
ScienceDirect, ACM Digital Library, and Google Scholar. In these databases, the search
term criteria were based on the following terms: {‘customer churn’ or ‘customer attrition’
or ‘customer retention’, or ‘churn’} and {‘ensemble’}. The main criteria to include papers
were: (1) articles containing the search terms in the keywords or abstract or title; (2) articles
published in journals, conference proceedings, or lecture notes; (3) articles published
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between 2005 and 2022 with a special emphasis on the last 5 years; (4) the inclusion of
at least one ensemble method; and (5) performing an empirical comparison of different
classifiers. Articles that do not use an ensemble method were immediately discarded.
The goal of the literature review was not to provide a complete overview of customer
churn prediction. For a general overview of customer churn prediction, we refer the reader
to [1–3].

Classifiers in CCP are categorized into single classifiers, homogenous and hetero-
geneous ensembles. Research using single classifiers often includes models such as lo-
gistic regression [29], decision trees [30], support vector machines [31], and neural net-
works [32]. Although logistic regression is often seen as the gold standard, other studies
have demonstrated that other techniques are capable of performing better [13]. For exam-
ple, Vafeiadis et al. [6] showed that logistic regression underperformed when compared
to neural networks, decision trees, and support vector machine classifiers. To increase the
performance of single classifiers, a wide range of homogeneous and heterogenous ensem-
bles have been proposed. For example, Coussement et al. [7] shows that decision trees and
generalized additive models underperform when compared to their ensemble counterparts,
random forest, and generalized additive model ensembles. Baumann et al. [33] showed that
a selective hill climbing heterogenous ensemble outperformed all other single classifiers
and homogeneous ensembles.

Evaluation metrics in CCP are classified according to whether they are cut-off depen-
dent, cut-off independent, or take profits into account. In the case of cut-off dependent
measures, a threshold should be set to determine whether or not a customer is classified as
a churner. After the cut-off is chosen, several metrics are calculated based on the confusion
matrix. The most popular cut-off dependent metrics in CCP are accuracy and top-decile
lift [2]. Cut-off independent measures, on the other hand, are independent of the chosen
threshold and the operating conditions [34]. The Area under the Receiver Operating Char-
acteristic (AUC) is the most well-known metric since it intuitively estimates the probability
that a randomly chosen churner is ranked higher than a non-churner [31]. Finally, profit-
driven performance metrics take into account the expected profits of setting up a targeted
advertising campaign [35]. The expected maximum profit criterion for churn (EMPC)
incorporates the costs and benefits of a retention campaign into a coherent performance
measure and allows to select the most profitable customers [16].

Finally, CCP studies are characterized by whether or not they use a formal testing
procedure to compare the results. There are two types of procedures, namely, statistical or
Bayesian tests. The former methods range from pairwise to non-pairwise and parametric
and non-parametric tests [22,36]. Among the plethora of statistical testing procedures, the
non-parametric Friedman test with family-wise error correction is the most popular [13].
Several Bayesian alternatives are available to their frequentist counterparts but have not
yet found their introduction in CCP.

Looking at Table 1, several trends can be spotted. First, future studies will continue
to look for the silver bullet and introduce novel highly accurate ensemble method. This
can be achieved by introducing highly performant models in the base classifier pool [37] or
employing general purpose solvers with specific objective function for tuning which the
individual models enter the ensemble [9]. Another stream of research will further focus on
designing ensembles which directly maximize the business objective, with an emphasis
on profit-centered optimization [21]. A final trend is the search for both accurate and
interpretable ensemble models and coming up with methods to open the black box [38].
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Table 1. Overview of ensemble methods in customer churn prediction.

Classifiers 1 Evaluation 2 Tests 3

Study Single Hm Ht No 4 D I P No Stat B

Buckinx and Van den Poel 2005 [39] X X 3 X X 2
Lemmens and Croux 2006 [8] X X 4 X X 3
Burez and Van den Poel 2007 [29] X X 3 X X X 3
Coussement and Van den Poel 2008 [40] X X 3 X X 3 X
Burez and Van den Poel 2009 [41] X X 2 X X 3 X
Tsai and Lu 2009 [32] X X 3 X 3 X
Xie et al., 2009 [42] X 4 X 2
De Bock and Van den Poel 2011 [43] X 5 X X 4 X
Ballings and Van den Poel 2012 [4] X X 3 X 1 X
De Bock and Van den Poel 2012 [44] X X 6 X X 4 X
Kim et al., 2012 [45] X X 6 X 1
Verbeke et al., 2012 [2] X X 16 X X X 3 X
Coussement and De Bock 2013 [7] X X 4 X 2 X
Idriss et al., 2012 [46] X X 5 X 4
Baumann et al., 2015 [33] X X 15 X 1 X
Vafeiadis et al., 2015 [6] X X 6 X 4
Coussement et al., 2017 [27] X X 9 X X 2 X
Idriss and Khan 2017 [47] X X X 5 X X 2
Oskarsdottir et al., 2017 [35] X X 3 X X X 4 X
Zhu et al., 2018 [48] X 3 X 1 X
Zhu et al., 2017 [49] X X X 7 X X X 3 X
De Caigny et al., 2018 [13] X X 5 X X 2 X
Zhu et al., 2018 [50] X X 4 X X X 3 X
Ullah et al., 2019 [10] X X 11 X X 6
Jain et al., 2020 [51] X X 2 X X 8
Bhujbal and Bavdane 2021 [52] X X X 7 X 1
Chowdhury et al., 2021 [53] X 4 X X 2
Deng et al., 2021 [54] X 3 X X 3
De Bock and De Caigny 2021 [38] X X 8 X X 2 X
Janssens et al., 2022 [55] X X 7 X X X 3 X
Karuppaiah and Palanisamy 2021 [56] X X X 5 X X 2
Kiguchi et al., 2022 [57] X X 3 X X 2
Lessmann et al., 2021 [21] X X X 18 X X X 3 X
Sagala and Permai 2021 [58] X 3 X X 2
Vo et al., 2021 [59] X X 4 X 4 X
Wu et al., 2021 [11] X X 6 X X 5
Gattermann and Thonemann 2021 [60] X X 3 X X 2
Mirkovic et al., 2022 [28] X X 3 X X 2
Our study X X X 33 X X X 5 X X

1 The abbreviations stand for: single = single classifiers, Hm = homogeneous ensemble, Ht = heterogeneous
ensemble, No = number of classifiers. 2 The abbreviations stand for: D = cut-off dependent measures, I = cut-off
independent measures, P = profit-driven measures, No = number of evaluation metrics. 3 The abbreviations stand
for: Stat = statistical hypothesis testing, B = Bayesian testing. 4 We only count the number of unique classifiers
(No). For example, if a support vector machine is used with a linear and a polynomial kernel this is only counted
as one classifier.

2.3. Conclusions of the Related Work

From Table 1, the following conclusions can be drawn. First, the performance of
ensembles is often compared to single classifiers. In several studies, logistic regression
is considered as the gold standard, and novel approaches are designed to outperform
the benchmark [31]. Whereas this approach can be beneficial to check whether a simple
solution is not better, novel methods should ideally be benchmarked against other ensemble
models. Moreover, the average number of classifiers is equal to 5.70, which is rather low
for a large scale benchmark study. The reason for this low number can be found in the fact
that most researchers make an intelligent selection of classifiers to compare to their novel
method [13] or adapt the selected algorithms to their business setting [11].
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Second, homogeneous ensembles are very common and are examined in almost every
study. This is probably due to their overall good performance and the ease of constructing
such models because of the off-the-shelf implementations available in business analytics
software such as Microsoft Azure Machine Learning, IBM Watson, Google Cloud AI, etc.,
and open source programming languages such as R, Python, Julia, Java, and many others.

Third, only four studies have investigated the use of heterogeneous ensembles, also re-
ferred to as selective ensembles. Moreover, most studies only use one method (directed hill
climbing) to select the best candidate models for the ensemble [21]. The reason for this low
interest in heterogeneous ensembles is twofold. First, there is no software available to easily
implement heterogeneous ensembles. Second, to properly implement a heterogeneous
ensemble researchers should consider several design issues, such as the model library and
the optimal classifier selection method. Given that heterogeneous ensembles have received
comparably limited attention for a long time, several of these issues remain unclear for
the broader research community, which hampers their implementation. However, sev-
eral authors have shown that heterogeneous ensembles outperform single classifiers and
homogeneous ensembles in credit scoring [9,20,37]. Therefore, it is crucial to incorporate
different heterogeneous ensembles in a large experimental comparison for CCP.

