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Abstract: The augmented inverse probability weighting is well known for its double robustness in
missing data and causal inference. If either the propensity score model or the outcome regression
model is correctly specified, the estimator is guaranteed to be consistent. Another important property
of the augmented inverse probability weighting is that it can achieve first-order equivalence to
the oracle estimator in which all nuisance parameters are known, even if the fitted models do not
converge at the parametric root-n rate. We explore the non-asymptotic properties of the augmented
inverse probability weighting estimator to infer the population mean with missingness at random.
We also consider inferences of the mean outcomes on the observed group and on the unobserved
group.
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1. Introduction

Missingness is an important issue in statistics. Suppose we are interested in the
population mean of an outcome. To estimate the population mean, we randomly draw n
independent units to form a sample. It is well known that the empirical average of the
outcome in this sample is an unbiased estimator of the population mean. However, if there
is missingness, we would only have measures of outcomes on r ≤ n units. Missingness
may rely on the background characters of units, so the observed units and unobserved
units may be different in covariates. As a result, estimating the population mean by
the observed sample average is biased. Rubin [1] formalized the concept of “missing-at-
random”, saying that missingness depends on observed values but not on unobserved
values. More specifically, missingness of an outcome depends on the observed covariates
rather than outcomes [2]. Under the missing-at-random assumption, the population mean
is identifiable.

With missingness at random, the population mean can be estimated by inverse proba-
bility weighting [3]. This approach is based on correct model specification on propensity
scores and involves the estimation of propensity scores. Hirano et al. [4] discussed the
consequence of using estimated propensity scores in inverse probability weighting. Using
estimated propensity scores could lead to a more efficient estimator than using the true
propensity score, but the exact properties of the former are complex. To improve the inverse
probability weighting, Robins et al. [5] proposed augmented inverse probability weighting
(AIPW) that combines the inverse probability weighting with outcome regression. If both
the propensity score model and the outcome regression model are known, the AIPW estima-
tor is the most efficient estimator in a set of regular and asymptotic linear estimators [6,7].
The AIPW estimator has double robustness, in that the estimator is consistent if either the
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propensity score model or outcome regression model is correctly specified [8]. Farrell [9]
discussed AIPW with high-dimensional covariates.

The asymptotic properties of the AIPW estimator have been well-studied in recent
years. Chernozhukov et al. [10] found that if both the fitted propensity score model and
the outcome regression model are sup-norm consistent and converge not too slowly—
for example, if all models converge at rate op(n−1/4)—, then, the AIPW estimator with
estimated model parameters can achieve first-order equivalence with the oracle estimator in
which both models are known. The (empirical) AIPW estimator and oracle estimator differ
by op(n−1/2). Therefore, the large sample asymptotic law of the AIPW estimator is the
same as that of the oracle one, converging in distribution to a normal distribution. Newey
and Robins [11] and Kennedy [12] discussed more general conditions to achieve root-n
convergence with estimated nuisance models by cross-fitting (also called sample-splitting).

Existing works mainly focus on the asymptotic properties of the AIPW estimator.
In this paper, we study the AIPW estimator from a non-asymptotic view. The main focus
is on the non-asymptotic error bounds of the estimated mean outcomes by AIPW. Zhang
and Chen [13] and Zhang and Wei [14] reviewed a series of concentration inequalities
that can be used to bound the tail probability of an estimator. We apply the concentration
inequalities to study the behavior of doubly robust estimators of the population mean,
the population mean in the observed group and the population mean in the unobserved
group by AIPW. We will first discuss bounded outcomes, and then extend the results
to subGaussian outcomes. Furthermore, we conduct a simulation study to compare the
non-asymptotic error bounds for bounded outcomes and sub-Gaussian outcomes.

2. Notations
2.1. Missingness at Random

Consider a sample I = {1, . . . , n} randomly drawn from a super-population. For each
unit i ∈ I , let Zi be the missing indicator, where Zi = 1 if the outcome Yi is observed and
Zi = 0 if the outcome Yi is not observed. We collect a vector of covariates Xi for each unit,
which is predictable of the missing propensity or outcomes. The observed variables of the
ith unit is Oi = (Zi, ZiYi, Xi), for i = 1, . . . , n. The observed data {Oi}n

i=1 are n independent
and identically distributed (iid) copies of O = (Z, ZY, X). Define the propensity score

e(x) = P(Z = 1 | X = x)

and the outcome regression
m(x) = E(Y | X = x).

