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Abstract: In this paper, we discuss a new type of mean-field anticipated backward stochastic dif-
ferential equation with a time-delayed generator (MF-DABSDEs) which extends the results of the
anticipated backward stochastic differential equation to the case of mean-field limits, and in which
the generator considers not only the present and future times but also the past time. By using the
fixed point theorem, we shall demonstrate the existence and uniqueness of the solutions to these
equations. Finally, we shall establish a comparison theorem for the solutions.
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1. Introduction

Since Pardoux and Peng [1] first proposed a general form of non-linear backward
stochastic differential equations (BSDEs) in 1990, the theoretical research of BSDEs has
developed rapidly. In our research, we are looking at the case where there exists a pair of
adapted processes (Y·, Z·) that satisfy the following type of BSDE

Yt = ξ +
∫ T

t
f (s, Ys, Zs)ds−

∫ T

t
Zs dBs, 0 ≤ t ≤ T,

where ξ is the terminal value, f is the generator related to the present time, and Bs is
a Brownian process. In the last three decades, research on BSDEs has seen significant
advances in many fields: for example, various BSDE models and the uniqueness and
existence of the solutions to these models (Bahlali et al. [2]; Al-Hussein [3]; Zhang et al. [4]),
a new nonlinear expectation named g-expectation which is based on BSDEs (Peng [5]; Luo
et al. [6]), the numerical solution of BSDEs (Ma et al. [7]; Gobet et al. [8]; Zhao et al. [9];
Han [10]), the relationship between BSDEs and partial differential equations (PDEs) (Ren
and Xia [11]; Pardoux and Răşcanu [12]), and the numerous applications of BSDEs in
various areas including optimal control, finance, biology, and physics (for examples, refer
to [13–17]).

In numerous fields, including economics and finance, statistical mechanics, physics,
and game theory, the use of mathematical mean-field approaches is crucial. Buckdahn
et al. [18,19] introduced a new type of BSDE, called the mean-field BSDE, and then demon-
strated the existence and uniqueness of the solution for that type of mean-field BSDE, which
is given by

Yt = ξ +
∫ T

t
E′
[

f (s, Y′s , Z′s, Ys, Zs)
]

dt−
∫ T

t
ZsdBs, 0 ≤ t ≤ T.

Additionally, the authors also showed that in a Markovian setting, mean-field BSDEs
generate the viscosity solution of a non-local PDE.
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Meanwhile, Peng and Yang [20] initially discussed a fundamental class of BSDEs in
2009, namely, anticipated BSDEs, where

Yt = ξT +
∫ T

t
f (s, Ys, Zs, Ys+δ(s), Zs+ζ(s))dt−

∫ T

t
ZsdBs, 0 ≤ t ≤ T;

Yt = ξt, T ≤ t ≤ T + K;
Zt = ηt, T ≤ t ≤ T + K.

The two deterministic R+-valued continuous functions δ(s), ζ(s) defined on [0, T] satisfy
(i) t ≤ t + δ(t) ≤ T + K, t ≤ t + ζ(t) ≤ T + K, and (ii)

∫ T
t f (s + δ(s))ds ≤ L

∫ T+K
t f (s)ds,∫ T

t f (s+ ζ(s))ds ≤ L
∫ T+K

t f (s)ds; the authors also demonstrated the existence and unique-
ness of the solution to the above equations. Feng [21] investigated the uniqueness and
existence of the solution of an anticipated BSDE with a reflecting boundary. Wang and
Cui [22] also proposed a new type of differential equation called the anticipated backward
doubly stochastic differential equation; the authors solved certain stochastic control prob-
lems by utilizing the duality between anticipated BSDEs and stochastic differential delay
equations. Later, Wang and Yu [23] extended this theory to generalized anticipated back-
ward doubly stochastical differential equations. Henceforth, the amount of study carried
out on the combination of mean-field and anticipated BSDEs is progressively growing; for
example, Douissi et al. [24] showed a new kind of mean-field anticipated BSDE driven by
fractional Brownian motion. Furthermore, Liu and Da [25] focused on mean-field antici-
pated BSDEs driven by time-changed Lévy noises, while Hao [26] discussed anticipated
mean-field BSDEs with jumps.

On the other hand, Delong and Imkeller [27] addressed BSDEs with time-delayed
generators as follows:

Yt = ξ +
∫ T

t
f (s, Ys−u(s), Zs−v(s))dt−

∫ T

t
ZsdBs, 0 ≤ t ≤ T,

where f is a generator that depends on the past value of a solution and 0 ≤ u(s) ≤ T,
0 ≤ v(s) ≤ T.

As a generalisation of Delong and Imkeller [27] or Peng and Yang [20], He et al. [28]
investigated a type of delay and anticipated BSDEs. Ma and Liu [29] provided results
for the existence and uniqueness of the solution for a mean-field BSDE with an average
delay and applied the theoretical results to the study of the infinite-horizon linear-quadratic
control issue. Under partial information, Zhuang [30] studied non-zero and differential
games for the anticipated forward-backward stochastic differential delay equation, which
can be used to resolve a problem involving the management of time-delayed pension funds
with non-linear expectations.

However, under the condition of mean-field, the case where the generator considers
not only the current time and the future time but also the past time has not been studied
yet. Therefore, our study will focus on studying the BSDEs of this case to enrich the theory
of BSDEs. This study might then encourage researchers to investigate stochastic optimal
control problems more realistically; furthermore, the theory will be useful to connect
mean-field BSDEs of this type with non-local PDE.