Fourth, it is clear that the use of multiple performance metrics is a standard procedure.
Most commonly the top-decile lift (TDL) is combined with the AUC, since the former
focuses on the classifier’s ability to detect the most risky customers and the latter on the
overall avoidance of misclassification [29]. Recently, there has been a shift from accuracy-
driven evaluation to profit-driven performance evaluation [2]. The reason for this shift
can be found in the fact that the ultimate goal of CCP for managers is profitability and not
statistical performance. As a response to this discrepancy, Verbraken et al. [16] proposed
the expected maximum profit criterion for customer churn (EMPC), which compares the
benefits of correctly classifying instances with the costs of incorrectly classifying instances
in a probabilistic approach.

Finally, most studies use a statistical testing procedure to compare the results of
different classifiers. Several tests have been proposed in literature such as the χ2 test [40],
the paired t-test [32], the Friedman test with Holm’s procedure [44], and the Breslow-
Day test [27]. The use of these statistical tests improves the validity of the results and
makes the comparison between algorithms unambiguous. Based on Garcia et al. [22], the
state-of-the-art statistical testing procedure to compare multiple classifiers across data
sets is the Friedman test with either Rom’s or Holm’s procedure, depending on whether
the comparison is made with the top performer or each other. However, ever since the
American Statistical Association made a statement against p-values, the frequentist null
hypothesis testing is falling out of favor in several research fields, including machine
learning. Hence, Bayesian tests have become the state-of-the-art tests for comparing
classifier performance in machine learning [61]. The benefits of using such Bayesian
procedures have already been proven in other business domains [17,62], but are not often
used in customer churn prediction.

From the aforementioned conclusions, we observe that an extensive experimental
evaluation of the different single classifies and ensemble methods is missing. Whereas
several studies have performed a large scale benchmark study when introducing a novel
method, the results across articles are often contradictory. This is not surprising given
that there is no-free-lunch in machine learning, and the best classifier always depends
on the specific application, the characteristics of the data set, the considered baseline
classifiers, and the evaluation metrics. Hence, a large scale benchmark study of the state-
of-the art methods in customer churn prediction is necessary to account for the variation
in performance. This benchmark should serve as a reference study for researchers and
practitioners to select the most appropriate approach in their situation and spur further
developments in the field.

The aim of this study is to set up such a benchmark study that solves the current
limitations in terms of considered classifiers, evaluation measures, and statistical testing
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procedures to acquire a holistic view on the current state of the art. For the included classi-
fiers, our study incorporates single classifiers, as well as homogeneous and heterogeneous
ensembles. Several novel classifiers are added that have been proven to yield superior
performance, such as the logit leaf model, rule-based ensembles, and the highly performant
and efficient gradient boosting implementations lightGBM and catboost. Whereas these
methods have empirically demonstrated their great performance, they have not yet been
included in a broad experimental evaluation for CCP, nor have they been included in
heterogeneous ensembles. For the heterogeneous ensemble, previous work in CCP mainly
relied on the hill-climbing algorithm for ensemble selection. However, a wide range of
meta-heuristic and statistical search procedures can be employed for ensemble selection.
The evaluation measures included in our study measure different aspects of the CCP model,
which allow researchers and practitioners to acquire a 360 view on classifier performance.
The AUC measures the overall performance of a classifier across all possible thresholds.
Accuracy also evaluates the general performance of a classifier by measuring the hit rate
at a certain threshold. In contrast, the top-decile lift specifically focuses on the fraction
of customer with the highest probability of churning. Whereas all previous metrics are
based on statistical performance, the EMPC is a profit-driven performance metric that
allows users to select the most profitable customers. Next to the traditional statistical tests,
our study conducts the appropriate Bayesian tests to compare the performance between
classifiers [23]. These tests can accept a null hypothesis based on the estimated probability
and can be seen as more in-depth p-values.

The final aim of this study is to increase the generalizability and replicability of the
current best practices. To do so, we benchmark the classifiers across eight publicly available
and three private data sets and provide the full code of our experiments on a GitHub
repository (https://github.com/MatthBogaert/BenchmarkingEnsemblesInCCP (accessed
on 16 February 2023)). Whereas other studies have included more data sets, the majority
of these data sets are often propriety. For example, De Bock and De Caigny [38] used
14 data sets, of which only 1 is publicly available. By including a mix of both public and
private data sets, we ensure that our results are replicable (i.e., the majority is publicly
available) and generalizable (i.e., private data sets might include other characteristics). As
such, we hope to spur a broad adaptation by practitioners and serve as a reference point
to researchers.

3. Materials and Methods

In this section we elaborate on the classification methods included in this study. In total,
we compare 33 different single classifiers, homogeneous and heterogeneous ensembles. Our
motivation for the selected classifiers is based upon the following criteria: (1) popularity
within CCP [2], (2) high performance in previous benchmark studies in CCP [13], (3) high
performance in related business domains [9,19,20], and (4) the fact that these classifiers
cover different levels of complexity [34]. Since a detailed description of the classifiers
is impossible, we briefly discuss the motivation and characteristics of each classifier in
several tables. Since most of the classifiers require several hyperparameters, we also include
their candidate settings based on previous work. If no information is provided about the
candidate settings, the default values are used. We refer to Section 4.1 for more information
about the tuning process.

3.1. Single Classifiers

Before discussing the most important ensemble methods, we first go over the most
popular methods used in churn prediction, based on Vafeiadis et al. [6]. Single classifiers are
divided into parametric methods (e.g., logistic regression and naïve Bayes), semi-parametric
methods (e.g., artificial neural networks and support vector machines), and parametric
methods (e.g., decision trees). Table 2 gives an overview of the included single classifiers.

https://github.com/MatthBogaert/BenchmarkingEnsemblesInCCP
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Table 2. Overview of the single classifiers.

Classifier Abbreviation Description Hyperparameters

Logistic regression LR

LR is considered the gold standard in
churn prediction, due to its
ease-of-implementation, reasonable
performance and interpretability [5,51].

Lasso = true
Lambda = 2ˆ{−14, −12, −10, . . . , 10,
12, 14}

Decision tree DT

The main idea is to partition the data
using rules that maximize the
homogeneity of the prediction class in
the nodes after each split [4]. The CART
trees use the Gini index as a splitting
criterion, and are easy to interpret [63,64].

Minimal leaf size = number of
instances×(0.01, 0.025, 0.05, 0.1, 0.25,
0.5)
Prune = true, false with CP = 0.01

Naïve Bayes NB

NB uses the Bayes’ theorem with an
independence assumption for the
features, which implies that all features
are equally important to predict churn. It
then estimates the class-conditional
probabilities per feature to come up with
final predictions [34].

/

Support vector machines SVM

SVM uses the kernel trick to map the
input to a high dimensional feature space
[65]. Given a certain kernel function, the
model then constructs a hyperplane that
maximizes the margin between
the classes.

Kernel = RBF
C = 2−5, 2−1, 23, 27, 211, 215

Υ = 2−15, 2−11, 2−7, 2−3, 21, 23

Logit leaf model LLM

The core idea is that decision trees create
different segments of the data on which
logistic regression models are built. By
doing so, the LLM combines
comprehensibility with accuracy [13].

Minimal leaf size = 100

Prune = 0.25

Artificial neural networks ANN

We implement a Multi-Layer Perceptron
(MLP), which is a network that is
organized in at least three layers: input,
hidden, and output layer. The nodes of
the input layer correspond with the
independent variables and the dependent
variable is represented in the output layer.
The hidden layer is fully connected with
the input and output layer and captures
non-linearity of the data [17]. MLPs are
trained using the back-propagation
algorithm and the sigmoid activation
function is used [17].

Max number of weights = 5000
Max number of iterations = 5000
Decay = 0.001, 0.01, 0.1
Size = 2, 3, . . . , 20

3.2. Homogeneous Ensembles

Homogeneous ensembles are combinations of the same type of base model, but each
trained on a different part of the data or features [66]. The most important types of
homogeneous ensembles are based on bagging, boosting, or rotations and are categorized
according to whether the base classifiers are processed independently or dependently of
each other [43]. For example, the base models in bagging are built independently, whereas
in boosting they are trained dependently in a sequential way. Table 3 summarizes the
homogeneous ensembles including a general description and their hyperparameter settings.
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Table 3. Overview of the homogeneous ensembles.

