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Abstract: Space-time varying coefficient models, which are used to identify the effects of covariates
that change over time and spatial location, have been widely studied in recent years. One such
model, called the quantile regression model, is particularly useful when dealing with outliers or
non-standard conditional distributions in the data. However, when the functions of the covariates are
not easily specified in a parametric manner, a nonparametric regression technique is often employed.
One such technique is the use of B-splines, a nonparametric approach used to estimate the parameters
of the unspecified functions in the model. B-splines smoothing has potential to overfit when the
number of knots is increased, and thus, a penalty is added to the quantile objective function known
as P-splines. The estimation procedure involves minimizing the quantile loss function using an
LP-Problem technique. This method was applied to upper respiratory tract infection data in the
city of Bandung, Indonesia, which were measured monthly across 30 districts. The results of the
study indicate that there are differences in the effect of covariates between quantile levels for both
space and time coefficients. The quantile curve estimates also demonstrate robustness with respect
to outliers. However, the simultaneous estimation of the quantile curves produced estimates that
were relatively close to one another, meaning that some quantile curves did not depict the actual data
pattern as precisely. This suggests that each district in Bandung City not only has different categories
of incidence rates but also has a heterogeneous incidence rate based on three quantile levels, due to
the difference in the effects of covariates over time and space.

Keywords: longitudinal data; P-splines; quantile regression; space-time varying coefficient model

MSC: 62G08

1. Introduction

In order to gain a deeper understanding of a subject, researchers often collect data
through repeated measurements. The resulting data structure is referred to as longitudinal,
where the observations within a subject are not independent, even though the subjects
themselves are independent. When utilizing a linear mixed model to analyze this type
of data, it is necessary to make certain assumptions such as linearity, error distribution,
and fixed coefficients. [1]. Varying coefficient models are a class of statistical models that
allow for the coefficients to vary as a smooth function of other variables. This increased
flexibility in comparison to traditional models allows for a more comprehensive and
accurate representation of the underlying data [2]. Several studies have utilized these
models in the analysis of longitudinal data, with a focus on determining the dynamic effect
of covariates on mean regression, as seen in [3–6]. Additionally, other research has applied
these models in the examination of hierarchical structured data, as seen in [7].
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In the presence of outliers or leverage points, median regression is a more robust
method than mean regression for analyzing data. Furthermore, median regression can be
extended to quantile regression, a technique that examines the relationship between the
response and explanatory variables at various quantiles of the response variable, including
the mean and median [8]. According to [9], quantile regression is a method that can be
used to analyze the effect of covariates on different quantiles of a response, rather than
just the center of the distribution. This approach is particularly useful in cases where the
data contain outliers, as they are more robust to their presence. Additionally, quantile
regression can provide insight into the effects of covariates on the location, scale, and shape
of the response distribution. Some studies have applied this method in varying coefficient
models, specifically in the context of longitudinal data, as seen in references [10–13].

Several techniques have been developed to estimate the regression coefficients in
varying coefficient models. These include the two-step estimation method proposed
by [14], the expansion of basis function and variable selection approach used by [15], and
the combination of the P-splines method with non-negative garrote variable selection put
forth by [16]. In the context of quantile regression, various estimation procedures have
been applied to estimate the coefficients in varying coefficient models, such as the two-step
estimation procedure proposed by [17], the basis function approach utilized by [12], and
the P-splines quantile objective functions applied by [13]. Additionally, [18] developed
an extended model of P-splines quantile regression in varying coefficient models for
simple heteroscedastic errors. Moreover, [19] proposed a more general model that includes
methods to address the issue of crossingness in conditional quantile estimators.

Varying coefficient models, in which the coefficients vary over a spatial location or are
spatially varying, have been commonly applied by researchers in various fields. Research
applying varying coefficient models in relation to spatial heterogeneity can be found in
works such as [20], which employs geographically weighted regression for the selection of
bandwidth, and [21], which conducts a comparison of geographically weighted regression
and eigenvector spatial filtering. Additionally, studies pertaining to spatial autoregression
include [22], which applies a Bayesian approach utilizing P-splines quantile regression in
partial linear varying coefficient spatial autoregressive models.

