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Abstract: To solve the problems of image threshold segmentation based on weak continuous con-
straint theory, the running time is long, and the two parameters need to be selected manually, and
therefore a fast single-parameter energy function thresholding for image segmentation based on
region information (FSEFTISRI) is proposed in this paper. The proposed FSEFTISRI algorithm
uses simple linear iterative clustering (SLIC) technology to pre-block the image, extract the image
super-pixels, and then map the image super-pixels to the interval type-2 fuzzy set (IT2FS), so as
to construct the single-parameter energy function to search the optimal threshold, and adaptively
select the penalty parameters in the energy function through the class uncertainty theory. On
a non-destructive testing (NDT) database and Berkeley segmentation datasets and benchmarks
(BSDS), the proposed FSEFTISRI is compared with five related algorithms. The average misclassi-
fication error (ME) of the proposed FSEFTISRI algorithm on NDT and BSDS are 0.0466 and 0.0039,
respectively. The results show that the proposed FSEFTISRI has acquired more satisfactory results
in visual effect and evaluation index, and the running time of the proposed FSEFTISRI algorithm is
shorter, which shows the effectiveness of the proposed FSEFTISRI.

Keywords: class uncertainty theory; energy function; interval type-2 fuzzy set; super-pixel;
threshold segmentation

MSC: 68T50

1. Introduction

Image segmentation refers to the procedure of dividing an image into some sub-
regions according to the gray level, texture and other information of the image. It is one
of the primary missions of image processing. Thresholding segmentation is widely used
because of its clear physical meaning, obvious effect, easy implementation, and good
real-time performance [1,2].

The uncertainty in an image brings challenges to the threshold segmentation technol-
ogy. Fuzzy set theory, used by many image segmentation algorithms [3,4], is a powerful
tool to process uncertain information. Since the membership function of a type-2 fuzzy
set is fuzzy and has a stronger ability to deal with uncertain information, it has attracted
extensive attention [5,6]. Furthermore, in order to solve the problem of poor segmentation
results caused by the fuzziness and uncertainty of the image itself, many scholars have
made attempts. SaHa et al. [7] provided a classical energy minimization algorithm based on
class uncertainty and regional uniformity which can better deal with the fuzzy boundary in
images. However, because of the global threshold, this algorithm has a poor segmentation
effect on images with more noise or inhomogeneous gray distribution. Wang et al. [8]
suggested a robust optimal thresholding algorithm based on local intensity mapping and
class uncertainty theory, which has satisfactory segmentation results and robustness for
fuzzy and noisy images. Zhou et al. [9] explored a local threshold segmentation algorithm
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based on multi-scale region and class uncertainty theory (MRCUT). The MRCUT algorithm
can effectively overcome the interference of noise, the uneven distribution of the local gray
scale and fuzzy boundary, but the multi-layer block iterative optimization strategy leads
to high computational complexity. Liang et al. [10] discussed a threshold segmentation
algorithm combining class uncertainty and shape dissimilarity and applied it to data clean-
ing. Soumyadip et al. [11–13] first applied the weak continuity constraint theory which
was used to vision reconstruction in an early stage to image segmentation to deal with
the uncertainty in threshold segmentation, a threshold segmentation algorithm combining
fuzzy set, and weak continuity theory was proposed and then improved. Following [12],
an IT2FS and theory of weak continuity constraint (IT2FSWCC) for accurate multiclass
image segmentation was presented which can better locate the segmentation boundary
and reduce the uncertainty in the procedure of image segmentation. However, due to the
influence of neighborhood scale calculation, the IT2FSWCC algorithm takes a long time.
Following [13], an accurate multi-class image segmentation using a neutrosophic set and
weak continuity constraints (NSWCC) was discussed, which maps an image to a neutro-
sophic set for segmentation. Although the operation time is reduced, this improvement
comes at the cost of segmentation accuracy.

Super-pixel segmentation technology can group pixels with adjacent positions and
similar pixel characteristics to form a limited number of super-pixels. As a preprocessing
step of the image threshold algorithm, super-pixel segmentation technology can effectively
reduce the computational complexity of the algorithm. Achanta et al. [14] used SLIC to
obtain image super-pixels, which can better fit the image boundary and in a faster manner;
Lei et al. [15] proposed the algorithm of multi-scale morphological gradient reconstruction
to generate the super-pixel image with a clear contour. The algorithm provides an adaptive
and irregular local spatial neighborhood. Di et al. [16] improved SLIC through the method
of multi-level layering to adaptively select the number of super-pixels. He et al. [17]
improved the square neighborhood of SLIC to a circular neighborhood, and selected
different transformation parameters by means of the conditional iterative algorithm, which
made the algorithm more suitable for microscopic cell images. Zhang et al. [18] adopted a
noniterative framework to generate super-pixels quickly and accurately by processing all
pixels at once.