Classifier Abbreviation Description Hyperparameters

Bagging BAG

Bagging stands for bootstrap aggregating and
was invented by Leo Breiman [63]. The idea is
to train independent classifiers on bootstrap
samples of the original data set. This is often
performed by growing CART on the bootstrap
samples. However, bagging can be combined
with any base classifier.

Number of bootstrap
samples = 10, 20, 30, . . . , 100

Uniform subsampled
ensemble USE

USE is a variation on bagging, where the
training samples are uniformly divided
without replacement, and thus less data is
needed to train the model [45].

Number of uniform samples =
10, 15
Kernel = RBF

Random subspace method RSM RSM trains different samples of the data using
random subsets of the features [67]. Number of samples = 100

Random forest RF

RF combines bagging and random subspace
method with CART as a base classifier [68].
The main idea is to decorrelate the trees in the
ensemble, thereby decreasing the variance [69].

Number of predictors to
consider (m) = sqrt(number of
variables)
Number of trees = 500

Improved balance
random forest IBRF

IBRF is a combination of weighted random
forest, where the minority class has a higher
prediction weight, and balanced random
forests, where the minority class is
oversampled [42]. The idea is that the best
features are learned iteratively by changing the
class distributions such that a higher penalty is
given to misclassifications of the
minority class.

Number of trees = 50
m = 0.5
d = 0.1

Adaboost ADA

The original boosting algorithm adaboost
sequentially gives more weight to misclassified
observations in order to boost the performance
of the final ensemble [8].

Number of iterations = 10, 50,
100, 250, 500, 1000

Stochastic gradient boosting SGB

Gradient boosting iteratively fits additive
models on the residual error to minimize a
certain loss function [70]. Stochastic gradient
boosting is an extension that adds randomness
to each iteration by training on a random
subsample of the data.

Number of iterations = 50, 100,
250, 500
Maximum depth = 4, 6, 8
Shrinkage = 0.1

XGBoost XGB

XGB is a computational and mathematical
improvement over the gradient boosting
algorithm [71]. XGB calculates the
second-order derivative of the loss function to
speed up convergence and adds a penalty term
to the individual trees to avoid overfitting.

Same as SGB

Light GBM LGBM

LGBM is a powerful and light-weighted
implementation of gradient boosting [14]. The
main innovation of LGBM lies in the use of
leaf-wise tree building and a histogram-based
greedy search. By using these two techniques,
the training time and memory usage is
significantly decreased.

Same as SGB
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Table 3. Cont.

Classifier Abbreviation Description Hyperparameters

Catboost CATB

CATB is the most recent gradient boosting
alternative and is designed to work
particularly well with categorical features [15].
CATB proposes ordered gradient boosting to
improve the training process and ordered
target statistics to effectively handle
categorical features.

Same as SGB

Logistic model tree LMT

LMT uses a combination of decision trees and
LogitBoost to create predictions [72].
LogitBoost is equivalent to adaboost with the
exception that it uses a logistic loss function.
LMT start by constructing a LogitBoost model
at the root node and then splits the data using
the C4.5 splitting rules and creates new
LogitBoost models on the child splits.

Number of iterations = 200

Rotation forest ROTFOR

Rotation-based classifiers rotate the training
data of the base classifiers by applying a
rotation of the axes. The most well-known
algorithm in this case is rotation forest, which
applies principal components analysis on each
bootstrap sample [43].

Number of samples = 100
Number of predictors to
consider = 3

Alternating decision trees ADT

ADT is a combination of prediction and
decision nodes, where the final prediction is
the sum of the prediction along the path of the
tree that a customer has followed [73].

Number of iterations = 10, 20,
30, 40, 50

Prediction rule-based
ensembles PRE

PRE combines the benefits of tree-based
ensemble methods with the interpretability of
simple rules [74]. PRE create an initial set of
rules from a gradient boosting model and
retain a sparse set of rules by using lasso
regression. The original variables are also
added to the final regression by using linear
basis functions.

Base ensemble = gradient
boosting
Rule inductor = conditional
inference tree

3.3. Heterogeneous Ensembles

Heterogeneous ensembles combine different base classifiers, which can be single clas-
sifiers or homogeneous ensembles [75]. The main advantages of heterogeneous ensembles
are that (1) the individual members have different views on the same data, thereby increas-
ing diversity; and (2) all members are trained on the whole training set most of the time,
which increases accuracy [66]. Since there has been limited attention in customer churn
prediction literature for heterogeneous ensembles, we base our ensemble selection methods
extant literature from credit scoring [9] and ensemble research in general [26].

Figure 1 shows the main principles to form heterogeneous ensembles: (1) base clas-
sifier pool generation, (2) ensemble selection or pruning, and (3) classifier combination
or fusion [21]. First, the constituent members are trained individually to create the base
classifier pool or model library. In our case, our library includes 19 base classifiers (see
Sections 3.1 and 3.2), which cover a wide variety of models to directly increase diversity [20].
Second, classifier selection or pruning is performed to find an optimal subset of models
to include in the ensemble. This step is implemented an optimization procedure with
the objective maximize predictive accuracy, which can be tackled by any heuristic search
procedure. Finally, the predictions of the individual base classifiers are combined or fused
using a (weighted) average or meta-learner. Note that the results are combined using a
weighted average in case ensemble selection is performed. If no selection is performed,
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results can be aggregated using a (weighted) average or meta-learner. Following Lessmann
et al. [9], we consider these models also as heterogeneous ensembles. In the next sections,
we discuss our proposed methods for classifier selection and combination. Table 4 provides
an overview of our heterogenous ensembles with the settings of the hyperparameters.
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Table 4. Overview of our heterogeneous ensembles.

Method Abbreviation Hyperparameters

Standard average AVGS /

Weighted average AVGW /

Stacking STACK Meta-learner = Random forest

Genetic algorithm GA

Selection method = binary tournament selection
Population size = 7 × number of variables
Mutation chance = 0.033, 1/Population size
Number of generations = 500
Elitism = max(1, 0.05 × Population size)

Hill-climbing ensemble selection with bagging HCES-BAG Number of iterations = 5, 25

Non-negative binomial likelihood NNBL /

Goldfarb-Idnani Non-Negative Least Squares GINNLS /

Lawson-Hanson Non-Negative Least Squares LHNNLS /

Differential evolution DE

Crossover probability = 0.5, 0.6938
Step size = 0.9314
Population size = 20, 100
Number of generations = 50, 500

Particle swarm optimization PSO Swarm size = 30, 40
Iterations = 100, 500

Generalized simulated annealing GSA

Iterations = 500
Temperature = 0.5
Maximum calls = 1 × 107

Visiting parameter = 2.7
Acceptance parameter = −5
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Table 4. Cont.

Method Abbreviation Hyperparameters

Memetic algorithm MA

Population size = 60
Local search = CMA-ES
Iterations = 300
Effort = 0.5
Alpha = 0.5
Threshold = 10 × 10−8

Self-organizing migrating algorithm SOMA

Path length = 3
Step length = 0.11
Perturbation chance = 0.1
Minimum absolute step = 0
Minimum relative step = 0.001
Number of migrations = 300
Population size = 10

3.3.1. Classifier Selection

The goal of classifier selection is to determine the optimal set of base classifiers to enter
the ensemble from a model library [9]. Similar to feature selection, classifier selection can
improve performance by eliminating the classifiers that are correlated with other classifiers
or those that are not performing well. Given the resemblance with feature selection, we
draw inspiration from feature selection literature for the proposed methods. Our included
optimization methods encompass both meta-heuristics and statistical procedures. The
former can be divided into population-based or single-solution-based procedures. The
most common way to perform classifier selection is to train the weights that you assign
to a certain base classifier in the ensemble [9]. For the statistical procedure, the weights
are always set to minimize the error rate. For the meta-heuristics, these weights are
optimized towards a specific performance measure (e.g., AUC). Selection can be performed
by selecting those classifiers that have a weight above a certain threshold.