In this study, we examine the spread of infectious diseases such as upper respiratory
tract infections (URTI) in Bandung City using a longitudinal design. The subjects of the
study are the districts within the city, and the response variable of interest is the incidence
rate of URTI, which is measured on a monthly basis for each district. The data include
both cross-sectional and time-varying covariates, such as breast milk, malnutrition, and
Vitamin A, as well as temperature, rainfall, and humidity, which are measured monthly for
the entire city. The data structure of this study suggests the need for a space-time varying
coefficient model (ST-VCM) to account for the variation in coefficients over both space and
time. This model includes both separable space and time varying coefficients but does not
include any interaction terms. The focus of this paper is on the use of the ST-VCM with
separable space and time varying coefficients.

Several researchers applied ST-VCM such as [23] using Bayesian regression, [24] using
Bayesian local regression, and [25] using kernel as a smoothing function. The Bayesian
approach requires prior information about the response, and kernel smoothing requires a
kernel function for estimation. All the work in the literature focuses on estimating varying
effects on mean regression.

This paper uses quantile regression instead of mean regression. This is because the
incidence rate of URTI should be categorized based on quantile levels. The lower the
level, the lower the risk. On the other hand, if the distribution of the data in some areas is
skewed, then we need a robust technique. Based on the data exploration, the function of
the covariates to the response had to be specified. P-splines are used as a flexible method
for estimation. P-splines were chosen due to their low sensitivity in adding knots to
overcome overfitting [26]. Finally, the model to analyze the URTI data for Bandung City is
the P-splines quantile regression in space-time varying coefficient model.
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The rest of the paper is organized as follows. In Section 2, we present the space-time
varying coefficient model and its estimation procedure. The application of the models to
the spread of upper respiratory tract infections data is established in Section 3. We first
describe the description of the data followed by the discussion of our results and findings
in Section 4. Conclusions of the paper are given in Section 5.

2. Materials and Methods
2.1. Space-Time Varying Coefficient Model

This section presents the space-time varying coefficient model. In general, not all
covariates need to vary in both time and space. The modeling procedure allows for
various predictor forms, i.e., scalar, time varying, spatially varying, or space-time varying.
This paper focuses on models without interaction effects. The observed data are (Yij,
Xij, Zij), where Yij = Y(si, tj) is the response variable, Xij

(p) = X(P)(tj) is the p-th covariate
corresponding to time tj; j = 1, . . . , Nj, and Zij

(q )= Z(q)(si) is the q-th covariate corresponding
to location. si; i = 1, . . . , n.

Suppose we have the following space-time varying coefficient models:

Y
(
si, tj

)
=

P

∑
p=0

βp
(
tj
)
X(p)(tj

)
+

Q

∑
q=0

β̃q(si)Z(q)(si) + ε
(
si, tj

)
, (1)

where βp
(
tj
)

is the p-th regression coefficient at time tj, β̃q(si) is the q-th regression coeffi-
cient at location si, P is the number of variables associated to time, and Q is the number of
variables associated to location. The right-hand side of model (1) consists of three parts:
the first part is related to the time function, the second part is related to the spatial function,
and the error part.

Quantile regression [27] was chosen instead of mean regression for model (1) because it
is robust to outliers and flexibility. In this context, the assumptions underlying this model are
the homoscedastic error, the τ-th quantile value equaling to zero in the interval 0 < τ < 1, and
independence from the explanatory variables.

The conditional quantile function of response Y
(
si, tj

)
given covariates X

(
tj
)

and Z(si)
of model (1) is expressed by

qτ

(
Y
(
si, tj

)∣∣X(tj
)
, Z(si)

)
=

P

∑
p=0

βτ
p
(
tj
)
X(p)(tj

)
+

Q

∑
q=0

β̃τ
q(si)Z(q)(si) (2)

where τ-th level of quantile (0 < τ < 1), β̃0(si) is the regression coefficient at Z(0)(si) = 1
for all i = 1, 2, . . . , n, and β0

(
tj
)

is the regression coefficient of X(0)
(
tj
)

= 1 for all
j = 1, 2, . . . , Ni. The coefficients of the model can be approximated by linear combina-
tion of the basis B-Spline:

βp
(
tj
)
≈

mp

∑
l=1

αpl Bpl
(
tj; vl

)
(3)

β̃q(si) ≈
m̃q

∑
l̃=1

α̃ql̃ Bql̃

(
si; ṽl̃

)
(4)

where vl , ṽl̃ are degrees and αl , α̃l̃ are coefficients of B-splines basis Bl(.; .) and Bl̃(.; .),
respectively.