In many scenarios in biostatistics, economics and social sciences, we are interested
in the mean outcome in the overall population τ = E(Y). We assume missing at random
(MAR), that is, whether a unit is missing is independent of its outcome.

Assumption 1 (Missingness at random). Z ⊥⊥ Y | X.

Under Assumption 1, m(x) = E(Y | Z = 1, X = x). Moreover, we also assume
the propensity score is bounded far from 0. Each unit has a positive probability of being
observed.

Assumption 2 (Positivity). e(X) > η > 0, where η is a known constant.

2.2. Augmented Inverse Probability Weighting

The information of X can be summarized into a one-dimensional scalar, the propensity
score e(X). Conditioning on the propensity score rather than all the covariates, we have
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Z ⊥⊥ Y | e(X) [3]. The inverse probability weighting (Horvitz-Thompson [15]) utilizes this
property and identifies the target estimand by

τ = E
{

ZY
e(X)

}
. (1)

Another approach to identifying τ is outcome regression. Since we can estimate the mean
outcome in observed units, this information can be generalized to the whole population at
each level of covariates X. Therefore, we can simply express τ as

τ = E[E{Y | Z = 1, X}] = E{m(X)}, (2)

which is also identifiable from observed data. The inner expectation in the second formula
is taken over Y given X in the observable population, and the outer expectation is taken
over X in the whole population.

The inverse probability weighting and outcome regression can be combined into the
following expressions by appending an augmented term, referred to as the augmented
inverse probability weighting (AIPW),

τ = E
{

ZY
e(X)

+

(
1− Z

e(X)

)
m(X)

}
(3)

= E
{

Z(Y−m(X))

e(X)
+ m(X)

}
. (4)

Equation (3) can be understood as the ordinary inverse probability weighting, plus an
augmented term, to correct for the potential bias of the propensity score. With a little
transformation, Equation (4) can be understood as the ordinary outcome regression plus a
correction for the potential bias of the outcome regression model. The augmented inverse
probability weighting has a well-known property of double robustness, in that the equations
above hold if either the propensity score model e(x) or the outcome regression model m(x)
is correctly specified. That is,

τ = E
{

ZY
e(X)

+

(
1− Z

e(X)

)
m∗(X)

}
(5)

= E
{

Z(Y−m(X))

e∗(X)
+ m(X)

}
(6)

for any functions e∗(x) and m∗(x). Another important property of AIPW is that the term in
the expectation is the efficient influence function of τ (differing by a constant τ), so that
estimation based on AIPW is the most efficient.

Define the oracle AIPW estimator as

τ̂∗ =
1
n

n

∑
i=1

{
ZiYi

e(Xi)
+

(
1− Zi

e(Xi)

)
m(Xi)

}
. (7)

It is an average of n independent random variables. We can easily prove that τ̂∗ is an
unbiased and consistent estimator for τ, with E(τ̂∗) = τ. In practice, the propensity score
and the outcome regression models are unknown. Suppose we estimate them by ê(x) and
m̂(x). The (empirical) AIPW estimator becomes

τ̂ =
1
n

n

∑
i=1

{
ZiYi

ê(Xi)
+

(
1− Zi

ê(Xi)

)
m̂(Xi)

}
. (8)

Since Equation (8) involves fitted models, it is not an average of n independent random
variables anymore.
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3. Construction of Error Bounds for Bounded Outcomes

Lemma 1 (McDiarmid’s inequality [16]). Suppose O1, . . . , On are independent random variables
taking values in the set O, and assume f : On → R satisfies the bounded difference condition
(BDC)

sup
o1,...,on ,o′k∈O

| f (o1, . . . , on)− f (o1, . . . , ok−1, o′k, ok+1, . . . , on)| ≤ ck.

Then,

P(| f (O1, . . . , On)− E{ f (O1, . . . , On)}| ≥ t) ≤ 2 exp

{
− 2t2

∑n
i=1 c2

i

}
, ∀ t > 0.

We assume that |Y| ≤ M, where M is a positive constant. In fact, if Y is not bounded,
we can transform Y to be a bounded random variable. In the following sections, we consider
the non-asymptotic inferences of τ = E(Y), τ1 = E(Y | Z = 1) and τ0 = E(Y | Z = 0),
respectively.