The most well-known population-based method in ensemble literature is a genetic
algorithm [76,77]. A genetic algorithm is an evolutionary algorithm that finds the optimal
solution via the principle of survival of the fittest [78]. A genetic algorithm based on selective
ensemble (GA) first assigns random weights to the individual members of the ensemble.
The length of the chromosomes equals the number of base classifiers, and the values
represent the weights assigned to each base classifier. The objective function optimizes the
weights in such a way that predictive performance is optimized. This implies that base
classifiers that contribute more to the accuracy of the ensemble receive higher weights,
and bad performing models receive lower weights or are excluded. Previous research has
shown that GA outperforms bagging and boosting [79]. For the other population-based
methods, we choose techniques that are particularly popular in feature selection given
their similarities with classifier selection, namely, particle swarm optimization (PSO) [80] and
differential evolution (DE) [81].

For the single-solution based methods, the hill-climbing ensemble selection method with
bagging (HCES_BAG) has been found to be the top performing selective ensemble in credit
scoring [9]. The hill-climbing ensemble selection first selects the best base classifier and
then tries to improve the performance by adding a member to the ensemble. The classifier
that increases predictive performance the most is kept, and the procedure is repeated until
no improvement is possible to the ensemble [21]. This is repeated several times by taking
bootstrap samples from the base model library, and the final results are averaged. Other
popular single solution methods are generalized simulated annealing (GSA) [82], memetic
algorithm (MA) [83], and self-organizing migrating algorithm (SOMA) [83].

Finally, we also propose several statistical methods since they impose a non-negative
constraint and do not require parameters to be tuned [84]: non-negative binomial likelihood
(NNBL), Goldfarb-Idnani Non-Negative Least Squares (GINNLS), and Lawson-Hanson Non-
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Negative Least Squares (LHNNLS). These methods solve the classifier selection problem as a
least squares regression problem in which they enforce the coefficients to be non-negative.
By doing so, the weights remain between zero and one and can be used to select the
best classifiers.

3.3.2. Classifier Combination

The goal of classifier selection is to determine the optimal set of base classifiers to
enter the ensemble. After the selection step, the predictions of the models should be
combined. Following previous studies on selective ensembles [21], our models output
probability scores because the probabilities have more information than just the class labels.
Since the output score distribution varies a lot across the different models, we should first
transform the raw output scores to well-calibrated posterior probabilities. As such, the
output from all selected classifiers have the same measurement level and can be easily
combined [85]. To calibrate the posterior probabilities, we built a probability-mapping
classifier that maps the non-calibrated scores to the true response. This model is then used
to transform the raw output scores to the calibrated posterior probabilities [86]. The first
step of our algorithm performed equal frequency binning on the raw output scores. Next,
for each bin, the mean value of the old scores Pold and the proportion of positives in the
true labels Ptrue were computed. Finally, a probability-mapping algorithm was built, which
estimates the relationship Ptrue = f (Pold). In our case, we chose random forest as our
probability-mapping algorithm, which was then applied to unseen data to acquire the final
posterior probabilities.

After this process, we combined the predictions of the selected classifiers. Following
Lessmann et al. [9], we included simple averaging (AVGS) and weighted averaging (AVGW)
of all the base classifiers as separate methods. Note that some of the previously mentioned
selection algorithms produced weights (e.g., GA), in which case we performed weighted
averaging instead of simple averaging of the calibrated probabilities.

Instead of combing the outputs of the classifiers by means of an average, stacking is
a form of meta-learning that combines the base classifiers by learning another classifier
on top of the outputs of the base classifiers [37]. More specifically, the predictions of the
base classifiers were used as independent variables in a classification model on the original
binary response variable. For stacking to perform well, the meta-classifier should be able
handle high-dimensionality and work well without extensive tuning. As a consequence,
random forest is often preferred as meta-classifier [87]. Besides CCP, stacking has proven
to perform well in other domains, such as in bioinformatics [86,88].

4. Experiment Set-Up
4.1. Data and Cross-Validation

All experiments were performed in the statistical programming language R using
R-studio on a 2.3 GHz Intel Core i7 processor with 16 GB RAM. The full code of the
experiments is available on GitHub https://github.com/MatthBogaert/BenchmarkingEn
semblesInCCP (accessed on 16 February 2023).

In this study, we used 11 different data sets to perform our experiments on. Table 5
summarizes the source, sector, number of instances, number of numeric and discrete
features, churn rate, and example variables for each data set. To make sure that our
experiments are reproducible, the majority of the data sets (8 out of the 11) are publicly
available on well-known machine learning platforms (Kaggle and the UCI repository). The
data itself and a detailed variable description can be obtained from the URLs below Table 2.
These data sets were selected based upon their popularity in CCP literature. For example,
data sets D4, D5, and D8 were used in [89], D6 and D11 in [2], D7 in [10], D9 in [90], and
D10 in [38]. Note that most data sets were used in multiple studies. For example, D6
and D11 were also included in [47]. Since most of the publicly available data sets stem
from the telecommunications industry, we added three proprietary data sets from various
industries. For these data sets, we were only allowed to share a snippet of the variables

https://github.com/MatthBogaert/BenchmarkingEnsemblesInCCP
https://github.com/MatthBogaert/BenchmarkingEnsemblesInCCP
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due to confidentiality agreements. By including a mix of private and publicly available
data sets, we covered a wide range of industries and characteristics, which increased the
generalizability and replicability of our results.

Table 5. Overview and characteristics of the data sets. For each data set some sample numeric (N)
and discrete (D) are provided.

Name Source Sector #Instances #Numeric
Features

#Discrete
Features

Churn rate
(%) Example Variables

D1 Private Newspaper 1178 440 0 27
− N: recency, frequency, and

monetary value related to the
number of products, credit lines,
and payment type, delivery type.

D2 Private Racing 14,179 4 0 78 − N: recency, frequency, and
monetary value.

D3 Private B2B 41,739 44 3 4
− N: recency, frequency, and

monetary value to the products,
the orders.

− D: indicators of sales center.

D4 Kaggle 1 Telecom 3333 17 3 14

− N: account length, total
day/night calls, total call minutes,
voice mails.

− D: ZIP code, voice
mail/international plan

D5 Kaggle 2 Bank 10,000 6 4 20
− N: credit score, age, tenure,

number of products.
− D: gender, area, active, has

credit card.

D6 KDD 3 Telecom 46,933 3 4 7 − Variable names are not provided.

D7 Kaggle 4 Telecom 3333 8 2 14
− N: length account weeks, daily

calls, monthly charge.
− D: contract renewal, data plan.

D8 Kaggle 5 Telecom 7043 3 16 27
− N: tenure, monthly/total charges
− D: gender, partner, streaming TV,

multiple lines.

D9 Kaggle 6 Telecom 2000 9 4 50
− N: age, total revenue, total data

revenue, total calls.
− D: user type, carrier.

D10 Kaggle 7 Telecom 51047 35 21 29
− N: monthly revenue/minutes,

roaming calls, age.
− D: credit rating, new user, has

credit card.

D11 UCI 8 Telecom 5000 15 3 14
− N: account length, customer

services call, total day/night calls.
− D: area code, international/

voice plan.

1 https://www.kaggle.com/becksddf/churn-in-telecoms-dataset/data# (accessed on 16 February 2023). 2 https:
//www.kaggle.com/shubh0799/churn-modelling (accessed on 16 February 2023). 3 https://kdd.org/kdd-cup/
view/kdd-cup-2009/Data (accessed on 16 February 2023). 4 https://www.kaggle.com/barun2104/telecom-chu
rn?select=telecom_churn.csv (accessed on 16 February 2023). 5 https://www.kaggle.com/blastchar/telco-custo
mer-churn (accessed on 16 February 2023). 6 https://www.kaggle.com/datasets/mahreen/sato2015 (accessed on
16 February 2023). 7 https://www.kaggle.com/datasets/jpacse/datasets-for-churn-telecom?select=cell2celltrai
n.csv (accessed on 16 February 2023). 8 www.sgi.com/tech/mlc/db (accessed on 16 February 2023).