B-spline is a piecewise polynomial function with local support given the degree and
domain of its partition [28]. The j-th B-spline of degree v based on the sequence of knots
t0, . . . , tu for j = 1, . . . , v + u is defined as a recursive formula:

Bj(x; v) =
x− tj

tj+v−1 − tj
Bj(x; v− 1) +

(
x− tj+1

tj+v − tj+1
Bj+1(x; v− 1)

)
(5)
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where

Bj(x; 0) =
{

1 i f tj ≤ x ≤ tj+1
0 otherwise

(6)

The normalized B-splines mean that for all x: ∑v+u
j=1 Bj(x; v) = 1.

B-splines are sensitive to the number of knots which will affect the smoothness of the
model and result in overfitting.

The objective function of (1) is the following goodness of fit quantity

n

∑
i=1

1
Ni

Ni

∑
j=1

ρτ

Y
(
si; tj

)
−

P

∑
p=0

mp

∑
l=1

αpl Bpl
(
tj; vl

)
X(p)(tj

)
−

Q

∑
q=1

m̃q

∑
l̃=1

α̃ql̃ Bql̃

(
si; ṽl̃

)
Z(q)(si)

 (7)

where ρ(.) is a check function, which is an analogue to the squared loss function [29] with
the following expression

ρτ(z) =
{

τz i f z > 0
−(1− τ)z otherwise

(8)

Large numbers of knots for the basis functions lead to overfitting; then to overcome
this, as proposed by [8], penalties are applied into the objective function (7). The quantity
to evaluate is then

S(α̃) =
n
∑

i=1

1
Ni

Ni
∑

j=1
ρτ

{
Y
(
si; tj

)
−

P
∑

p=0

mp

∑
l=1

αpl Bpl
(
tj; vl

)
X(p)(tj

)
−

Q
∑

q=1

m̃q

∑
l̃=1

α̃ql̃ Bql̃

(
si; ṽl̃

)
Z(q)(si)

}
+

P
∑

p=0

mp

∑
l=dp+1

λp

∣∣∣∆dp αpl

∣∣∣γ
+

Q
∑

q=0

m̃q

∑
l̃=d̃q+1

λ̃q

∣∣∣ ∆ ˜d̃q α̃ql̃

∣∣∣γ̃
(9)

Using matrix notation, (8) can be rewritten as

S(α̃) =
n

∑
i=1

1
Ni

Ni

∑
j=1

ρτ

(
Y
(
si; tj

)
−UT

ijα−
~
U

T

ij α̃

)
−

P

∑
p=0

λp‖D
dp
p αp‖γ

γ −
Q

∑
q=0

λ̃q‖
~
D

d̃q

q α̃q‖γ
γ (10)

where

UT
ij = XT

ijBp
(
tj
)
,

~
U

T

ij = ZT
ijBq(si),

XT
ij =

(
X(0)

ij , . . . , X(P)
ij

)
, ZT

ij =
(

Z(0)
ij , . . . , Z(Q)

ij

)
,

‖αp‖γ
γ = ∑

mp
l=1

∣∣∣αpl

∣∣∣γ, ‖α̃q‖γ
γ = ∑

m̃q

l̃=1

∣∣∣α̃ql̃

∣∣∣γ,

∆
dp
p αpj = ∑

dp
t=0(−1)t

(
dp
t

)
αp(j−t), ∆̃

d̃q
q α̃qj = ∑

d̃q
t=0(−1)t

(
d̃q
t

)
α̃q(j−t),

and D
dp
p and D

d̃q
q are matrix representation of differencing operators ∆dp and ∆̃d̃q .

Bp and Bq are matrix of basis B-splines

Bp(ti) =

B01(t, v0) . . . B0m0(t, v0)
...

. . .
...

0 . . . 0

0 . . . 0
...

. . .
...

0 . . . 0

0 . . . 0
...