Based on the motivations discussed above, an essential and meaningful question is
that if we construct the mean-field and anticipated BSDEs with a time-delayed generator,
how can we prove the existence and uniqueness of its solution? In addition, what about the
relative comparison theorem? Firstly, the BSDE model considered in our study is given by

−dYt = E′
[

f (t, Yt−d1(t), Zt−d2(t), Y′t−d1(t)
, Z′t−d2(t)

, Yt, Zt, Y′t , Z′t, Yt+d3(t),

Zt+d4(t), Y′t+d3(t)
, Z′t+d4(t)

)
]

dt− ZtdBt, 0 ≤ t ≤ T;

Yt = ξt, T ≤ t ≤ T + K;
Zt = ηt, T ≤ t ≤ T + K.

(1)
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The rest of the framework for this study is organised as follows. Section 2 introduces
some basic information on the new BSDE model that we are proposing, which is the mean-
field anticipated backward stochastic differential equation with a time-delayed generator
(MF-DABSDE for short). In Section 3, by using the fixed point theorem, we demonstrate
the existence and uniqueness of the solutions for this type of BSDE. Section 4 focuses on
studying the comparison theorem of the solutions for this kind of model.

2. Preliminaries

We assume a complete probability space (Ω,F , P) with natural filtration
Ft = σ{Ws, s ≤ t} ∨NP, t ∈ [0, T], which is generated by a d-dimensional standard Brow-
nian motion {Bt}t≥0, where T > 0 is a fixed real-time horizon and NP denotes the set of
all P-null subsets and a real-time horizon. We denote the norm in Rm by | · |. To simplify
the presentation, we only discuss the one-dimensional case in this study. Consider the
following sets:

L2(Ft;Rm) :=

{
ϕ : Ω→ Rm| ϕ is Ft −measurable, E[|ϕ|2] < ∞

}
;

L2
F (0, T;Rm) :=

{
ϕ : [0, T]×Ω→ Rm| ϕ is progressively measurable process,

E
[∫ T

0 |ϕ(t)|
2]dt

]
< ∞

}
;

S2
F (0, T;Rm) :=

{
φ : [0, T]×Ω→ Rm| ϕ is continuous adapted process,

E
[
sup0≤t≤T |ϕ(t)|2

]
< ∞

}
.

If m = 1, we denote the above spaces, respectively, by L2(Ft), L2
F (0, T) and S2

F (0, T).
In addition, we introduce assumptions about di. Let di(·), i = 1, 2, 3, 4 represent four

R+-valued continuous functions defined on [0, T], and consider the following assumptions:

(D1) There exists a constant K ≥ 0, such that for all t ∈ [0, T], 0 ≤ t − d1(t) ≤ t, 0 ≤
t− d2(t) ≤ t, t ≤ t + d3(t) ≤ T + K, t ≤ t + d4(t) ≤ T + K;

(D2) There exists a constant L ≥ 0, such that for all non-negative and integrable f (·),∫ T
t f (s− d1(s))ds ≤ L

∫ T+K
t f (s)ds,

∫ T
t f (s− d2(s))ds ≤ L

∫ T+K
t f (s)ds,∫ T

t f (s + d3(s))ds ≤ L
∫ T+K

t f (s)ds,
∫ T

t f (s + d4(s))ds ≤ L
∫ T+K

t f (s)ds.

Then, we introduce the space required by mean-field limits and the assumptions; we
first let (Ω̄, F̄ , P̄) = (Ω×Ω,F ⊗ F , P⊗ P) be the (non-completed) product of (Ω,F , P)
with itself, and the product space has been filtered by F̄ =

{
F̄t = F ⊗Ft, 0 ≤ t ≤ T

}
.

As a random variable originally defined on Ω, ξ ∈ L0(Ω,F , P;Rm) is canonically extended
to Ω̄ : ξ ′(ω′, ω) = ξ(ω′), (ω′, ω) ∈ Ω̄ = Ω×Ω. For any ϕ ∈ L1(Ω̄, F̄ , P̄), ϕ(., ω) : Ω→ R
belongs to L1(Ω,F , P), P(dω)-a.s.; and then we denote the expectation of ϕ(., ω) by

E′[ϕ(., ω)] =
∫

Ω
ϕ(ω′, ω)P(dω′).

Note that E′[ϕ] = E′[ϕ(., ω)] ∈ L1(Ω,F , P), and

Ē[ϕ] =
∫

Ω
ϕdP̄

=
∫

Ω
E′[(., Ω)]P(dω)

= E[E′[ϕ]].



Mathematics 2023, 11, 888 4 of 13

Now we observe that the generator of model (1) is E′[ f (t, Yt−d1(t), Zt−d2(t), Y′t−d1(t)
,

Z′t−d2(t)
, Yt, Zt, Y′t , Z′t, Yt+d3(t), Zt+d4(t), Y′t+d3(t)

, Z′t+d4(t)
)], which includes not only the present

and the past, but also the future solutions. Because of the preceding notation, we consider
the following derivation:

E′
[

f (t, Yt−d1(t), Zt−d2(t), Y′t−d1(t)
, Z′t−d2(t)

, Yt, Zt, Y′t , Z′t, Yt+d3(t), Zt+d4(t), Y′t+d3(t)
, Z′t+d4(t)

)
]
(ω)

= E′
[

f (t, Yt−d1(t)(ω), Zt−d2(t)(ω), Y′t−d1(t)
, Z′t−d2(t)

, Yt(ω), Zt(ω), Y′t , Z′t, Yt+d3(t)(ω),

Zt+d4(t)(ω), Y′t+d3(t)
, Z′t+d4(t)

)
]

=
∫

Ω
f (t, Yt−d1(t)(ω), Zt−d2(t)(ω), Y′t−d1(t)

(ω′), Z′t−d2(t)
(ω′), Yt(ω), Zt(ω), Y′t (ω

′),

Z′t(ω
′), Yt+d3(t)(ω), Zt+d4(t)(ω), Y′t+d3(t)

(ω′), Z′t+d4(t)
(ω′))P(dω′).