https://www.kaggle.com/becksddf/churn-in-telecoms-dataset/data
https://www.kaggle.com/shubh0799/churn-modelling
https://www.kaggle.com/shubh0799/churn-modelling
https://kdd.org/kdd-cup/view/kdd-cup-2009/Data
https://kdd.org/kdd-cup/view/kdd-cup-2009/Data
https://www.kaggle.com/barun2104/telecom-churn?select=telecom_churn.csv
https://www.kaggle.com/barun2104/telecom-churn?select=telecom_churn.csv
https://www.kaggle.com/blastchar/telco-customer-churn
https://www.kaggle.com/blastchar/telco-customer-churn
https://www.kaggle.com/datasets/mahreen/sato2015
https://www.kaggle.com/datasets/jpacse/datasets-for-churn-telecom?select=cell2celltrain.csv
https://www.kaggle.com/datasets/jpacse/datasets-for-churn-telecom?select=cell2celltrain.csv
www.sgi.com/tech/mlc/db
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To make sure that the results obtained from our benchmark study are not biased
towards a certain part of the data, we perform nested cross-validation [60]. The outer
loop performs five-fold cross-validation on each data set and reports the test results. The
inner loop is used to tune the hyperparameters using single train/validation split. This
set-up is common when comparing classifiers in CCP, as it allows for statistical testing
procedures [60]. For each data set in the outer loop, five-fold cross-validation is performed.
This procedure divides the data into five equal folds, in which each fold is once used as a
test set and the remaining folds as a training set [91]. If a classifier requires hyperparameter
tuning, an additional inner loop is activated and the training set was split again into a 50%
training and 50% validation set to perform a grid search [92]. The optimal hyperparameter
settings for each classifier are thus determined per fold and their performance measured
using an inner train/validation split to ensure that the best possible model was selected.
After the optimal hyperparameters are determined, the best model is retrained on the full
training set of the outer loop. Hence, after the outer loop, each classifier’s performance is
evaluated on five different test sets. To determine the final performance of each classifier,
we average the results over all test folds and report the average for each data set. By doing
so, we ensure that our benchmarks are independent (i.e., the algorithms are compared over
11 different data sets) such that statistical testing procedure can be applied. Note that this
whole process is repeated for each performance metric such that the best model is always
selected for each metric under consideration [91].

4.2. Data Preprocessing

For missing value imputation, we follow the recommendation by Verbeke et al. [2]
and deleted instances of a variable if less than 5% were missing. Depending on the
variable, different imputation methods (e.g., median or mode imputation) are performed
for variables with more than 5% of missing values. For the categorical variables, dummy
encoding is performed to transform them into binary variables. Note that we always
remove one category as a reference category. Because this procedure can cause high
dimensionality, we also perform feature selection [31].

The goal of feature selection is to reduce the number of features that are being used by
the predictive model [27]. Feature selection is performed to avoid the curse of dimensional-
ity, which makes results less understandable, slows down the processing time, and lowers
the predictive power of the models [13]. We follow the recommendation of Verbeke et al. [2]
to only include the top 20 variables, based on the Fisher score as our feature selection
method. The Fisher score calculates the absolute difference of the mean value of a variable
for churners and non-churners divided by the square root of the sum of the variance of that
variable, for both churners and non-churners.

From Table 2, it is clear that the churn rate is skewed in most data sets. However, we
do not perform any resampling techniques for several reasons [9]. First, if class imbalance
has a negative effect on all classifiers, then only the absolute difference is altered and not
the relative difference, which we are investigating. If some classifiers are more robust
against class imbalance, then this should be reflected in the relative performance. Second,
resampling may produce a biased picture of the performance of the classifiers, and it is
unclear how well it is integrated in a business setting. Third, the data sets with the high class
imbalance also has a high number of observations. Hence, we believe that the classifiers
will have enough churn observations to detect patterns in the data. Most data sets have
moderate class imbalance and enough observations to justify not introducing resampling.

4.3. Evaluation Metrics

In churn literature, several different performance metrics are proposed depending on
whether they are cut-off dependent or independent and whether they take into account
the profits of setting up a retention campaign. In this study, we discuss the most used
evaluation metrics. First, the cut-off dependent performance metrics are accuracy and top-
decile lift. The accuracy (ACC) is a straightforward performance measure that is calculated
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by (1). The accuracy divides the number of correctly classified instances by the total number
of instances [34]. Although this measure is easy to understand and compute, the main issue
is that accuracy is based on a fixed threshold to determine which instances are positive
or negative. In this study, we set the threshold to the default 0.50. Since the accuracy
is sensitive to the class distributions, the F1 measure is also included. The F1 measure
computes the harmonic mean between precision and recall [11] and is often used as an
important metric in imbalanced settings since it helps to rule out the presence of model
bias [87]. Lift is a metric that compares proportions of classes in segments of the data and
determines how much better the classifier predicts for a certain segment [13]. Top-decile
lift (TDL) focuses on the top 10% of the most likely churners predicted by the model. TDL
is calculated by dividing the proportion of churners in the top 10% by the proportion of
churners in the population [44]. As a cut-off independent metric, we included the area
under the receiver operating characteristic curve (AUC). The AUC can be described as the
probability that a randomly chosen positive instance will be ranked higher by the classifier
than a randomly chosen negative instance [2]. The ROC curve is obtained by plotting
the true positive rate on the y-axis and the false positive rate on the x-axis for all possible
thresholds [15].

Finally, the expected maximum profit criterion for customer churn (EMPC) is included
as our profit-driven measure [16]. The EMPC takes into account the expected benefits
and costs of setting up a retention campaign. Profit can be computed as the sum of the
correctly classified instances minus the sum of the incorrectly classified instances. The
EMPC goes one step further and also takes into account the uncertainty of the estimations of
the parameters for profit calculation, such as the probability of a churner accepting the offer
in the campaign [49]. Equations (1) and (2), respectively, compute the profit and EMPC:

P(t; bO, c0, b1, c1) = (b0 + c0)π0F0(t)− (b1 + c1)π1F1(t) + b1π1 − c0π0, (1)

EMPC =
∫

b0

∫
Co

∫
b1

∫
c1

P(T(θ); bO, c0, b1, c1)·w(bO, c0, b1, c1)dbOc0b1c1. (2)

With θ = (b1+c1)
(b0+c0)

representing the cost–benefit ratio, b0, b1 the benefits of correctly
classifying non-churn and churn, c0, c1 the costs of falsely classifying non-churn and churn,
π0, π1 the probability of belonging to non-churn or churn, F0, F1 the cumulative density
functions for non-churn and churn, P the profit, T the optimal threshold for the cut-off, θ
the cost benefit ratio, and w(bO, c0, b1, c1) the joint probability density of the classification
costs and benefits. We follow the recommendations of the authors for the parameters of the
EMPC. Note that the EMPC is a metric specifically designed for customer churn. However,
Verbraken et al. (2012) [16] proved that the ranking of models with the EMPC and the
H-measure with optimized parameters (α = 49 and β = 10) shows very high correlation and
low variability. Researchers that would prefer to implement a similar method in another
binary classification setting are advised to use the H-measure.

4.4. Classifier Comparison

In CCP literature, several methods have been proposed to check whether or not
classifiers behave differently from each other. Most often, researchers perform a statistical
testing procedure to find out whether or not there are significant differences between the
classifiers [36]. Among the plethora of null-hypothesis statistical testing (NHST) procedures,
the Friedman test with corresponding post hoc analysis is the most popular [22].

The Friedman test first assesses whether or not the compared classifiers are similar.
The test is non-parametric and compares the average ranks R of the classifiers k across
multiple data sets N, with the null hypothesis that states that all ranks are equal, resulting
in the test statistic (3) [36]:

χ2
F =

12N
k(k + 1)

[
∑j R2

j −
k(k + 1)2

4

]
. (3)
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Here, Rj gives the average rank of the classifier j over the N data sets. Next, the test is
often followed by applying pairwise tests with each classifier or the best performing [9].
Equation (4) then computes the Friedman pairwise comparison test statistic obtained from
the ranks [22]:

z =

(
Ri − Rj

)√
k(k+1)

6N

. (4)

Here, Ri and Rj represent the ranks classifiers i and j that are compared. Similar to
any other NHST, a p-value needs to be calculated and compared to the significance level
α, which is often 0.05. Since multiple comparisons are performed, α needs to be adjusted
with a correction for family-wise error [36]. Rom’s procedure is the preferred method when
comparing with the top performer. The procedure transforms α such that the p-values
reflect the number of tests with the top performer [22].