. . .
...

Bp1
(
t, vp

)
. . . Bpmp

(
t, vp

)


Bq
(
sj
)
=

B01(s, ṽ0) . . . B0m̃0(s, ṽ0)
...

. . .
...

0 . . . 0

0 . . . 0
...

. . .
...

0 . . . 0

0 . . . 0
...

. . .
...

Bq1
(
s, ṽq

)
. . . Bqm̃q

(
s, ṽq

)
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2.2. Estimation

In this study we will focus on a special case where γ = 1 and hence the objective
function (10) has an L1-penalty. Estimation of αp and α̃p can be obtained by minimizing the
objective function (10). However, objective function (10) is a non-differentiable function that
cannot be optimized by ordinary methods. As proposed by [30], the quantile loss function
with L1-penalty is translated into a linear programming (LP) problem such that some
techniques on this method can be implemented. [31] shows that the Frisch-Newton interior
point algorithm in the quantile LP problem is efficient even for a very large problem,
particularly when dealing with sparse matrices. Translation of (10) to the LP-Problem
form is

min
all uij , vij , αp ,α̃q

{
τ

n

∑
i=1

Ni

∑
j=1

uij + (1− τ)
n

∑
i=1

Ni

∑
j=1

vij −
P

∑
p=0

λp

∣∣∣Ddp
p αp

∣∣∣− Q

∑
q=0

λ̃q

∣∣∣∣∣ ~
D

d̃q

q α̃q

∣∣∣∣∣
}

(11)

subject to

uij − vij = Yij/Ni −UT
ijα/Ni −

~
U

T

ij α̃/Ni
uij ≥ 0, vij ≥ 0,I = 1, 2, . . . , n, j = 1, 2, . . . , Ni
where uij and vij are positive and negative parts of weighted regression residuals.
The function to be optimized (11) is a convex function. For the convex program

completion method, see [32]. Equation (10) can be written as follow

min
all uij , vij , sol ,. . . ,sPl , t0l ,. . . ,tPl s̃0l , . . . s̃Ql t̃0l ,. . . , t̃Ql

{
τ

n
∑

i=1

Ni
∑

j=1
uij + (1τ)

n
∑

i=1

Ni
∑

j=1
vij

+λ0
m0
∑

l=d0−1
s0l + λ0

m0
∑

l=d0−1
t0l + . . . + λP

mP
∑

l=dP−1
sPl

+λP
mP
∑

l=dP−1
tPl + λ̃1

m̃0
∑

l̃=d̃0−1
s̃1l̃ + λ̃1

m̃0
∑

l̃=d̃0−1
t̃1l̃ + . . .

+λ̃Q

m̃Q

∑
l̃=d̃Q−1

s̃Q̃l + λ̃Q

m̃Q

∑
l̃=d̃Q−1

t̃PQ̃l

}
(12)

subject to

uij − vij = Yij/Ni −UT
ijα/Ni −

~
U

T

ij α̃/Ni
uij ≥ 0, vij ≥ 0Ii = 1, 2, . . . , n, j = 1, 2, . . . , Ni

∆d0 αol − sol + tol = 0 for all l = d0 + 1 , . . . , m0
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The above LP problem is called a primal formulation, which can be reformed into a 
dual formulation.  

From the estimation of 𝛼 , 𝛼  then we obtain 𝛼 , 𝛼  and the estimator for the un-
known regression coefficient functions, which is given by 

𝛽 𝑡 ≈ 𝛼 𝐵 𝑡 ; 𝑣  (13) 

∆d̃Q α̃Ql̃ − sQl̃ + tQl̃ = 0 for all l̃ = d̃Q + 1 , . . . , m̃Q

where
spl =

∣∣∣∆dp αpl

∣∣∣I(∆dp αpl ≥ 0
)

and tpl =
∣∣∣∆dp αpl

∣∣∣I(∆dp αpl < 0
)

s̃ql̃ =
∣∣∣∆d̃q α̃ql

∣∣∣I(∆d̃q α̃ql ≥ 0
)

and t̃ql̃ =
∣∣∣∆d̃q α̃ql

∣∣∣I(∆d̃q α̃ql < 0
)

The above LP problem is called a primal formulation, which can be reformed into a
dual formulation.