Indeed, based on the definition of expectation given above, we can derive the following
two special cases:

E
[

E′
[

f (t, Y′t−d1(t)
, Z′t−d2(t)

, Y′t , Z′t, Y′t+d3(t)
, Z′t+d4(t)

)
]]

= E
[

E
[

f (t, Yt−d1(t), Zt−d2(t), Yt, Zt, Yt+d3(t), Zt+d4(t))
]]

= E
[

f (t, Yt−d1(t), Zt−d2(t), Yt, Zt, Yt+d3(t), Zt+d4(t))
]
;

E
[

E′
[

f (t, Yt−d1(t), Zt−d2(t), Yt, Zt, Yt+d3(t), Zt+d4(t))
]]

= E
[

E
[

f (t, Yt−d1(t), Zt−d2(t), Yt, Zt, Yt+d3(t), Zt+d4(t))
]]

= E
[

f (t, Yt−d1(t), Zt−d2(t), Yt, Zt, Yt+d3(t), Zt+d4(t))
]
. (2)

Next, we present assumptions about the generator f . Let the mapping f (t, ω, u′, v′, u, v,
y′, z′, y, z, φ′, ψ′, φ, ψ) : [0, T]×Ω× L2(Fr′ ,R

m)× L2(Fr,Rm)× L2(Fr′ ,Rm)× L2(Fr,Rm)×
L2(Fr′ ,Rm) × L2(Fr,Rm) → L2(Ft,Rm), s ≤ r, r′ ≤ T + K, satisfy the following two
assumptions:

(H1) There exists a constant C > 0, such that for every t ∈ [0, T], we have

| f (t, u′, v′, u, v, y′, z′, y, z, φ′, ψ′, φ, ψ)− f (t, ū′, v̄′, ū, v̄, ȳ′, z̄′, ȳ, z̄, φ̄′, ψ̄′, φ̄, ψ̄)|
≤ C

(
|u′ − ū′|+ |v′ − v̄′|+ |u− ū|+ |v− v̄|+ |y′ − ȳ′|+ |z′ − z̄′|+ |y− ȳ|

+|z− z̄|+ E′
[
|φ′ − φ̄′|+ |ψ′ − ψ̄′|

∣∣∣Ft

]
+ E

[
|φ− φ̄|+ |ψ− ψ̄|

∣∣∣Ft

])
,

where u′, u, ū′, ū ∈ L2
F (0, t;Rm); v′, v, v̄′, v̄ ∈ L2

F (0, t;Rm×d); y′, y, ȳ′, ȳ ∈ Rm;
z′, z, z̄′, z̄ ∈ Rm×d; φ′, φ, φ̄′, φ̄ ∈ L2

F (t, T+K;Rm); and ψ′, ψ, ψ̄′, ψ̄ ∈ L2
F (t, T+K;Rm×d);

(H2) E
[∫ T

0 | f (t, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)|2dt

]
< ∞, and f (t, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) ∈

L2
F (0, T + K;Rm).

We shall now review some basic results of propositions that will be used throughout
the paper: Itô’s formula, the Burkeholder–Davis–Gundy inequality, and the fixed point
theorem. Firstly, as we know, Itô’s formula is the most famous formula in stochastic
calculus; it was proposed by Kiyosi Itô [31] in 1951 and is frequently used in the field of
stochastic differential equations. This formula points out the rules for differentiating the
functions of a stochastic process, and it is given below.
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Proposition 1 (Øksendal [32], Theorem 4.1.2). Let Xt be an Itô process given by dXt = udt +
vdBt, where Bt is a Brownian process and the functions u, v are deterministic functions of time. For
any twice differentiable scalar function g(t, x) of two real variables t and x, we have

dg(t, Xt) =
∂g
∂t

(t, Xt)dt +
∂g
∂x

(t, Xt)dXt +
1
2

∂2g
∂x2 (t, Xt) · (dXt)

2.

Next, the Burkholder-Davis-Gundy inequality is given as follows:

Proposition 2 (Burkholder et al. [33], Theorem 2.3). For any 1 ≤ p < ∞, there exist positive
constants cp and Cp such that, for all local martingales X with X0 = 0 and stopping times τ, the
following inequality holds:

cpE
[
[X]

p/2
τ

]
≤ E

[
(sup0≤t≤τXt)

p
]
≤ CpE

[
[X]

p/2
τ

]
.

This paper will use the special case of p = 2 for the Burkholder-Davis-Gundy inequality.
Lastly, the fixed point theorem is an important principle in mathematics, and there

have been several theorems that fall under it, for example, the contraction mapping theorem
or Banach theorem, the Brouwer fixed point theorem, the Kakutani fixed-point theorem,
Tarski’s theorem, and so on. These fixed point theorems often play a key role in proving the
existence and uniqueness of fixed points for a self-mapping on complete metric spaces. In-
terested readers can refer to Granas and Dugundji [34] and Zhou et al. [35]. The contraction
mapping theorem, which will be used in this paper, is briefly introduced below.

Proposition 3 (Granas and Dugundji [34], Theorem 1.1). Let (Y, d) be a complete metric space
and F : Y → Y be contractive. Then F has a unique fixed point u, and Fn(y)→ u for each y ∈ Y.

3. An Existence and Uniqueness Result for MF-DABSDEs

In this section, our aim is to seek out a pair of processes (Yt, Zt) ∈ S2
F (0, T + K;Rm ×

L2
F (0, T + K;Rm×d) satisfying the mean-field BSDEs of model (1). Lemma 3.1 of Peng [5]

can be extended to MF-DABSDEs by the following simple deduction.