3.1. Mean Outcome

We first consider the oracle estimator τ̂∗. To verify the bounded difference con-
dition, suppose we replace the observation of the kth unit Ok = (Zk, ZkYk, Xk) with
O′k = (Z′k, Z′kY′k, X′k). Then,

|D∗| : = |τ̂∗(O1, . . . , Ok, . . . , On)− τ̂∗(O1, . . . , O′k, . . . , On)|

=

∣∣∣∣ 1n
{

ZkYk
e(Xk)

+

(
1− Zk

e(Xk)

)
m(Xk)

}
− 1

n

{
Z′kY′k
e(X′k)

+

(
1−

Z′k
e(X′k)

)
m(X′k)

}∣∣∣∣
≤ 2

n
·
(

2
η
− 1
)

M =: c∗.

By McDiarmid’s inequality, since E(τ̂∗) = τ, we have

P
(√

n|τ̂∗ − τ| ≥ t
)
≤ 2 exp

{
− 2t2

n2c∗2

}
= 2 exp

{
− t2

2(2/η − 1)2M2

}
. (9)

To study the properties of the AIPW estimator (8) with estimated nuisance models,
Chernozhukov et al. [10] proposed an approach by cross-fitting. Suppose the full sample
is randomly divided into two halves, I1 and I2, with similar sample sizes |I1| and |I2|.
The models ê(x) and m̂(x) are estimated using a half sample and then fitted on the other
half. To be more specific, for each unit with covariates xi in the (3− l)th half, e(xi) and
m(xi) are estimated as ê(l)(xi) and m̂(l)(xi), which are fitted using the lth half of sample
(l = 1, 2). The AIPW estimator τ̂ is given by averaging the estimated mean outcomes in
these two halves of the full sample,

τ̂ =
|I1|

n
τ̂(I1) +

|I2|
n

τ̂(I2), (10)

where

τ̂(Il) =
1
|Il | ∑

i∈Il

{
ZiYi

ê(3−l)(Xi)
+

(
1− Zi

ê(3−l)(Xi)

)
m̂(3−l)(Xi)

}
. (11)

As a comparison, the oracle estimator can be decomposed by

τ̂∗ =
|I1|

n
τ̂∗(I1) +

|I2|
n

τ̂∗(I2), (12)
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where

τ̂∗(Il) =
1
|Il | ∑

i∈Il

{
ZiYi

e(Xi)
+

(
1− Zi

e(Xi)

)
m(Xi)

}
. (13)

We follow the assumptions in Chernozhukov et al. [10] as follows.

Assumption 3 (Sup-norm Consistency). supx |m̂(x)−m(x)| →p 0, supx |ê(x)− e(x)| →p 0
for any x on its support.

Assumption 4 (Risk Decay). E{m̂(X)−m(X)}2 · E{ê(X)− e(X)}2 = o(n−1).

Assumption 3 states that the fitted values of the propensity score and outcome regres-
sion models are consistent to the true value at any data point. Assumption 4 states that the
convergence rates of models are not too slow. A wide range of nonparametric estimators
can satisfy Assumptions 3 and 4. The deviation of τ̂ is bounded as follows.

Theorem 1. Let τ̂ be the AIPW estimator of τ = E(Y) by cross-fitting. Under Assumptions 1–4,
for any 0 < ε < 1,

|τ̂ − τ| ≤
√

2(2/η − 1)2M2 log(2/ε)

n
+ o(n−1) (14)

with probability larger than 1− ε.

Proof. For l = 1, 2,

τ̂(Il) − τ̂∗(Il) =
1
|Il | ∑

i∈Il

Zi

{
1

ê(3−l)(Xi)
− 1

e(Xi)

}
{Yi −m(Xi)}

− 1
|Il | ∑

i∈Il

{m̂(3−l)(Xi)−m(Xi)}
{

Zi
e(Xi)

− 1
}

− 1
|Il | ∑

i∈Il

Zi

{
1

ê(3−l)(Xi)
− 1

e(Xi)

}
{m̂(3−l)(Xi)−m(Xi)}.