From the estimation of αl , α̃l̃ then we obtain α̂l , ˆ̃αl̃ and the estimator for the unknown
regression coefficient functions, which is given by

β̂p
(
tj
)
≈

mp

∑
l=1

α̂pl Bpl
(
tj; vl

)
(13)
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ˆ̃β(si) ≈
m̃q

∑
l̃=1

ˆ̃αql Bql̃

(
si; ṽl̃

)
(14)

The quantile prediction function is then obtained by substituting αl , α̃l̃ with α̂l , ˆ̃αl̃
Therefore, an estimator for quantile function (2) is

q̂τ

(
Y
(
si, tj

)∣∣X(tj
)
, Z(si)

)
=

P

∑
p=0

mp

∑
l=1

α̂pl Bpl
(
tj; vl

)
X(p)(tj

)
−

Q

∑
q=1

m̃q

∑
l̃=1

ˆ̃αql̃ Bql̃

(
si; ṽl̃

)
Z(q)(si) (15)

Equation (15) can be rewritten in matrix notation as

q̂τ

(
Y
(
si, tj

)∣∣X(tj
)
, Z(si)

)
= UT

ij α̂ +
~
U

T

ij
ˆ̃α (16)

2.3. Choice of Smoothing Parameter

Minimizing quantile objective function (12) involves smoothing parameters λ0, . . . , λP
for location effects and λ̃0, . . . , λ̃Q for time effects. Selection of smoothing parameters is an
important step to obtain a good performance in parameter estimations.

In quantile regression context, all smoothing parameters for locations are firstly as-
sumed to be equal to λ, λ0 = . . . = λP = λ, and for the times λ̃0 = . . . = λ̃Q = λ̃.
There are several alternatives for selecting the smoothing parameters. [33] proposed the
Bayesian information criterion (BIC) or the Schwarz information criterion (SIC). In addition,
Refs. [9,34] used SIC in multiple quantile regression.

Modifying SIC in [35] in the context quantile regression for space-time varying coeffi-
cient models can be written as

SIC
(

λ, λ̃
)
= log

(
1
n

n

∑
i=1

1
Ni

Ni

∑
j=1

ρτ

(
Yij − q̂τ

(
Yij
∣∣Xij, tij

)))
+

log(N)

2N
p

λ,λ̃ (17)

where N = ∑n
i=1 Ni and p

λ,λ̃ is the effective degree of freedom of the fitted model. [19]
mentioned that p

λ,λ̃ is similar as computing the number of zero residuals for the fitted

model. Therefore, p
λ,λ̃ =

∣∣∣ελ,λ̃

∣∣∣, where ε
λ,λ̃ is the elbow set

ε
λ, λ̃

= (i, j) : Yij − q̂τ

(
Yij
∣∣Xij, tij

)
= 0 (18)

The optimal values of λ and λ̃ can be obtained by minimizing SIC
(

λ, λ̃
)

.

3. Real Data Application
3.1. Data Description

The proposed method is applied to monthly upper respiratory tract infection (URTI)
incidence rate data in Bandung city from 2017 to 2021. The data include incidence rate
as a response variable and the covariates are breast milk, malnutrition, and Vitamin A.
We also add climatic variables, such as temperature, rainfall, and humidity as covariates.
Older versions of the data were examined in [36] and applied to the time varying coefficient
model in [37]. Our exploratory analysis showed that some covariates varied over time,
while others varied over space. The data are then analyzed using the space-time varying
coefficient model.

Three level quantiles of 0.25, 0.5, and 0.75 were applied. For the time variables, we
set the number of knots for temperature and rainfall to 3, then set humidity to 2, and for
all time variables using cubic degree. For the space variables we set knots for breast milk
and Vitamin A to 2, then 3 for malnutrition, and for all time variables using quadratic
degree. We include varying intercept with number of knots equal to 4 and cubic degree.
We used a grid search to find optimal smoothing parameters in the grid from 1 to 10 with
increment 0.5.
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The computational process of this work used R software [38] with the main package
“QRegVCM” related to “quantreg” and “SparseM” and several additional packages such
as “lattice”, “latticeExtra”, “sf” “raster”, and “ggplot2” for visualization.