Lemma 1. Given a terminal condition ξ ∈ L2(FT ;Rm), i.e., ξ is a Rm-value FT-measurable
random variable that satisfies E

[
|ξ|2
]
< ∞, and f0(t) is an Ft-adapted process that satisfies

E
[∫ T

0 | f0(t)|2 dt
]
< ∞. Therefore, (yt, zt) ∈ L2

F (0, T;Rm × Rm×d) is a pair of processes that
satisfy the following type of BSDEs:

yt = ξ +
∫ T

t
E′[ f0(s)]ds−

∫ T

t
zsdBt, t ∈ [0, T].

If f0(t) ∈ L2
F (0, T;Rm), then (yt, zt) ∈ S2

F (0, T;Rm) × L2
F (0, T;Rm×d). Hence, for β > 0,

which is an argitrary constant, the following estimate can be obtained:

|y0|2 + E
[∫ T

0
eβs
(

β

2
|ys|2 + |zs|2

)
ds
]
≤ E

[
eβT |ξ|2

]
+

2
β

E
[∫ T

0
eβs∣∣E′[ f0(s)]

∣∣2ds
]

.

We also have

E
[
sup0≤t≤T |yt|2

]
≤ CE

[
|ξ|2 +

∫ T

0

∣∣E′[ f0(s)]
∣∣2ds

]
< ∞.

Proof. Applying Itô’s formula for eβs|Ys|2 for s ∈ [t, T], one has

eβt|yt|2 +
∫ T

t
eβs(β|ys|2 + |zs|2)ds = eβT |ξ|2 + 2

∫ T

t
eβs|ys|E′[ f0(s)]ds− 2

∫ T

t
eβs|ys||zs|ds.
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Taking conditional expectation under Ft and multiplying e−βt on both sides of the
above equation,

|yt|2 + E
[∫ T

t
eβ(s−t)(β|ys|2 + |zs|2)ds

∣∣∣Ft

]
= E

[
eβ(T−t)|ξ|2

∣∣∣Ft

]
+ 2E

[∫ T

t
eβ(s−t)|ys|E′[ f0(s)]ds

∣∣∣Ft

]
≤ E

[
eβ(T−t)|ξ|2

∣∣∣Ft

]
+ E

[∫ T

t
eβ(s−t)

(
β

2
|ys|2 +

2
β

(
E′[ f0(s)]

)2
)

ds
∣∣∣Ft

]
.

Thus,

|yt|2 + E
[∫ T

t
eβ(s−t)

(
β

2
|ys|2 + |zs|2

)
ds
∣∣∣Ft

]
≤ E

[
eβ(T−t)|ξ|2

∣∣∣Ft

]
+

2
β

E
[∫ T

t
eβ(s−t)(E′[ f0(s)]

)2ds
∣∣∣Ft

]
.

When t = 0, we have

|y0|2 + E
[∫ T

0
eβs
(

β

2
|ys|2 + |zs|2

)
ds
]
≤ E

[
eβT |ξ|2

]
+

2
β

E
[∫ T

0
eβs(E′[ f0(s)]

)2ds
]

.

By using Burkholder–Davis–Gundy inequality, we have

E
[
sup0≤t≤T |yt|2

]
≤ CE

[
|ξ|2 +

∫ T

0

∣∣E′[ f0(s)]
∣∣2ds

]
< ∞,

where C is a constant that varies with T. Therefore, yt ∈ S2
F (0, T;Rm).

Lemma 2. Suppose f (s, ·) satisfies (H1) and (H2) for s ∈ [0, T]. Further, let y′s−d1(s)
, ys−d1(s),

ȳ′s−d1(s)
, ȳs−d1(s) ∈ L2

F (0, t;Rm); z′s−d2(s)
, zs−d2(s), z̄′s−d2(s)

, z̄s−d2(s) ∈ L2
F (0, t;Rm×d); ys

′, ys,

ȳ′s, ȳs ∈ Rm; zs
′, zs, z̄′s, z̄s ∈ Rm×d; y′s+d3(s)

, ys+d3(s), ȳ′s+d3(s)
, ȳs+d3(s) ∈ L2

F (t, T + K;Rm);

z′s+d4(s)
, zs+d4(s), z̄′s+d4(s)

, z̄s+d4(s) ∈ L2
F (t, T + K;Rm×d) for t ∈ [0, T]; and let di(t),

i = 1,2,3,4, satisfy (D1) and (D2). Hence,

E
[ ∫ T

t
eβs
∣∣∣∣E′[ f (s, y′s−d1(s)

, z′s−d2(s)
, ys−d1(s), zs−d2(s), ys

′, zs
′, ys, zs, y′s+d3(s)

, z′s+d4(s)
, ys+d3(s), zs+d4(s))

]
−E′

[
f (s, ȳ′s−d1(s)

, z̄′s−d2(s)
, ȳs−d1(s), z̄s−d2(s), ȳ′s, z̄′s, ȳs, z̄s, ȳ′s+d3(s)

, z̄′s+d4(s)
, ȳs+d3(s), z̄s+d4(s))

]∣∣∣∣2ds
]

≤ 24C2(2L + 1)E
[ ∫ T+K

t
eβs
(
|ŷs−d1(s)|

2 + |ẑs−d2(s)|
2 + |ŷs, ẑs|2 + |ŷs+d3(s)|

2 + |ẑs+d4(s)|
2
)

ds
]

,

where we denote the differences by ŷs−d1(s) = ys−d1(s) − ȳs−d1(s), ẑs−d2(s) = zs−d2(s) − z̄s−d2(s),
ŷs = ys − ȳs, ẑs = zs − barzs, ŷs+d3(s) = ys+d3(s) − ȳs+d3(s), ẑs+d4(s) = zs+d4(s) − z̄s+d4(s).