Note that the first two terms are sums of cross products of a mean zero random variable
multiplied by an independent op(1) random variable (since Il can be considered as fixed
by conditioning on). The first two terms are op(n−1/2) random variables. Assumption 4
implies that the third term is also op(n−1/2) by Cauchy–Schwarz. Therefore, |τ̂(Il) −
τ̂∗(Il)| = op(n−1/2) and thus

√
n|τ̂ − τ̂∗| = op(1). From the concentration inequality (9),

we have

P
(√

n|τ̂ − τ| ≥ t + o(1)
)
≤ 2 exp

{
− t2

2(2/η − 1)2M2

}
. (15)

Let the right hand side be ε, so

t =
√

2(2/η − 1)2M2 log(2/ε). (16)

The first-order equivalence of τ̂ and τ̂∗ is important. If there are high-dimensional co-
variates, the convergence rates of fitted models usually cannot achieve the rate of Op(n−1/2).
In addition, the risk decay assumption allows nonparametric estimation of models, for ex-
ample, by spline or kernel regression. Provided that the estimated models do not converge
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too slowly, the AIPW estimator τ̂ can enjoy good asymptotic and non-asymptotic properties
similar to those of the oracle estimator τ̂∗.

3.2. Mean Outcome in the Observed Group

We can also study the non-asymptotic bound for τ1 = E(Y | Z = 1). This estimate can
be estimated by

τ̂1 =
∑n

i=1 ZiYi

∑n
i=1 Zi

, (17)

where no nuisance models are involved. This empirical average estimator τ̂1 is unbiased
and consistent for τ1, because

E(τ̂1) = E
{

∑n
i=1 ZiYi

∑n
i=1 Zi

}
= E

[
E
{

∑n
i=1 ZiYi

∑n
i=1 Zi

∣∣∣∣ Z1, . . . , Zn

}]
= E

{
∑n

i=1 Zi · E(Yi | Zi)

∑n
i=1 Zi

}
= E

{
∑n

i=1 Zi · E(Yi | Zi = 1)
∑n

i=1 Zi

}
= τ1.

The double robustness of τ̂1 is trivial because the propensity score model and the outcome
regression model are not involved.

To verify the bounded difference condition, suppose we replace the observation of the
kth unit Ok = (Zk, ZkYk, Xk) with O′k = (Z′k, Z′kY′k, X′k). If Zk = Z′k = 1,

|D1| : = |τ̂1(O1, . . . , Ok, . . . , On)− τ̂1(O1, . . . , O′k, . . . , On)|

=

∣∣∣∣∑i 6=k ZiYi + Yk

∑i 6=k Zi + 1
− ∑i 6=k ZiYi + Y′k

∑i 6=k Zi + 1

∣∣∣∣
=

1
∑i 6=k Zi + 1

· |Yk −Y′k|

≤ 1
nη
· 2M =: c1

with probability larger than

δn = P

(
n

∑
i=1

Zi ≥ nη

)
=

n

∑
m=[nη]+1

Cm
n ηm(1− η)1−m. (18)

By the weak law of large numbers, we know that δn → 1 as n→ ∞ because E(Zi) > η. If
Zk = Z′k = 0,

|D1| : = |τ̂1(O1, . . . , Ok, . . . , On)− τ̂1(O1, . . . , O′k, . . . , On)|

=

∣∣∣∣∑i 6=k ZiYi

∑i 6=k Zi
− ∑i 6=k ZiYi

∑i 6=k Zi

∣∣∣∣ = 0.

If Zk = 1 and Z′k = 0, using the equality

c
d
− a

b
=

1
d

{
(c− a)− a

b
(d− b)

}
(19)
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for any nonzero a, b, c, d ∈ R,

|D1| : = |τ̂1(O1, . . . , Ok, . . . , On)− τ̂1(O1, . . . , O′k, . . . , On)|

=

∣∣∣∣∑i 6=k ZiYi + Yk

∑i 6=k Zi + 1
− ∑i 6=k ZiYi

∑i 6=k Zi

∣∣∣∣
=

1
∑i 6=k Zi + 1

·
∣∣∣∣Yk −

∑i 6=k ZiYi

∑i 6=k Zi

∣∣∣∣
≤ 1

nη
· 2M = c1

with probability larger than δn. The result is similar for the case with Zk = 0 and Z′k = 1.
In summary, |D1| ≤ c1. According to the McDiarmid’s inequality,

P
(√

n|τ̂1 − τ1| ≥ t
)
≤ 2 exp

{
− η2t2

2M2

}
+ 1− δn, ∀ t > 0. (20)

Theorem 2. Let τ̂1 be the empirical average estimator of τ1 = E(Y | Z = 1) in (17). Under As-
sumption 2, for any 1− δn < ε < 1,

|τ̂1 − τ1| ≤

√
2M2

nη2 log
(

2
ε + δn − 1

)
(21)

with probability larger than 1− ε.