In addition, we also perform the Bayesian signed rank test with ROPE (region of
practical equivalence) [23]. The first step of the test constructs the likelihood function
with the probability of the data for each possible value of the parameters θ of the model
p(data|θ) [23]. Next, the prior distribution p(θ) for the parameters is computed through
a Dirichlet process. Finally, the Bayes’ rule is used to calculate the posterior distribution
p(θ|data) [23]. We apply the Bayesian signed-rank test with the ROPE (i.e., region of prac-
tical equivalence) to determine whether there is a real difference between the algorithms.
The ROPE can be seen as an advanced way of accepting a null hypothesis and determines
whether or not the mean difference of the posterior probabilities of two classifiers is equiv-
alent. In our case, the interval (−0.01,0.01) defines a ROPE where the mean differences
between two classifiers should be less than 1%. Hence, if the posterior probability is less
than 1%, the two classifiers are considered equivalent [93]. Note that since TDL and EMPC
are not bounded, we apply augmented normalized weighting to rescale these values be-
tween 0.5 and 1 before running our Bayesian procedure. As such, they behave in the same
way as an AUC and can be used with the ROPE.

5. Results

To compare the results in our benchmark study, we rank the average cross-validated
performance results of the classifiers. For example, per data set we have a ranking of
33 classifiers in which the best performing classifier for certain performance measure gets
a rank of 1 and the worst a rank of 33. This ranking procedure is repeated for each data
set and performance metric. Table 6 summarizes the average ranks across the data sets for
each performance metric per classifier family (i.e., single classifier, homogeneous or hetero-
geneous ensemble). The underlined ranks represent the best in their respective families
and the rank in bold is the highest of all classifiers. The last two columns show the average
rank across all performance metrics and the average rank per family. When looking per
family for the best classifier, we see that ANN stands out the most for the single classifiers,
which is in line with previous research in credit scoring [9]. This confirms the hypothesis
that ANNs serve as universal approximators for any function when tuned correctly [12].
The standard model in CCP (i.e., LR) is ranked lower than ANNs and DTs and has an
overall low ranking when looking at the other classifier families. For the homogeneous
ensembles, the rankings confirm the previous findings that CATB and LGBM are the best
performing, with CATB the overall highest ranked homogeneous ensemble. Note that all
gradient boosting implementations are highly ranked, which confirms Breiman’s statement
that gradient boosting is the best-of-shelf classifier. Aside from gradient boosting, rule-
based ensembles (PRE) also show promising results by outperforming RF across the board.
Certain homogeneous models (e.g., USE and RSM) are at the lower end of comparative
performance and are outperformed by several single classifiers (e.g., DT and ANN). For the
heterogeneous ensembles, the statistical methods (NNBL, GINNLS and LHNNLS) are the
highest ranked on average, however, the results largely differ for each performance metric.
NNBL has the highest rank for accuracy and the F1 measure, but, for AUC and EMPC, GSA
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is the best method and stacking is preferred for TDL. In contrast to previous research [9,21],
HCES_BAG does not come out as the top performing heterogeneous ensemble, although
its overall performance is competitive. When looking at the average ranks of the families,
we see that the heterogeneous ensembles are clearly outranking the other family types.

Table 6. Average classifier ranks across 11 data sets and pairwise Friedman test with Rom’s procedure
for each performance measure. Lower ranks indicate a better performance across data sets. The best
methods per family are underlined and the overall best methods are in bold underlined. p-values
smaller than 0.05 are indicated in italics.

Family Classifier AUC TDL ACC F1 EMPC Average

Rank p-Value Rank p-Value Rank p-Value Rank p-Value Rank p-Value Rank Rank per
Family

Single

LR 24.545 0.000 23.727 0.000 23.273 0.003 23.545 0.002 25.455 0.000 24.109

24.779
DT 29.182 0.000 19.318 0.012 19.682 0.051 13.818 1.000 30.545 0.000 22.509

SVM 29.000 0.000 27.045 0.000 27.182 0.000 25.455 0.000 27.091 0.000 27.155
NB 27.909 0.000 24.727 0.000 26.091 0.000 26.364 0.000 29.000 0.000 26.818

ANN 22.000 0.002 19.909 0.007 24.182 0.001 25.182 0.000 21.000 0.002 22.455
LLM 25.727 0.000 27.636 0.000 24.273 0.001 23.409 0.003 27.091 0.000 25.627

Homogeneous

BAG 24.545 0.000 17.955 0.033 23.045 0.004 22.182 0.007 25.273 0.000 22.600

19.949

USE 27.545 0.000 27.364 0.000 25.045 0.001 21.682 0.010 28.182 0.000 25.964
RF 22.182 0.002 16.591 0.077 22.864 0.004 22.455 0.006 19.909 0.006 20.800

IBRF 20.455 0.009 17.364 0.048 16.909 0.290 14.591 1.000 22.818 0.000 18.427
ADA 23.000 0.001 14.182 0.228 19.636 0.051 17.318 0.254 22.000 0.001 19.227
XGB 17.364 0.092 12.909 0.324 22.500 0.006 23.091 0.003 18.364 0.020 18.845

CATB 11.364 1.000 11.000 0.589 15.273 0.717 13.455 1.000 15.091 0.197 13.236
LGBM 13.455 0.941 11.273 0.589 17.545 0.204 19.000 0.085 15.273 0.197 15.309

SGB 16.545 0.153 14.455 0.214 20.591 0.027 21.909 0.008 18.545 0.019 18.409
LMT 26.091 0.000 21.909 0.001 20.864 0.023 23.091 0.003 26.000 0.000 23.591
RSM 24.000 0.000 20.182 0.006 22.636 0.005 22.000 0.008 26.182 0.000 23.000

ROTFOR 23.727 0.000 22.227 0.001 17.955 0.165 17.182 0.262 21.364 0.002 20.491
ADT 22.455 0.001 15.182 0.145 20.091 0.039 17.909 0.179 22.273 0.001 19.582
PRE 18.455 0.045 16.182 0.098 21.364 0.015 23.909 0.002 19.091 0.012 19.800

Heterogeneous

GA 6.727 1.000 17.636 0.040 9.682 1.000 10.545 1.000 5.545 1.000 10.027

10.234

HCES_BAG 7.636 1.000 15.364 0.143 12.045 1.000 13.364 1.000 5.273 1.000 10.736
AVGS 9.318 1.000 17.318 0.048 10.636 1.000 12.955 1.000 9.409 1.000 11.927
AVGW 8.364 1.000 15.818 0.119 10.591 1.000 12.182 1.000 8.182 1.000 11.027
STACK 17.545 0.085 5.000 - 12.045 1.000 9.273 1.000 15.273 0.197 11.827
NNBL 8.318 1.000 11.409 0.589 7.409 - 7.318 - 10.409 1.000 8.973

GINNLS 7.273 1.000 8.773 0.720 8.227 1.000 9.227 1.000 7.364 1.000 8.173
LHNNLS 7.182 1.000 8.773 0.720 8.227 1.000 9.227 1.000 7.636 1.000 8.209

DE 9.364 1.000 18.545 0.022 9.909 1.000 11.545 1.000 6.727 1.000 11.218
PSO 8.182 1.000 18.182 0.028 11.409 1.000 12.818 1.000 6.455 1.000 11.409
GSA 6.091 - 13.636 0.248 11.864 1.000 13.636 1.000 5.182 - 10.082
MA 7.727 1.000 15.455 0.143 9.818 1.000 11.727 1.000 5.818 1.000 10.109

SOMA 7.727 1.000 13.955 0.234 8.136 1.000 9.636 1.000 7.182 1.000 9.327

A further overview of the ranking results is given in Figure 2. This figure plots the
average ranks over 11 data sets for each classifier, based on several performance measures
(i.e., AUC, TDL, ACC, EMPC and F1), in which the full line depicts the ranking according
to the EMPC measure and the other points depict other performance measures. One can
immediately see that there is a certain level of agreement between the EMPC and the AUC,
especially among the top performers. Another observation is that there is some variation in
the rankings between ACC and F1, however, their overall correlation in rankings is large.
The only metric that largely deviates is the top decile lift. The top decile lift especially
focuses on the customers with the highest propensity to churn (i.e., top 10%), which
explains the difference with the other more general measures. Again, this figure confirms
the good performance of heterogeneous ensembles, especially the ones using meta-heuristic
ensemble selection.
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The column next to the ranks in Table 6 shows the Rom-adjusted p-values of the
pairwise Friedman test with the highest ranked classifier as a control classifier [22]. All
p-values that are significantly different on the 5% significance level are indicated in italics.
The general Friedman test with the null hypothesis that all classifier ranks are equal is
significant for all performance metrics (p < 0.000). Looking at the individual p-values, we
make the following observations. There are almost no significant differences between the
best performer and the other heterogeneous ensembles for all performance metrics. Only
for TDL, we observe some minor differences. This means that complex (e.g., GSA) and
simple (e.g., AVGS) heterogeneous ensembles have an equal performance in statistical
terms. Moreover, CATB and LGBM are not significantly different from the top performer
for all performance metrics, and, for AUC and TDL, all gradient boosting implementations
are equal in statistical terms. Finally, all single classifiers are significantly different from the
top performer, except for DT in the case of the F1 measure. For the F1 measure, we also see
that IBRF is also not statistically different than the top performer, whereas the difference is
significant for all other performance measures. This indicates that DT and IBRF are more
suited for high class imbalance.