Proof. From assumptions (H1), (D1), and (D2), Equation (2), and Jensen’s inequality,
we have
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E
[ ∫ T

t
eβs
∣∣∣∣E′[ f (s, y′s−d1(s)

, z′s−d2(s)
, ys−d1(s), zs−d2(s), ys

′, zs
′, ys, zs, y′s+d3(s)

, z′s+d4(s)
, ys+d3(s), zs+d4(s))

]
− E′

[
f (s, ȳ′s−d1(s)

, z̄′s−d2(s)
, ȳs−d1(s), z̄s−d2(s), ȳ′s, z̄′s, ȳs, z̄s, ȳ′s+d3(s)

, z̄′s+d4(s)
, ȳs+d3(s), z̄s+d4(s))

]∣∣∣∣2ds
]

≤ E
[ ∫ T

t
eβsE′

[∣∣∣∣ f (s, y′s−d1(s)
, z′s−d2(s)

, ys−d1(s), zs−d2(s), ys
′, zs
′, ys, zs, y′s+d3(s)

, z′s+d4(s)
, ys+d3(s), zs+d4(s))

− f (s, ȳ′s−d1(s)
, z̄′s−d2(s)

, ȳs−d1(s), z̄s−d2(s), ȳ′s, z̄′s, ȳs, z̄s, ȳ′s+d3(s)
, z̄′s+d4(s)

, ȳs+d3(s), z̄s+d4(s))

∣∣∣∣2]ds
]

≤ 24C2E
[ ∫ T

t
eβs
(
|ŷs−d1(s)|

2 + |ẑs−d2(s)|
2 + |ŷs|2 + |ẑs|2 + |ŷs+d3(s)|

2 + |ẑs+d4(s)|
2
)

ds
]

≤ 24C2(2L + 1)E
[ ∫ T+K

t
eβs
(
|ŷs|2 + |ẑs|2

)
ds
]

.

Theorem 1. Suppose that ξ(t) ∈ S2
F (T, T + K;Rm and η(t) ∈ L2

F (T, T + K;Rm×d) satisfy
the conditions (H1) and (H2), and di(t), i = 1, 2, 3, 4, satisfy (D1) and (D2), then there will
exist a unique solution (Yt, Zt)t∈[0,T+K] ∈ S2

F (0, T + K;Rm × L2
F (0, T + K;Rm×d) for the MF-

DABSDEs.

Proof. Firstly, we define a norm on L2
F (0, T + K;Rm×d) which is equivalent to the follow-

ing norm

‖ϕ(·)‖β =

{
E
[ ∫ T+K

0
eβt|ϕt|2dt

]}2

.

We rewrite the MF-DABSDE given in Equation (1) as
Yt = ξT +

∫ T

t
E′
[

f (t, Y′t−d1(t)
, Z′t−d2(t)

, Yt−d1(t), Zt−d2(t), Y′t , Z′t, Yt, Zt, Y′t+d3(t)
,

Z′t+d4(t)
, Yt+d3(t), Zt+d4(t))

]
dt−

∫ T

t
ZtdBt, 0 ≤ t ≤ T;

Yt = ξt, T ≤ t ≤ T + K;
Zt = ηt, T ≤ t ≤ T + K.

(3)

Then we define the mapping I: L2
F (0, T + K;Rm ×Rm×d)→ L2

F (0, T + K;Rm ×Rm×d)
such that (Y·, Z·) = I(y·, z·). For an arbitrary pair (y·, z·), (ȳ·, z̄·) ∈ L2

F (0, T + K;Rm ×
Rm×d), let (Y·, Z·) = I(y·, z·), (Ȳ·, Z̄·) = I(ȳ·, z̄·), and we put the differences as follows:

(Ŷ·, Ẑ·) = (Y· − Ȳ·, Z· − Z̄·), (ŷ·, ẑ·) = (y· − ȳ·, z· − z̄·).

Now we will prove that the pair (Yt) ∈ S2
F (0, T + K;Rm), (Zt) ∈ L2

F (0, T + K;Rm×d)
can solve Equation (3) if and only if it is a fixed point of I.

Applying Itô’s formula for eβt|Ŷt|2 we have

d
(

eβt|Ŷt|2
)
= βeβt|Ŷt|2 + 2eβt|Ŷt|d|Ŷt|+ eβtd|Ŷt|2.
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Combining Equation (1) and the properties of the Itô’s integral, and then taking the
integral on [0, T], we have

eβT |ŶT |2 − |Ŷ0|2

=
∫ T

0
eβt
(

β|Ŷt|2 + |Ẑt|2
)

dt− 2
∫ T

0
eβt|Ŷt|

{
E′
[

f (t, y′t−d1(t)
, z′t−d2(t)

, yt−d1(t), zt−d2(t),

yt
′, zt
′, yt, zt, y′t+d3(t)

, z′t+d4(t)
, yt+d3(t), zt+d4(t))

]
− E′

[
f (t, ȳ′t−d1(t)

, z̄′t−d2(t)
, ȳt−d1(t),

z̄t−d2(t), ȳ′t, z̄′t, ȳt, z̄t, ȳ′t+d3(t)
, z̄′t+d4(t)

, ȳt+d3(t), z̄t+d4(t))
]}

dt + 2
∫ T

0
eβt|Ŷt||Ẑt|dBt.