Proof. Let the right hand side of (20) be ε, so

t =

√
2M2

η2 log
(

2
ε + δn − 1

)
. (22)

3.3. Mean Outcome in the Unobserved Group

We further assume e(X) < 1− η, so that there would be missing units conditioning
on X. Otherwise, the estimand τ0 = E(Y | Z = 0) would be meaningless. To estimate τ0,
we must use the information of the observed units because there are no observations of
Y in the Z = 0 group. The estimand τ0 should address a covariate shift from the overall
population to the Z = 0 group, which imposes a weight {1− e(x)}/P(Z = 0). The inverse
probability weighting formula of τ0 is

τ0 = E
{

ZY
e(X)

· 1− e(X)

P(Z = 0)

}
. (23)

By appending an augmented term and estimating P(Z = 0) by empirical average,
the oracle doubly robust estimator for τ0 is given by [17]

τ̂∗0 =
1

∑n
i=1(1− Zi)

·
n

∑
i=1

ZiYi(1− e(Xi))− (Zi − e(Xi))m(Xi)

e(Xi)
. (24)

It can be shown that E(τ̂∗0 ) = τ0 because

E(τ̂∗0 ) = E

{
1

∑n
i=1(1− Zi)

·
n

∑
i=1

ZiYi(1− e(Xi))− (Zi − e(Xi))m(Xi)

e(Xi)

}

= E

[
E

{
1

∑n
i=1(1− Zi)

·
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n

∑
i=1

ZiYi(1− e(Xi))− (Zi − e(Xi))m(Xi)

e(Xi)

∣∣∣∣ Z1, . . . , Zn, X1, . . . , Xn

}]

= E

{
1

∑n
i=1(1− Zi)

·
n

∑
i=1

Zim(Xi)(1− e(Xi))− (Zi − e(Xi))m(Xi)

e(Xi)

}

= E

{
1

∑n
i=1(1− Zi)

·
n

∑
i=1

(1− Zi)m(Xi)

}

= E

[
E

{
1

∑n
i=1(1− Zi)

·
n

∑
i=1

(1− Zi)m(Xi)

∣∣∣∣ Z1, . . . , Zn

}]

= E

[
1

∑n
i=1(1− Zi)

·
n

∑
i=1

(1− Zi)E{m(Xi) | Zi = 0}
]

= E

{
1

∑n
i=1(1− Zi)

·
n

∑
i=1

(1− Zi)E(Yi | Zi = 0)

}
= τ0.

In fact, E(τ̂∗0 ) = τ0 if either e(x) or m(x) is correctly specified.
To verify the bounded difference condition, suppose we replace the observation of the

kth unit Ok = (Zk, ZkYk, Xk) with O′k = (Z′k, Z′kY′k, X′k). If Zk = Z′k,

|D∗0 | : = |τ̂0(O1, . . . , Ok, . . . , On)− τ̂0(O1, . . . , O′k, . . . , On)|

=
1

∑n
i=1(1− Zi)

·
∣∣∣∣ZkYk(1− e(Xk))− (Zk − e(Xk))m(Xk)

e(Xk)

−
Z′kY′k(1− e(X′k))− (Z′k − e(X′k))m(X′k)

e(X′k)

∣∣∣∣
≤ 2

nη
· 2M

η
=: c∗0

with probability larger than

δ′n = P

(
n

∑
i=1

(1− Zi) ≥ nη

)
=

[n(1−η)]

∑
m=0

Cm
n ηm(1− η)n−m. (25)

By the weak law of large numbers, δ′n → 1 as n → ∞ because E(1− Zi) > η. If Zk 6= Z′k,
without loss of generality, suppose Zk = 0 and Z′k = 1. Use Equation (19),

|D∗0 | : = |τ̂∗0 (O1, . . . , Ok, . . . , On)− τ̂∗0 (O1, . . . , O′k, . . . , On)|

=
1

∑n
i=1(1− Zi)

·
∣∣∣∣ZkYk(1− e(Xk))− (Zk − e(Xk))m(Xk)

e(Xk)

−
Z′kY′k(1− e(X′k))− (Z′k − e(X′k))m(X′k)

e(X′k)
− τ̂∗0

′
∣∣∣∣

≤ 1
nη
·
(

2
η
− 1 + 1

)
M ≤ c∗0

with probability larger than δ′n. By McDiarmid’s inequality,

P
(√

n|τ̂∗0 − τ0| ≥ t
)
≤ 2 exp

{
− η4t2

8M2

}
+ 1− δ′n. (26)
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If the models e(x) and m(x) are unknown, we use cross-fitting to obtain the AIPW
estimator