Recently, many segmentation algorithms have been found to reduce the labor costs
by automatically segmenting the specified targets in images, such as aircraft fuselage and
lesions, etc. In order to segment images more accurately, the IT2FSWCC algorithm [12]
describes the uncertain information in the image based on IT2FS and weak continuous
constraint theory, and constructs the energy function for image segmentation. When
mapping an image to IT2FS, it is necessary to calculate the corresponding fuzzy set for
each selected threshold. The energy function based on weak continuous constraint theory
needs to calculate the 7 × 7 or 13 × 13 neighborhood information of pixels. The IT2FSWCC
algorithm has a very long running time due to the above two aspects. At the same time,
the manual selection of spatial parameters λ and penalty parameters α according to the
experiment is another aspect of the IT2FSWCC algorithm that needs to be improved. The
spatial parameters λ control the scale of the neighborhood, which needs to be selected
manually through a large number of experiments and then combined with the spectral
flatness measure of the image; the penalty parameters should be selected according to
extensive experiments and the contrast between the target and the background.

To solve the problems that the IT2FSWCC algorithm runs for a long time and param-
eters cannot be selected adaptively, this paper proposes a fast single-parameter energy
function thresholding for image segmentation based on region information. The IT2FS
is used as a tool to process the uncertainty, and the energy function is improved as the
objective function to search for the best threshold according the super-pixel technology.
The new objective function includes global information and local information, which is
improved based on SLIC, so that the uncertainty of the image can be described and the
accuracy of the segmentation results can be improved. SLIC is used to convert the pixel
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information of an image into regional information so as to improve the efficiency. Besides,
penalty parameters are selected adaptively according to class uncertainty to reduce the
impact of manual parameter selection on algorithm performance. The main innovations
are as follows:

(1) This paper pre-blocks the input image by SLIC to acquire the super-pixels of the image,
which effectively reduces the number of pixels to be calculated and reduces the number
of mapping times of an image to IT2FS and improves the efficiency of the algorithm;

(2) The idea of an extended neighborhood is introduced to construct the energy func-
tion improved by the super-pixel, which can expand the neighborhood range of
super-pixels to the whole homogeneous region and extract the irregular region
spatial features of super-pixels without considering the parameter selection of the
traditional neighborhood;

(3) Another innovation of this paper lies in the adaptive selection of penalty parameters
by using class-uncertainty theory, and the reduction in the subjective impact of manual
selection parameters on segmentation performance to improve the adaptability of
the algorithm.

The rest of this paper proceeds as follows: Section 2 introduces basic theories, Section 3
shows the proposed FSEFTISRI algorithm, Section 4 reveals experimental results and
analysis, and Section 5 draws conclusions.

2. Basic Theories

In this paper, IT2FS theory [19] is used to describe image information, and weak
continuous constraint theory [12] is used to construct the energy function. This section
mainly introduces the basic concepts of IT2FS and energy function.

2.1. Interval Type-2 Fuzzy Set

Type-2 fuzzy sets Ã are generally defined by type-2 fuzzy membership functions
µÃ(x, u),

Ã =
{
((x, u), µÃ(x, u))

∣∣∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]
}

(1)

where, 0 ≤ µÃ(x, u) ≤ 1, Ã can also be expressed as follows:

Ã =
∫

x∈X

∫
u∈Jx

µÃ(x, u)/(x, u),Jx ⊆ [0, 1] (2)

in which Jx is the primary membership function, µÃ(x, u) represents the sub-membership
function, and for discrete sets,

∫
can be replaced by Σ.

When all µÃ(x, u) = 1 in Equation (2), Ã represents IT2FS.

2.2. Energy Function Based on Weak Continuity Constraints

To construct the energy function based on the weak continuous constraint theory, it
is essential to count the neighborhood information of all pixels in an image [12] so as to
consider the local information of the image when dealing with the uncertain information.
According to weak string theory under weak continuous constraints, when a group of
data violates the constraints, it must pay a price, that is, when the continuous constraints
are broken, the penalty term plays a role as a price, which is helpful in locating the
discontinuous points locally.