Rearranging the terms and taking expectations on both sides, we obtain

|Ŷ0|2 + βE
[∫ T

0
eβt|Ŷt|2dt

]
+ E

[∫ T

0
eβt|Ẑt|2dt

]
= 2E

[ ∫ T

0
eβt|Ŷt|

{
E′
[

f (t, y′t−d1(t)
, z′t−d2(t)

, yt−d1(t), zt−d2(t), yt
′, zt
′, yt, zt, y′t+d3(t)

, z′t+d4(t)
,

yt+d3(t), zt+d4(t))
]
− E′

[
f (t, ȳ′t−d1(t)

, z̄′t−d2(t)
, ȳt−d1(t), z̄t−d2(t), ȳ′t, z̄′t, ȳt, z̄t, ȳ′t+d3(t)

, z̄′t+d4(t)
,

ȳt+d3(t), z̄t+d4(t))
]}

dt
]

≤ β

2
E
[∫ T

0
eβt|Ŷt|2dt

]
+

2
β

E
[ ∫ T

0
eβt
{

E′
[

f (t, y′t−d1(t)
, z′t−d2(t)

, yt−d1(t), zt−d2(t), yt
′, zt
′,

yt, zt, y′t+d3(t)
, z′t+d4(t)

, yt+d3(t), zt+d4(t))
]
− E′

[
f (t, ȳ′t−d1(t)

, z̄′t−d2(t)
, ȳt−d1(t), z̄t−d2(t),

ȳ′t, z̄′t, ȳt, z̄t, ȳ′t+d3(t)
, z̄′t+d4(t)

, ȳt+d3(t), z̄t+d4(t))
]}2

dt
]

.

Rearranging the terms again and applying Lemma 2, we obtain the following estimate:

E
[∫ T

0
eβt
(

β

2
|Ŷt|2 + |Ẑt|2

)
dt
]

≤ 2
β

E
[ ∫ T

0
eβt
{

E′
[

f (t, y′t−d1(t)
, z′t−d2(t)

, yt−d1(t), zt−d2(t), yt
′, zt
′, yt, zt, y′t+d3(t)

, z′t+d4(t)
, yt+d3(t), zt+d4(t))

]
− E′

[
f (t, ȳ′t−d1(t)

, z̄′t−d2(t)
, ȳt−d1(t), z̄t−d2(t), ȳ′t, z̄′t, ȳt, z̄t, ȳ′t+d3(t)

, z̄′t+d4(t)
, ȳt+d3(t), z̄t+d4(t))

]}2
dt
]

≤ 48C2(2L + 1)
β

E
[ ∫ T+K

0
eβs
(
|ŷs|2 + |ẑs|2

)
ds
]

. (4)

Finally, by taking β = 96C2(2L + 1) + 2, we obtain

E
[∫ T+K

0
eβt
(
|Ŷt|2 + |Ẑt|2

)
dt
]
≤ 1

2
E
[∫ T+K

0
eβt
(
|ŷt|2 + |ẑt|2

)
dt
]

.

That is, ∥∥(Ŷ·, Ẑ·)
∥∥

β
≤ 1√

2
‖(ŷ·, ẑ·)‖β.

Thus, this mapping I is a contraction mapping on L2
F (0, T +K;Rm×Rm×d) that allows

us to apply the fixed point theorem; the mapping I has a unique fixed point. That means
Equation (3) has a unique solution (Yt, Zt) ∈ L2

F (0, T + K;Rm ×Rm×d) on [0, T + K] such
that I(yt, zt) = (Yt, Zt). On the other hand, as f satisfies the assumptions (H1) and (H2), and
di(t), i = 1, 2, 3, 4, satisfy (D1) and (D2), we have f (t, y′t−d1(t)

, z′t−d2(t)
, yt−d1(t), zt−d2(t), yt

′, zt
′,
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yt, zt, y′t+d3(t)
, z′t+d4(t)

, yt+d3(t), zt+d4(t)) ∈ L2
F (0, T + K;Rm). Then, by applying Lemma 1,

we obtain Yt ∈ S2
F (0, T + K;Rm).

4. Comparison Theorem

In this section, we investigate a comparison theorem of MF-DABSDEs of the one-
dimensional kind shown below:

Yt = ξT +
∫ T

t
E′
[

f (s, Y′s−d1(s)
, Ys, Zs, Y′s+d3(s)

)
]

ds−
∫ T

t
ZsdBs, 0 ≤ t ≤ T;

Yt = ξt, T ≤ t ≤ T + K;
Zt = ηt, T ≤ t ≤ T + K.

Firstly, we introduce the classical case of the comparison theorem of BSDEs; Lemma 3
refers to Lemma 3.4 of Peng and Yang [20].

Lemma 3. Let(Y(1)
· , Z(1)

· ), (Y(2)
· , Z(2)

· ) be the solutions of the following classical type of BSDE:

Y(j)
t = ξ

(j)
T +

∫ T

t
f j(s, Y(j)

s , Z(j)
s )ds−

∫ T

t
Z(j)

s dBs, 0 ≤ t ≤ T.

Here j = 1, 2, and for (y, z), f j(t, y, z) : Ω × [0, T] × Rm × Rm×d → Rm satisfies the Lips-
chitz condition, meaning that for any y, ȳ ∈ Rm and z, z̄ ∈ Rm×d, there exists C > 0 such
that | f j(t, y, z) − f j(t, ȳ, z̄)| ≤ C(|y − ȳ| + |z − z̄|) and f j(·, 0, 0) ∈ L2

F (0, T;Rm). If ξ(1) ≤
ξ(2), f1(t, y, z) ≤ f2(t, y, z), t ∈ [0, T], y ∈ Rm, z ∈ Rm×d, then

Y(1)
t ≤ Y(2)

t , a.e., a.s.