τ̂0 =
1

∑n
i=1(1− Zi)

·
n

∑
i=1

ZiYi(1− ê(Xi))− (Zi − ê(Xi))m̂(Xi)

ê(Xi)
. (27)

This estimator by cross-fitting can achieve first-order equivalence with the oracle estimator
τ̂∗0 (which we will prove later). In fact, the estimator (27) can be further expressed as

τ̂0 =
|I1|

∑n
i=1(1− Zi)

τ̂
(I1)
0 +

|I2|
∑n

i=1(1− Zi)
τ̂
(I2)
0 , (28)

with

τ̂
(Il)
0 =

1
|Il |
· ∑

i∈Il

ZiYi(1− ê(3−l)(Xi))− (Zi − ê(3−l)(Xi))m̂(3−l)(Xi)

ê(3−l)(Xi)
, (29)

where m̂(3−l)(x) and ê(3−l) are models fitted by the (3− l)th half of the sample (l = 1, 2).
As a comparison, the oracle estimator can be decomposed by

τ̂∗0 =
|I1|

∑n
i=1(1− Zi)

τ̂
∗(I1)
0 +

|I2|
∑n

i=1(1− Zi)
τ̂
∗(I2)
0 , (30)

with

τ̂
∗(Il)
0 =

1
|Il |
· ∑

i∈Il

ZiYi(1− e(Xi))− (Zi − e(Xi))m(Xi)

e(Xi)
. (31)

Theorem 3. Let τ̂0 be the AIPW estimator of τ0 = E(Y | Z = 0) by cross-fitting given in (27).
Under Assumptions 1–4 and e(x) < 1− η, for any 1− δ′n < ε < 1,

|τ̂0 − τ0| ≤

√
8M2

nη4 log
(

2
ε + δ′n − 1

)
+ o(n−1) (32)

with probability larger than 1− ε.

Proof. For l = 1, 2,

τ̂
(Il)
0 − τ̂

∗(Il)
0 =

1
|Il | ∑

i∈Il

Zi

{
1

ê(3−l)(Xi)
− 1

e(Xi)

}
{Yi −m(Xi)}

− 1
|Il | ∑

i∈Il

{m̂(3−l)(Xi)−m(Xi)}
{

Zi
e(Xi)

− 1
}

− 1
|Il | ∑

i∈Il

Zi

{
1

ê(3−l)(Xi)
− 1

e(Xi)

}
{m̂(3−l)(Xi)−m(Xi)}.

Note that the first two terms are sums of cross products of a mean zero random variable
multiplied by an independent op(1) random variable (since Il can be considered as fixed
by conditioning on), so the first two terms are op(n−1/2) random variables. Assumption 4

implies that the third term is also op(n−1/2) by Cauchy–Schwarz. Therefore, |τ̂(Il)
0 −

τ̂
∗(Il)
0 | = op(n−1/2); Thus,

√
n|τ̂0 − τ̂∗0 | = op(1). From (26), we have

P
(√

n|τ̂0 − τ0| ≥ t + o(1)
)
≤ 2 exp

{
− η4t2

8M2

}
+ 1− δ′n. (33)
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Let the right-hand-side be ε, so

t =

√
8M2

η4 log
(

2
ε + δ′n − 1

)
. (34)

4. Construction of Error Bounds for SubGaussian Outcomes

Recently the McDiarmid’s inequality has been extended to boundless situations [18].
In this section, we assume that Y is sub-Gaussian, i.e.,

EetY ≤ et2σ2/2, ∀ t ∈ R,

for some σ2 > 0 [13]. Define the sub-Gaussian norm

‖Y‖G := sup
k≥1

[
E(Y2k)

(2k− 1)!!

]1/2k

for a random variable Y. The random variable Y is sub-Gaussian if ‖Y‖G < ∞.

Lemma 2 (Zhang–Lei’s inequality [18]). Suppose O1, . . . , On are independent random variables
taking values in the set O, and assume f : On → R is a function. Define

D f ,Ok
(o) = f (o1, . . . , ok−1, Ok, ok+1, . . . , on)− E{ f (o1, . . . , ok−1, Ok, ok+1, . . . , on)}.

If {D f ,Ok
(o)}n

i=1 have finite ‖ · ‖G-norm, then for ∀ t > 0,

P(| f (O1, . . . , On)− E{ f (O1, . . . , On)}| ≥ t) ≤ 2 exp

{
−t2

16 supo∈On ∑n
i=1 ‖D f ,Oi

(o)‖2
G

}
.