The “QRegVCM” package developed by [39] is used for longitudinal data processing
using P-splines quantile regression in VCM. This package works for time VCM and de-
pends on the “SparseM” and “quantreg” packages. Based on the information in [40], the
“quantreg” package is an estimation and inference method for conditional quantile models.
In addition, the “SparseM” package, compiled by [41], provides some basic functions for
linear algebra with sparse matrices.

The main function in this package is “QRIndiv”, which is useful in estimating con-
ditional quantile curves using the individual quantile objective functions. This function
contains several related functions, namely a function to compute weights, a function to
calculate B-Splines, an interior point method function, a function to estimate alpha and beta
coefficients, a function to select lambda smoothing parameters, and a function to compute
lambda smoothing parameters individually.

The computational process was carried out by building a program script that was
applied to the actual data. The procedure for building this program script was to modify
some functions in the “QRegVCM” package. The modifications were done by sequentially
compiling the functions related to the main function and inserting a space in each related
functions to allow these scripts to work with ST-VCM.

Results are presented in plots and maps. The two types of plots produced are quantile
plots for each district and regression coefficient plots related to time. The resulting maps
are the quantile map for each month and the spatial regression coefficient maps.

3.2. Quantile Plot

Figure 1 shows a quantile plot of the URTI data for each district of Bandung city. The
three quantiles are displayed in different colors. Quantile 0.25 is blue, quantile 0.50 is red,
and quantile 0.75 is green. Different patterns of three-level quantile functions are seen in
all districts.
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As can be seen in Figure 1, there is variation in the distance between the quantile
curves for each district. The largest gaps between quantiles 0.25 and 0.5 are found in Astana
Anyar and Ciparay, and the largest gaps between quantiles 0.5 and 0.75 are found in Andir.
The smallest distance between quantiles 0.25 and 0.50 was observed in Andir, and the
smallest distance between quantiles 0.50 and 0.75 was found in Babakan Ciparay district.

Figure 1 shows that the 0.25 quantile curve has a similar trend in all districts and is
less than 20, while the 0.50 quantile curve varies from district to district. On the other hand,
at the quantile 0.75 we see much larger difference curves. Generally, quantile values are
less than 80. The curves typically decrease through the middle of the year and then rise
slightly to the end of the year.

3.3. Quantile Maps

The results related to spatial locations are shown through a quantile map. The map
shows quantile values based on color grading. Small quantile values are represented
by the light color (yellow), and high quantile values are represented by the dark colors
(dark green).

The representative spatial maps of quantile URTI data of Bandung city are shown in
Figure 2 for February, May, August and November. Each map presents three quantile levels.
The left is the 0.25 quantile, the middle is the 0.50 quantile, and the right is the 0.75 quantile.

Based on Figure 2, the map patterns are similar over the months, whereas the gradation
of the color tends to fade, both for quantiles 0.25, 0.50, and 0.75. However, the map patterns
look different between quantile levels. For example, the eastern area shows relatively small
values at the 0.25 and 0.50 quantiles, but fairly large values at the 0.75 quantile. The highest
value is at quantile 0.75 present in February and the highest variations are in quantile 0.50.

3.4. Coefficient Plots of Time Variables

Figure 3 depicts coefficient plots of the time variables for the three quantile levels.
The coefficient estimator (β̂1, β̂2, β̂3) for quantile 0.25 is shown in (a)–(c), for quantile
0.50 in (d)–(f), and for quantile 0.75 in (g)–(i). In general, all estimates of slope 1 (a), (d),
and (g) vary over time and decrease monotonically with various characteristics. Slope 2
estimators tend to decrease sharply from January to July, then level off or increase slightly
until December. Moreover, the estimates of slope 3 (c), (f), and (i) increase monotonically
with various patterns.

The greatest fluctuation was found at the 0.75 quantile especially for slope 2 (h). The
estimators of coefficients of slope 1 (β̂1) and slope 3 (β̂3) have a negative effect on the
response, while the coefficient of slope 2 (β̂2) is positive.