Next, let (Y(1)
· , Z(1)

· ), (Y(2)
· , Z(2)

· ) be the solutions of the two one-dimensional MF-
DABSDEs shown below,

Y(j)
t = ξ

(j)
T +

∫ T

t
E′
[

f j(s, Y′(j)
s−d1(s)

, Y(j)
s , Z(j)

s , Y′(j)
s+d3(s)

)
]

ds−
∫ T

t
Z(j)

s dBs, 0 ≤ t ≤ T;

Y(j)
t = ξ

(j)
t , T ≤ t ≤ T + K;

Z(j)
t = η

(j)
t , T ≤ t ≤ T + K,

(5)

where j = 1, 2. The end outcome is as follows.

Theorem 2. Suppose f j(t, ·), j = 1, 2 satisfy the assumptions (H1) and (H2), ξ
(j)
t ∈ S2

F (T, T +
K;Rm), and di(t), i = 1, 2, 3, 4 satisfy (D1) and (D2). Moreover, assume that

(i) f1(t, u′, y, z, φ′) is increasing in u′ and φ′;

(ii) ξ
(1)
t ≤ ξ

(2)
t ;

(iii) f1(t, y′t−d1(t)
, yt, zt, y′t+d3(t)

) ≤ f2(t, y′t−d1(t)
, yt, zt, y′t+d3(t)

), y′t−d1(t)
∈ L2

F (0, t),

y′t+d3(t)
∈ L2

F (t, T + K).

It is then true that Y(1)
t ≤ Y(2)

t almost surely.

Proof. Since (Y(1)
· , Z(1)

· ) is the solution of the one-dimensional MF-DABSDE given in
Equation (5), we have Y(1)

t = ξ
(1)
T +

∫ T

t
E′
[

f1(s, Y′(1)s−d1(s)
, Y(1)

s , Z(1)
s , Y′(1)s+d3(s)

)
]

ds−
∫ T

t
Z(1)

s dBs, 0 ≤ t ≤ T;

Y(1)
t = ξ

(1)
t , T ≤ t ≤ T + K.

(6)
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Next, we consider the following BSDEs: Y(3)
t = ξ

(2)
T +

∫ T

t
E′
[

f2(s, Y′(1)s−d1(s)
, Y(3)

s , Z(3)
s , Y′(1)s+d3(s)

)
]

ds−
∫ T

t
Z(3)

s dBs, 0 ≤ t ≤ T;

Y(3)
t = ξ

(2)
t , T ≤ t ≤ T + K.

(7)

From the classical existence and uniqueness theorem of classical BSDEs (Peng 2004,
Theorem 3.2), we know there exists a unique solution (Y(3)

t , Z(3)
t ) ∈ S2

F (0, T)× L2
F (0, T).

Considering Equations (6) and (7), as ξ
(1)
t ≤ ξ

(2)
t , f1(s, Y′(1)s−d1(s)

, Y(1)
s , Z(1)

s , Y′(1)s+d3(s)
) ≤

f2(s, Y′(1)s−d1(s)
, Y(3)

s , Z(3)
s , Y′(1)s+d3(s)

), by Lemma 3, we have

Y(1)
t ≤ Y(3)

t a.e., a.s.

Set Y(4)
t = ξ

(2)
T +

∫ T

t
E′
[

f2(s, Y′(3)s−d1(s)
, Y(4)

s , Z(4)
s , Y′(3)s+d3(s)

)
]

ds−
∫ T

t
Z(4)

s dBs, 0 ≤ t ≤ T;

Y(4)
t = ξ

(2)
t , T ≤ t ≤ T + K.

(8)

Consider Equations (7) and (8); f1(t, u′, y, z, φ′) is increasing in u′ and φ′, and Y(1)
t ≤

Y(3)
t , which imply f2(s, Y′(1)s−d1(s)

, Y(3)
s , Z(3)

s , Y′(1)s+d3(s)
) ≤ f2(s, Y′(3)s−d1(s)

, Y(4)
s , Z(4)

s , Y′(3)s+d3(s)
). Sim-

ilar to the above, we have

Y(3)
t ≤ Y(4)

t a.e., a.s.

For n = 5, 6, . . . , we consider the following BSDEs: Y(n)
t = ξ

(2)
T +

∫ T

t
E′
[

f2(s, Y′(n−1)
s−d1(s)

, Y(n)
s , Z(n)

s , Y′(n−1)
s+d3(s)

)
]

ds−
∫ T

t
Z(n)

s dBs, 0 ≤ t ≤ T;

Y(n)
t = ξ

(2)
t , T ≤ t ≤ T + K.

Similarly, we obtain

Y(4)
t ≤ Y(5)

t ≤ · · · ≤ Y(n−1)
t ≤ Y(n)

t ≤ . . . , a.s.

Next, we will show that n ≥ 4, Y(n)
t and Z(n)

t are, respectively, Cauchy sequences.

Denote Ŷ(n)
t := Y(n)

t − Y(n−1)
t , Ẑ(n)

t := Z(n)
t − Z(n−1)

t , n ≥ 4, then from estimate (4),
we obtain

E
[∫ T

0
eβt
(

β

2
|Ŷ(n)

t |
2 + |Ẑ(n)

t |
2
)

dt
]
≤ 2

β
E
[ ∫ T

0
eβt
{

E′
[

f2(t, Y′(n−1)
s−d1(s)

, Y(n)
t , Z(n)

t , Y′(n−1)
s+d3(s)

)

− f2(t, Y′(n−2)
s−d1(s)

, Y(n−1)
t , Z(n−1)

t , Y′(n−2)
s+d3(s)

)
]}2

dt
]

.

When we apply Jensen’s inequality, assumptions (H1), (D1) and (D2), and the fact that
(a + b + c + d)2 ≤ 4(a2 + b2 + c2 + d2), one has

E
[∫ T

0
eβt
(

β

2
|Ŷ(n)

t |
2 + |Ẑ(n)

t |
2
)

dt
]

≤ 8C2(2L + 1)
β

E
[ ∫ T

0
eβt
(
|Ŷ(n−1)

t |2 + Ŷ(n)
t |

2 + Ẑ(n)
t |

2 + Ŷ(n−1)
t |2

)
dt.