Now we assume that the conditional mean outcome m(X) and residual Y − m(X)
are sub-Gaussian, so that Y is also subGaussian. For τ = E(Y), let τ̂∗ be the oracle AIPW
estimator. Then,

Dτ̂∗ ,Ok
(o) =

1
n

{
ZkYk
e(Xk)

+

(
1− Zk

e(Xk)

)
m(Xk)− τ

}
.

To verify that Dτ̂∗ ,Ok
(o) is sub-Gaussian, it suffices to prove that the 2k-th moment norm of

Dτ̂∗ ,Ok
(o) is finite for every k ≥ 1. By the triangle inequality,

‖Dτ̂∗ ,Ok
(o)‖2k =

∥∥∥∥ 1
n

{
ZkYk
e(Xk)

+

(
1− Zk

e(Xk)

)
m(Xk)− τ

}∥∥∥∥
2k

≤
∥∥∥∥Zk{Yk −m(Xk)}

ne(Xk)

∥∥∥∥
2k
+

∥∥∥∥m(Xk)− τ

n

∥∥∥∥
2k

≤
∥∥∥∥Yk −m(Xk)

nη

∥∥∥∥
2k
+

∥∥∥∥m(Xk)− τ

n

∥∥∥∥
2k

< ∞,

where ‖W‖2k := [E|W|2k]1/2k for a random variable W.
Let ν = ‖m(X)‖G and σ = ‖Y−m(X)‖G, so ‖Dτ̂∗ ,Ok

(o)‖G ≤ (σ/η + ν)/n. Therefore,

P
(√

n|τ̂∗ − τ| ≥ t
)
≤ 2 exp

{
− t2

16(σ/η + ν)2

}
. (35)
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Considering that the AIPW estimator τ̂ is first-order equivalent to the oracle version τ̂∗, we
have the following error bound for τ̂.

Theorem 4. Let τ̂ be the AIPW estimator of τ = E(Y) by cross-fitting. Under Assumptions 1–4,
for any 0 < ε < 1,

|τ̂ − τ| ≤
√

16(σ/η + ν)2 log(2/ε)

n
+ o(n−1) (36)

with probability larger than 1− ε.

The proof is similar to the proof of Theorem 1. Since τ̂ and τ̂∗ are first-order equivalent,
we can replace the left-hand-side of Inequality (35) with P(

√
n|τ̂− τ| ≥ t + o(1)), and then

solve this inequality. Furthermore, we can apply Lemma 2 to study the non-asymptotic
error bounds for τ̂1 and τ̂0, the (doubly robust) estimators for τ1 = E(Y | Z = 1) and
τ0 = E(Y | Z = 0). Given that Y is sub-Gaussian, ‖Dτ̂z ,Ok

(o)‖G is a weighted average of
sub-Gaussian random variables where the weights are bounded (z = 1, 0). Whenever the
event with high probability that ∑n

i=1 Zi is bounded away from 0 or 1 occurs, the error
bounds of τ̂z would then be obtained.

5. Simulation

Suppose there are two independent covariates, X1 and X2, both following a uniform
distribution on [−1, 1]. Denote X = (1, X1, X2). The propensity score is e(x) = expit(1−
0.5X1 + 0.5X2), where expit(x) = 1/{1 + exp(−x)}. Since X is bounded, the propensity
score is also bounded away from zero and one. Next, we consider two sorts of outcomes.
The first is the binary case: P(Y = 1 | X) = expit(X1 + X2). The second is the continuous
case: Y follows a normal distribution with mean X1 + X2 and standard deviation of value
one.

We set the sample size n from 100 to 1000 with step 100. Under each sample size, we
generate data 1000 times and calculate the average width of error bounds. Figure 1 displays
the widths of error bounds in Theorem 1 (based on McDiarmid’s inequality) and Theorem
4 (based on Zhang–Lei’s inequality) respectively. We set the parameters in the formulas of
error bounds at their true values.
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Figure 1. Width of the error bounds with the increasing of sample sizes (using true parameters).