To check whether the results change for different sectors, we re-compute the average
ranks for each performance measure of Table 6 once across all data sets regarding the
telecommunications sector and once across all other sectors. In total, we then have three
different solution sets for all models (D1–D11), for the telecom sector (D4 and D6–D11),
and for the other sectors (D1–D3 and D5). For these three sets, we calculate the agreement
across classifiers ranks for each performance measure using Kendall’s rank correlation. The
results of this analysis are depicted in Table 7. For the threshold independent metrics
(i.e., AUC and EMPC), the correlation between all three sets is high. However, for the
threshold independent metrics (i.e., top-decile lift, accuracy, and F1 measure), we see that
the results mainly differ between the telecom data sets and the other data sets. This is
logical since there are only four data sets, and they stem from various industries. In general,
we notice that the correlation between the full analysis and the telecom data is substantial
for all performance metrics.
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Table 7. Correlation of classifier rankings for each performance metric across all data sets (All),
telecommunications data sets (Telco), and other remaining data sets (Other).

AUC

AUC All AUC Telco AUC Other
AUC All 1.000 0.989 0.958
AUC Telco 0.989 1.000 0.904
AUC Other 0.958 0.904 1.000

TDL

TDL All TDL Telco TDL Other
TDL All 1.000 0.963 0.853
TDL Telco 0.963 1.000 0.682
TDL Other 0.853 0.682 1.000

ACC

ACC All ACC Telco ACC Other
ACC All 1.000 0.960 0.781
ACC Telco 0.960 1.000 0.575
ACC Other 0.781 0.575 1.000

EMPC

EMPC All EMPC Telco EMPC Other
EMPC All 1.000 0.993 0.978
EMPC Telco 0.992 1.000 0.945
EMPC Other 0.978 0.945 1.000

F1

F1 All F1 Telco F1 Other
F1 All 1.000 0.946 0.722
F1 Telco 0.946 1.000 0.458
F1 Other 0.722 0.458 1.000

To give some deeper insight into the differences, we report the highest ranked algo-
rithm per group in Table 8. We notice that the overall results still hold: GSA and NNBL
are among the top performers for different sectors. We again see that NNBL performs well
for the error-based metrics, even in terms of AUC for the telco sector. These results also
confirm that heuristic search procedures always work best with profit-based metrics. One
interesting observation is the good performance of DE in terms of accuracy, and F1 measure
for the other sectors, and in terms of EMPC for the telecommunications sector.

Table 8. Highest ranked classifiers for each performance measure and sectors (i.e., all, telecommuni-
cations, and other remaining data sets).

All Telco Other

AUC GSA NNBL GSA
TDL STACK STACK STACK
ACC NNBL NNBL DE

EMPC GSA NNBL DE
F1 GSA DE HCES_BAG

Besides the traditional frequentist NHST, we also report the results of a Bayesian
analysis with ROPE together with the average performance scores across data sets in
Table 9. For example, the first column computes the mean AUC for each classifier across
data sets. Note that, for each data set, the AUCs are average across all five cross-validation
test folds. The second column indicates the probability that the posterior lies within the
ROPE with bounds (−0.01,0.01). The values for which the ROPE probabilities are smaller
than 5% are indicated in italics. To illustrate how these values should be interpreted,
Figure 3 plots the distribution of the posterior for the comparison based on the AUC
between the LR (i.e., the default model) and LHNNLS (i.e., the top performer in terms of
average ranking). The ROPE is located between the vertical dashed lines and contains 0.4%
of the posterior distributions, which is the probability indicated in Table 9. Since the peak
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of the probability distribution plot is located to the left of the ROPE, we can assume that
the performance of LR is worse than for LHNNLS in the majority of cases. To be exact, LR
is outperformed by LHNNLS in 99.6% of the cases, whereas the algorithms are practically
equivalent in 0.4% of the cases.

Table 9. Average performance score of each classifier together with the ROPE probabilities of the
Bayesian Signed Rank test for each performance measure across. The best methods per family are
underlined and the overall best methods are in bold underlined. ROPE values smaller than 0.05 are
indicated in italics.

Family Classifier AUC TDL ACC F1 EMPC
Score ROPE Score ROPE Score ROPE Score ROPE Score ROPE

Single

LR 0.754 0.004 1.906 0.000 0.820 0.016 0.815 0.041 10.219 0.001
DT 0.700 0.000 2.780 0.032 0.845 0.274 0.842 0.474 10.177 0.000

SVM 0.736 0.000 2.465 0.000 0.781 0.000 0.792 0.000 10.442 0.000
NB 0.723 0.000 1.922 0.000 0.801 0.000 0.796 0.001 10.255 0.000

ANN 0.777 0.116 2.688 0.043 0.843 0.224 0.826 0.163 10.779 0.066
LLM 0.722 0.000 2.021 0.000 0.805 0.001 0.788 0.000 9.948 0.000

Homogeneous

BAG 0.770 0.053 2.861 0.113 0.845 0.257 0.827 0.175 10.726 0.009
USE 0.732 0.000 2.016 0.000 0.793 0.000 0.802 0.007 10.136 0.000
RF 0.775 0.099 2.885 0.152 0.840 0.179 0.811 0.019 10.905 0.057

IBRF 0.786 0.248 2.877 0.090 0.840 0.185 0.832 0.277 10.850 0.032
ADA 0.771 0.067 3.039 0.311 0.831 0.075 0.835 0.339 10.793 0.019
XGB 0.793 0.378 3.034 0.366 0.842 0.206 0.815 0.038 10.934 0.205

CATB 0.800 0.446 2.998 0.257 0.848 0.307 0.843 0.481 11.011 0.242
LGBM 0.796 0.405 3.043 0.355 0.855 0.433 0.836 0.353 10.987 0.237

SGB 0.793 0.372 2.941 0.340 0.850 0.359 0.832 0.275 10.925 0.156
LMT 0.755 0.005 2.490 0.001 0.840 0.174 0.820 0.085 10.389 0.006
RSM 0.762 0.021 2.258 0.000 0.835 0.104 0.828 0.207 10.357 0.011

ROTFOR 0.739 0.000 2.623 0.002 0.848 0.304 0.835 0.345 10.809 0.003
ADT 0.782 0.172 2.821 0.081 0.838 0.142 0.837 0.377 10.759 0.095
PRE 0.791 0.332 2.810 0.235 0.841 0.201 0.826 0.165 10.907 0.049

Heterogeneous

GA 0.804 0.477 2.936 0.109 0.860 0.485 0.833 0.307 11.109 0.272
HCES_BAG 0.804 0.480 2.959 0.171 0.860 0.491 0.835 0.332 11.111 -

AVGS 0.803 0.477 2.929 0.112 0.861 0.498 0.837 0.379 11.084 0.277
AVGW 0.803 0.465 2.948 0.134 0.861 0.500 0.837 0.389 11.087 0.270
STACK 0.786 0.250 3.140 - 0.853 0.425 0.849 - 11.020 0.073
NNBL 0.804 0.473 3.012 0.202 0.863 - 0.844 0.522 11.106 0.279

GINNLS 0.805 0.481 3.062 0.356 0.862 0.495 0.845 0.524 11.102 0.273
LHNNLS 0.805 - 3.062 0.343 0.862 0.493 0.845 0.503 11.102 0.279

DE 0.803 0.470 2.927 0.090 0.861 0.486 0.835 0.347 11.094 0.273
PSO 0.803 0.463 2.929 0.110 0.860 0.495 0.835 0.345 11.107 0.278
GSA 0.805 0.471 2.976 0.195 0.861 0.484 0.837 0.379 11.109 0.273
MA 0.804 0.485 2.953 0.138 0.861 0.501 0.837 0.384 11.105 0.275