Let β = 32C2(2L + 1) + 2, then we obtain



Mathematics 2023, 11, 888 11 of 13

E
[∫ T

0
eβt
(
|Ŷ(n)

t |
2 + |Ẑ(n)

t |
2
)

dt
]
≤ 1

4
E
[∫ T

0
eβt
(
|Ŷ(n)

t |
2 + Ẑ(n)

t |
2
)

dt
]
+

1
2

E
[∫ T

0
eβt|Ŷ(n−1)

t |2dt
]

.

Hence,

E
[∫ T

0
eβt
(
|Ŷ(n)

t |
2 + |Ẑ(n)

t |
2
)

dt
]
≤ 2

3
E
[∫ T

0
eβt|Ŷ(n−1)

t |2dt
]

≤ 2
3

E
[∫ T

0
eβt
(
|Ŷ(n−1)

t |2 + |Ẑ(n−1)
t |2

)
dt
]

.

Therefore,

E
[∫ T

0
eβt
(
|Ŷ(n)

t |
2 + |Ẑ(n)

t |
2
)

dt
]
≤
(

2
3

)n−4
E
[∫ T

0
eβt
(
|Ŷ(4)

t |
2 + |Ẑ(4)

t |
2
)

dt
]

.

This means (Ŷ(n)
t , Ẑ(n)

t )n≥4 is Cauchy sequence in L2
F (0, T + K)× L2

F (0, T). Let the

limit of (Ŷ(n)
t , Ẑ(n)

t ) be (Y·, Z·) for all 0 ≤ t ≤ T, when n→ ∞, hence

E
[∫ T

t
eβs
(

E′
[

f2(s, Y′(n−1)
s−d1(s)

, Y(n)
s , Z(n)

s , Y′(n−1)
s+d3(s)

)
]
− E′

[
f2(s, Y′s−d1(s)

, Ys, Zs, Y′s+d3(s)
)
])

ds
]

≤ 4C2E
[∫ T

t
eβs
(
|Y(n)

s −Ys|2 + |Z(n)
s − Zs|2 + 2L|Y(n−1)

s −Ys|2
)]
−→ 0.

Thus, (Yt, Zt) is a solution of the following MF-DABSDEs: Yt = ξ
(2)
T +

∫ T

t
E′
[

f2(s, Y′s−d1(s)
, Ys, Zs, Y′s+d3(s)

)
]

ds−
∫ T

t
ZsdBs, 0 ≤ t ≤ T;

Yt = ξ
(2)
t , T ≤ t ≤ T + K.

Then, by Theorem 1 on the uniqueness of the solution, we know that

Yt = Y(2)
t , a.s.

Since

Y(1)
t ≤ Y(3)

t ≤ Y(4)
t ≤ Yt,

then we obtain the desired result Y(1)
t ≤ Y(2)

t , a.s.

5. Conclusions

Our study contributes to the introduction of a new type of BSDE, the mean-field
anticipated BSDE with a time-delayed generator, and uses the fixed point theorem, which
is more convenient than another method (Picard’s iterative method), to prove the existence
and uniqueness of the solution to this class of equations. Moreover, a comparison theorem
is also obtained. A potential limitation of this study, when compared with the core work
of Peng and Yang [20], stems from the fact that it involves mean-field limits and a more
general generator f , which necessitates more elaborate steps. Also, this paper is slightly
more demanding in terms of assumptions because of the simpler fixed point theorem
method. Therefore, as a follow-up study and as the application of this paper, we aim to
establish the relationship between the MF-DABSDEs and a nonlocal partial differential
equation. In addition, it should be pointed out that, similar to the study of mean-field
anticipated BSDEs driven by fractional Brownian motion, theoretically, our equation can
also be applied to stochastic optimal control problems. In the future, further research may
be conducted on this topic utilising broader assumptions and simpler approaches.



Mathematics 2023, 11, 888 12 of 13

Author Contributions: Writing—original draft and writing—review and editing, P.Z., N.A.M. and
A.I.N.I. All authors have read and agreed to the published version of the manuscript.

Funding: The research was funded by Anhui Philosophy and Social Science Planning Project (AH-
SKQ2021D98), Natural Science Fund of Universities in Anhui Province (KJ2021A1101), Scientific
research projects of colleges and universities in Anhui Province(2022AH051370), and Universiti
Malaya research project (GPF031B-2018).

Data Availability Statement: Not applicable.

Acknowledgments: The authors appreciate the reviewers’ thorough reading and insightful feedback.
Additionally, the authors would like to express their gratitude to the participating editors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pardoux, E.; Peng, S. Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 1990, 14, 55–61. [CrossRef]
2. Bahlali, K.; Essaky, E.H.; Oukine, Y. Reflected backward stochastic differential equation with jumps and locally Lipschitz

coefficient. Random Oper. Stoch. Equ. 2002, 10, 481–486. [CrossRef]
3. Al-Hussein, A. Backward stochastic partial differential equations driven by infinite-dimensional martingales and applications.

Stochastics 2009, 81, 601–626. [CrossRef]
4. Zhang, P.; Ibrahim, A.I.N.; Mohamed, N.A. Backward Stochastic Differential Equations (BSDEs) Using Infinite-Dimensional

Martingales with Subdifferential Operator. Axioms 2022, 11, 536. [CrossRef]
5. Peng, S. Nonlinear Expectations, Nonlinear Evaluations and Risk Measures. In Stochastic Methods in Finance; Springer: Berlin,

Germany, 2004; pp. 165–253. [CrossRef]
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