In practice, the parameters η, σ and ν are unknown, so we need to estimate them. We
fit a logistic regression of Z on X as the propensity score, denoted by ê(x). We can estimate
η by η̂ = mini{ê(Xi)}. An outcome regression is fitted by a logistic regression for binary
outcomes and linear regression for continuous outcomes, denoted by m̂(x). If Y ∈ {0, 1}
is binary, we can transform Y to Y − 0.5, so that M = 0.5. If Y is continuous, the bound
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of Y can be estimated by M̂ = maxi{Yi − ∑n
j=1 Yj/n}. The sub-Gaussian norms σ and ν

are estimated based on the empirical 2k-th moments of Yi − m̂(Xi) and m̂(Xi), respectively,
denoted by σ̂ and ν̂. Then, we can obtain two error bounds according to Theorem 1 and
Theorem 4, respectively.

Figure 2 displays the widths of error bounds in Theorem 1 and Theorem 4. When
the sample size n is small, the empirical error bounds might be slightly shorter than the
oracle versions. In the binary case, the error bound based on Theorem 1 (McDiarmid’s
inequality) performs better. In the continuous case, the error bound based on Theorem 4
(Zhang–Lei’s inequality) performs better. In fact, if the outcome is binary, it is naturally
bounded. We do not need information about higher-order moments. If the outcome is
continuous, the estimation of the bound M would be unstably affected by extreme values
of outcomes, so the error bound by McDiarmid’s inequality could be unstable and too
wide. On the contrary, Zhang–Lei’s inequality just requires finite moments of the outcomes
without putting restrictions on the maximum value, so Zhang–Lei’s inequality is more
appropriate for boundless outcomes.
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Figure 2. Width of the error bounds with the increasing of sample sizes (using estimated parameters).

6. Discussion: Relation to Causal Inference

Compared with asymptotic arguments, the non-asymptotic inference provides more
accurate error bounds when the sample size is not large enough. However, the non-
asymptotic error bounds may be conservative. It is of great interest to investigate the
performance of different types of non-asymptotic error bounds. In the simulation study,
we find that one type of error bound may outperform another in certain scenarios. Massive
efforts have been devoted to shortening the error bounds with weaker conditions on the
distribution (e.g., moments) of outcome variables [13,19–22]. In practice, we can construct
several error bounds as long as the conditions to derive concentration inequalities are
satisfied and choose the shortest one.

This work is closely related to causal inference. As a missing data problem, causal
inference aims to make statistical inferences on the difference of the average potential
outcomes under the treated and under the control [23]. Let Z ∈ {1, 0} be the treatment
indicator and Y(z) be the potential outcome associated with the treatment z ∈ {1, 0}.
For each unit, only one of these two potential outcomes, either Y(1) or Y(0), is observable,
while the other is missing. To identify the average causal effect, we usually assume causal
consistency Y(Z) = Y and unconfoundedness (Y(1), Y(0)) ⊥⊥ Z | X. Unconfoundedess,
similar to missingness at random, says that the treatment assignment Z can only rely on
observed baseline covariates X, rather than potential outcomes (Y(1), Y(0)), which could
be missing by design [2].

We take the inference on Y(1) as an example. E{Y(1)} is the population mean,
E{Y(1) | Z = 1} is the population mean in the observed group (where Y(1) is observable)
by treating Z = 1 as observed and Z = 0 as missing, and E{Y(1) | Z = 0} is the population
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mean in the unobserved group (where Y(1) is unobservable) by treating Z = 0 as observed
and Z = 1 as missing. It is also straightforward to infer the average causal effect E{Y(1)−
Y(0)}, since the AIPW estimator just becomes a combination of two parts, corresponding
to E{Y(1)} and E{Y(0)}, respectively. Under causal consistency, uncounfoundedness,
positivity, boundedness (sub-Gaussian), sup-norm consistency and risk decay, the non-
asymptotic bounds of the tail probability of AIPW estimators can be similarly established
by McDiarmid’s inequality or Zhang–Lei’s inequality.

Other estimands that may be of interest are the average causal effect on the treated
(ATT) E{Y(1)−Y(0) | Z = 1} and the average causal effect on the control (ATC) E{Y(1)−
Y(0) | Z = 0}. Take the ATT as an example. It can be decomposed as E{Y(1) | Z = 1} and
E{Y(0) | Z = 1}. The former corresponds to the mean outcome in the observed group,
as if Y(1) is observed in the Z = 1 group, and the latter corresponds to the mean outcome
in the unobserved group, as if Y(0) is unobserved in the Z = 1 group. By examining the
expression of the estimator of ATT given in [17], the bounded difference condition can hold
with a high probability, so the non-asymptotic law can be established.
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