SOMA 0.804 0.478 2.956 0.155 0.863 0.483 0.840 0.437 11.084 0.273

In Table 9, we see that the ROPE probabilities are quite large. Only for the single clas-
sifiers, the ROPE values are small. One interesting observation compared to the frequentist
NHST is that the Bayesian analysis does not provide sufficient evidence that ANN and
the homogeneous ensemble are different from the top performing model for accuracy and
AUC. For TDL and EMPC, the ROPE probabilities are smaller, but the differences are not
as convincing compared to the frequentist NHST. Overall, the Bayesian tests also confirm
that the heterogeneous ensembles CATB and LGBM are not significantly different from
the top performer. Again, for the F1 measure, we notice that DT in almost 50% of the
cases is practically equivalent to the top performer. When we compare these results with
those found by the p-values of the frequentists approach, we cannot make a black or white
decision on the significance of the probabilities. On the other hand, the ROPE probabilities
provide strong evidence in favor of a certain classifier [23]. For example, LR is only in
0.4% of the cases equivalent to LHNNLS in terms of AUC, which gives an unequivocal
indication that LHNNLS performs better than LR in the majority of the cases. On the other
hand, ANN is in 11.6% of the cases practically equivalent to LHNNLS, which does not
provide strong evidence that ANN is outperformed by LHNNLS.
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6. Discussion

In this research, we set out to provide a comprehensive overview of the state-of-the-art
in ensemble methods in customer churn, as well as an experimental evaluation of the
most important and relevant methods. Such an extensive benchmark has already been
performed in other domains; however, no such study has been conducted for customer
churn prediction. Since there is no free lunch in machine learning and several important
innovations in terms of classifiers, evaluation metrics and testing procedures have been
neglected in recent work. A large-scale experimental comparison of the state-of-the-art
models in customer churn is needed.

Hence, the aim of our study is to consolidate previous research and come up with
a holistic view on the state of the art in CCP. By doing so, our works provides several
interesting findings which have important theoretical and practical implications for the
field of study:

• We show that different performance measures yield different results to which classifier
is most effective. For example, the statistical classifier combination methods (i.e.,
NNBL, LHNNLS, and GINNLS) work well for the threshold dependent metrics such
as accuracy and F1 measure. These combination methods search for the coefficients
that minimize the error rate, which explains their superior performance for statistical
error-based metrics. For threshold independent metrics such as the AUC and EMPC,
we observe that meta-heuristic search procedures (i.e., GSA, and GA) and HCES_BAG
are among the top performers. These algorithms are direct optimization methods that
maximize a specific metric by finding the optimal set of classifiers [94]. Hence, for
threshold independent and profit/cost-based performance metrics, our results favor
general purpose solvers.

• The classifiers rankings are quite robust across different sectors. A high correlation
between all sectors, the telecommunications sector, and the other remaining ones
is observed in terms of AUC and EMPC. For the threshold dependent metrics, the
rankings vary the most between the telecommunications and other sectors. When
looking at the top performing classifiers, there are variations between performance
measures and sectors. Overall, the finding that statistical combination methods work
best for error-based performance measures and meta-heuristics for profits still holds.

• Future studies who want to propose novel classifiers in the field of CCP should care-
fully benchmark their proposed method against competitive classifiers. Whereas
logistic regression and random were considered the gold standard for single classifiers
and homogeneous ensemble [27], our study indicates that these methods are outper-
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formed by ANN and catboost or light GBM. Therefore, outperforming LR or RF cannot
be considered as a methodological improvement. It might even be more difficult to
outperform heterogeneous ensemble with GSA classifier selection, however, there is
no off-the-shelf library available. Moreover, a large number of base classifiers have
to be trained which can further refrain researchers from including a heterogeneous
ensemble into their classifier set.

• Heterogeneous ensembles have not received much attention in CCP, and current stud-
ies mostly rely on the results of Lessmann et al. [9] and use the HCES_BAG algorithm
as their default implementation. Our results, however, indicate that HCES_BAG is
competitive but always outperformed by another method. Both in terms of AUC and
expected profits, our results favor a heterogeneous ensemble with simulated annealing
classifier selection for the local search procedures and a genetic algorithm selection for
the population-based methods. For the other measures, statistical classifier selection
methods such as NNBL outperform HCES_BAG. Hence, researchers that want to
implement a heterogeneous ensemble method are advised to consider other methods
than hill climbing. Our benchmark results can serve as a guideline for future studies.

• Our study clearly shows that putting time and effort in designing proper heteroge-
neous ensembles pays off: (1) adding powerful algorithms to the candidate models
such as CATB and LGBM and (2) searching for the best classifier selection methods
clearly increases the performance of heterogeneous ensembles.

• From a practical point of view, we show a clear trade-off between implementing simple
but less accurate prediction methods (e.g., LR) or investing in advanced methods (e.g.,
heterogeneous ensembles) to have more accurate and profitable predictions. The re-
sults of both the statistical and Bayesian testing procedures also show that off-the-shelf
methods such as CATB do not perform significantly worse than customized heteroge-
neous ensembles. Hence, managers should decide whether increased performance
and/or profits of complex models is worth the effort.

7. Conclusions

In this research, we performed a large-scale benchmark study in customer churn
prediction following other studies in related fields [9,12]. Although several studies in
CCP performed a benchmark study, most of these studies introduced a novel method and
compared their approach with a limited set of models specifically attuned to their situation.
Moreover, single classifiers and homogenous ensembles have already been investigated
thoroughly [2,6], and research regarding heterogeneous ensembles in CCP has been scarce.
Because of this, the results of extant literature are often contradictory and different findings
are reported across studies. [2,6].

To fill this gap in the literature, we compared 33 classifiers composed of 6 single
classifiers, 14 homogeneous ensemble classifiers, and 13 heterogeneous ensemble classifiers
across 11 data sets. Our findings show that the use of heterogeneous ensembles yielded
better results when compared to single classifiers and homogeneous ensembles. In the
majority of cases, heterogenous ensembles are ranked higher than homogenous ensem-
bles. Moreover, this research indicates that the best heterogeneous ensemble significantly
outperformed the two most popular methods in churn prediction: logistic regression and
random forest. The results show that a heterogeneous ensemble optimized with gener-
alized simulated annealing (GSA) is ranked the highest in terms of AUC and EMPC. In
terms of accuracy, F1 measure and top-decile lift, a heterogeneous ensemble optimized
with non-negative binomial likelihood (NNBL), and stacking are the winners. [9]

Future research could investigate several options to implement neural networks and
deep learning models. This would result in an improved overview and could yield more
insights. Although Gunnarsson et al. [17] showed that advanced deep learning models
do not outperform XGB for credit scoring. However, other work has indicated that deep
learning models can outperform random forest for customer lifetime value prediction [95].
Future studies could also deploy the classifiers on more data sets to make the results more



Mathematics 2023, 11, 1137 24 of 28

robust. Finally, we could increase the number of base classifiers serving as candidate
members for the heterogeneous ensembles [96].
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Abbreviations

ACRM Analytical customer relationship management
ACC Accuracy
ADA Adaboost
ADT Alternating decision trees
ANN Artificial neural networks
AUC Area under the receiver operating characteristic curve
AVGS Standard average
AVGW Weighted average
BAG Bagging
CATB Catboost
CCP Customer churn prediction
CART Classification and regression trees
DE Differential evolution
DT Decision tree
EMPC Expected maximum profit for customer churn
F1 F1 measure
GA Genetic algorithm
GINNLS Goldfarb-Idnani non-negative least squares
GSA Generalized simulated annealing
HCES_BAG Hill-climbing ensemble selection with bagging
IBRF Improved balance random forest
LHNNLS Lawson-Hanson non-negative least squares
LLM Logit leaf model
LGBM Light GBM
LMT Logistic model tree
LR Logistic regression
MA Memetic algorithm
NB Naïve Bayes
NHST Null-hypothesis statistical testing
NNBL Non-negative binomial likelihood
PSO Particle swarm optimization
PRE Prediction rule-based ensembles
RF Random forest
ROPE Region of practical equivalence
ROTFOR Rotation Forest
SGB Stochastic gradient boosting
SOMA Self-organizing migrating algorithm
STACK Stacking
SVM Support vector machines
USE Uniform subsampled ensemble
XGB XGBoost
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