3.5. Coefficient Maps of Spatial Variables

Figures 4–6 show maps of the estimate of the space coefficients ( ˆ̃β1, ˆ̃β2, ˆ̃β3) for the
three quantile levels. In general, the effect of spatial coefficients varies over spatial locations,

but some variables have similar effects to others. It also contains intercept estimators ( ˆ̃β0)
for the three quantile levels. The weaker effects are represented by lighter colors, while

darker colors represent stronger effects. The estimated coefficients for slope 1 ( ˆ̃β1) and

slope 2 ( ˆ̃β2) have negative effects, and positive effect for slope 3 ( ˆ̃β3).
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As can be seen in Figure 4, the varying coefficients appear in the slope 1 coefficients,
although the variation of the effect looks very slight. Nonetheless, the slope 2 coefficient
has relatively similar effects on each district, which also happen for slope 3. Almost no
difference in effect appears for the intercept.

In Figure 5, all estimated coefficients vary over spatial locations. There are five districts
that have a strong negative effect on both slope 1 and slope 2. However, slope 3 shows a
stronger effect, but few districts are weaker. Moreover, the estimates of the intercept have
little difference in effects among districts.

Figure 6 shows two estimates of coefficients that vary over the districts. The varying
coefficients appear clearly for slope 1, but there is slight variation in slope 2. Meanwhile,
slope 3 shows no varying coefficient. Moreover, the intercept estimator has very little
variation in the effects among districts. The two spatially varying coefficients, slope 1 and
slope 2, have a negative effect, while slope 3 has a positive effect. In addition, the intercept
has positive coefficient estimates.

4. Discussion

Varying coefficient models have been developed to incorporate multiple variables,
with the ST-VCM being a specific model designed for longitudinal data that involves
both space and time variations. In these models, the function of the covariates must be
specified, but this can be difficult. To overcome this challenge, a nonparametric approach
can be used as it is more flexible and does not require strict assumptions. Additionally,
for data that has outliers or nonstandard conditional distributions, a robust model such
as quantile regression can be used. This approach also provides more information about
the distribution.

In this study, the incidence rate data of URTI in Bandung City were analyzed, which
have a longitudinal structure and several covariates that are measured for each district,
such as breast milk, malnutrition, and vitamin A. Other covariates were measured monthly
for the entire city, such as temperature, rainfall, and humidity. The data structure lends
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itself well to the ST-VCM model, as the coefficients are not only varying over time but also
over location.

According to the quantile plots (Figure 1), different patterns for the three-level quantile
functions were observed in all districts. Some areas exhibited a random structure, which
required a flexible approach to estimate the curve. Variations in the distance between the
quantile curves were observed for each district. This suggests that each sub-district has a
different incidence rate every month. For example, the incidence rate in Andir in March
was much higher than June, but it was also higher than the incidence rate in Ujung Berung
at the same month. In general, the quantile maps (Figure 2) showed the heterogeneity
of quantiles among the districts, as seen in the color gradations of each quantile level
map. The quantile maps showed a similar pattern from February to November, but the
gradations tended to fade for all quantile levels. However, the pattern of quantile maps
looked different, for example, in Cibiru and Panyileukan, which had relatively lighter
quantile 0.25 and 0.50, but for quantile 0.75, it tended to be darker. The highest value was
present in February for quantile 0.75, and the highest fluctuations were at quantile 0.50.

The time-varying coefficients were found to have estimators of temperature that
varied over time and decreased monotonically with different characteristics. The rainfall
estimators decrease drastically from January to July, then tend to be flat or increased
slightly until December. Additionally, the estimators of humidity were found to increase
monotonically with different patterns. The largest fluctuation was observed in quantile 0.75,
particularly for rainfall. The estimators of the coefficients for temperature and humidity
have a negative effect on the response, indicating that high temperature or humidity
resulted in a low incidence rate of URTI. Conversely, the positive coefficient of rainfall
indicates that high rainfall resulted in a high incidence rate of URTI.

The space-varying coefficients were found to have effects that varied over spatial
locations, but some variables had similar effects for quantile 0.25. The varying coefficient
appeared for the coefficient of breast milk, although the variation of the effect looked
very slight. However, the coefficients of malnutrition had relatively similar effects for
each district, and this also occurred for vitamin A. There were strong negative effects for
both breast milk or malnutrition in Cicendo, Babakan Ciparay, Rancasari, Antapani, and
Cibiru at quantile 0.50. Nevertheless, vitamin A showed more significant effects, but only a
few districts had weaker effects. The analysis of the district-level data revealed that the
coefficients for breast milk and malnutrition vary among districts for the quantile 0.75. The
variation in the coefficient for breast milk is more pronounced compared to malnutrition.
However, there was no variation in the coefficient for vitamin A. Additionally, the estimates
for the intercept had minimal differences among districts. The coefficient for breast milk
had a negative and strong impact on the incidence rate of URTI, indicating that higher
levels of breast milk are associated with lower incidence rates. In contrast, the coefficient
for malnutrition had a weak effect on the incidence rate. On the other hand, vitamin A had
a positive coefficient, indicating that higher levels of vitamin A are associated with higher
incidence rates. Furthermore, the intercepts had positive coefficient estimates.

5. Conclusions

In this study, a space-time varying coefficient model (ST-VCM) was applied to analyze
longitudinal data in which the coefficients are allowed to vary as a smooth function of
both space and time variables. The use of quantile regression within this model was also
discussed, particularly in cases where the data contain outliers or non-standard conditional
distributions. A nonparametric approach using P-splines was used to estimate the parame-
ters of the ST-VCM. The ST-VCM was applied to incidence rate data of upper respiratory
tract infections (URTI) in Bandung City, as these data exhibit a longitudinal structure and
the covariates vary over both time and spatial location.

The study found that there are distinct patterns for three levels of quantiles in all
districts, with the distance between the quantile curves varying from district to district.
This indicates that each sub-district has a unique incidence rate for each level of quantile.
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Although the overall pattern of quantile curves is similar across all quantile levels, there
are notable differences at the 0.50 and 0.75 quantile levels. The heterogeneity of quantiles
among the districts can be observed through the color gradation of the quantile level maps.
For example, the districts of Cibiru and Panyileukan have relatively lighter shades for the
0.25 and 0.50 quantiles but tend to be darker for the 0.75 quantile. The highest values for
the 0.75 quantile were found in February, and the greatest fluctuations were observed at
the 0.50 quantile.

The analysis also revealed that temperature and humidity have a negative effect on
the incidence of upper respiratory tract infections (URTI), meaning that high temperatures
or humidity lead to a lower incidence of URTI. In contrast, a positive coefficient was found
for rainfall, indicating that high rainfall results in a higher incidence of URTI.

The study found that the space-varying coefficient for breast milk has a negative effect
on incidence rate, indicating that higher levels of breast milk tend to correspond with
lower incidence rates. In contrast, the coefficient for malnutrition had a very weak effect
on incidence rate. Additionally, the coefficient for vitamin A was found to have a positive
effect, meaning that higher levels of vitamin A tend to correspond with higher incidence
rates. The intercepts were also found to have positive coefficient estimates. Furthermore,
some of the coefficients were found to vary little, such as malnutrition at the 0.25 quantile
and vitamin A at the 0.25 and 0.50 quantiles.

In general, the study concludes that the use of the space-time varying coefficient model
(ST-VCM) on longitudinal data revealed differences in the effects between quantile levels
for both space and time coefficients. The quantile curve created using the space and time
coefficient estimates demonstrated robustness with respect to outliers, but some quantile
curves still did not accurately describe the actual data pattern. This may be due to the
simultaneous estimation procedure used to produce estimates that are relatively similar to
one another.

In summary, the study found that the incidence rate of each sub-district in Bandung
City varies based on three quantile levels, with the city as a whole displaying a heterogeneity
of incidence rate. This variability can be associated to the different effects of temporal and
spatial covariates. Thus, the recommendation for related institutions in making policies is
to consider not only the district but also month, because each district has different effect
characteristics for every month.

In this study, we investigated the separable space and time varying coefficients com-
ponent of the Space-Time Varying Coefficient Model (ST-VCM). The ST-VCM also includes
the simultaneous space-time effect, however, this aspect is not the focus of this paper.
The simultaneous effect refers to the interaction between spatial location and time, whose
importance is the use of a tensor product or Kronecker product in computation. This can
lead to large matrices, particularly in the estimation of B-splines, making it an interesting
topic for further research.
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