As shown in Ref. [12], the weak string theory under the weak continuity constraint is
applied to image segmentation. On the basis of this theory, the string attempts to remain stable
at the lowest energy. In the segmentation process, each pixel is interpolated into the target
or background through their centroids v(Ri), i = 1, 2, the segmentation boundary points
lead to string breaking and the discontinuities are localized because of the violation of weak
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continuity constraints. Accurate segmentation results are attained by minimizing the energy
function. The calculation formula of the energy function is shown in Equation (3)

E = D + S + P (3)

where,

D =
2

∑
i=1

∑
x∈Ri

(x− v(Ri))
2 (4)

S = λ2
2

∑
i=1

∑
x∈Ri

∑
y∈Nx

(µ(x)− µ(y))2(1− b(x)) (5)

P = α
2

∑
i=1

∑
x∈Ri

b(x) (6)

here, µ(x) denotes the membership value of pixel x, and Nx represents the adjacent pixels in
a local window of size λ× λ. v(Ri) is the IT2FS center of gravity of the target or background
Ri. Boundary point b(x) = 1, non-boundary point b(x) = 0.

3. The Proposed FSEFTISRI Algorithm

This paper mainly discusses the image segmentation based on energy function. The
aim is to overcome the shortcomings of the IT2FSWCC algorithm, and the fast single-
parameter energy function thresholding for image segmentation based on region informa-
tion is proposed.

The proposed FSEFTISRI algorithm is based on IT2FS theory. First, the image is
segmented by SLIC to obtain the image super-pixel. Based on the super-pixel, an improved
energy function combining region information of the image is constructed according to the
weak continuous constraint theory. At the same time, the neighborhood of the super-pixel
is extended to the whole homogeneous area, and the idea of an extended neighborhood
is introduced for the image super-pixel. Thus, the selection of spatial parameters λ in the
original energy function does not need to be considered. Furthermore, the class-uncertainty
is used to select the penalty parameters α adaptively. Finally, the improved energy function
is minimized to search the optimal threshold. The flow of each part of the proposed
FSEFTISRI algorithm is drawn in Figure 1.

3.1. Mapping Image to IT2FS

The proposed FSEFTISRI uses the concept of IT2FS as a tool to construct a mathematical
model of the image to describe the uncertain and inaccurate information in the image.
Therefore, the image is mapped to IT2FS first, and the type-1 membership function of the
image target and background is given by the following equation:

µ(k) =

{
1− ( k

t )
ε1 , k ≤ t

1− ( L−k
L−t )

ε2 , k > t
(7)

where, ε1, ε2 > 0, k is super-pixel gray value, and t is the threshold value.
The interval type-2 membership function is generated through the type-1 fuzzy mem-

bership function shown in Equation (7). The calculation expressions of the upper and lower
membership functions µ and µ are shown in Equation (8):

µ(k) = µ(k)
1
β

µ(k) = µ(k)β (8)

where, β ∈ (1, ∞). Equation (7) shows that a different threshold, t will produce a different
fuzzy set, resulting in a different IT2FS.
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3.2. Single-Parameter Energy Function Combining with Region Information

The SLIC algorithm pre-segments the image into a fixed number of super-pixels based
on the color feature [lsi, asi, bsi]and position feature [xsi, ysi] of the pixel [14], which changes
the image from pixel level to region level. The proposed FSEFTISRI mainly discusses the
gray image, so only the brightness similarity and spatial adjacency in SLIC are used to
calculate the distance d(si, sj) between the candidate pixel sj and the cluster center si, which
is defined as:

d(si, sj) =

√
d2

l (si, sj) + (
m

Space
)

2
d2

xy(si, sj) (9)

dxy(si, sj) =
√
(xsi − xsj)

2 + (ysi − ysj)
2 (10)

dl(si, sj) =
√
(lsi − lsj)

2 (11)

where, dxy represents the spatial position distance and dl represents the brightness distance.
Space =

√
N/K represents the distance between neighboring seed points, N is the number

of image pixels, m represents the weight coefficient, usually, m ∈ [1, 40].
The pixels of the image are transformed into super-pixels through SLIC. Figure 2a is

an image #253036 from BSDS [20]. Figure 2b is obtained after super-pixel segmentation
(K = 30). The yellow curve is the boundary of super-pixels.

It should be explained that m = 10 in the common SLIC technology will result in
more regular super-pixels, because the larger the m is, the greater the proportion of spatial
distance dxy in d is, and the greater the impact of spatial position on the generation of
super-pixels, the more regular super-pixels will be generated. However, experiments show
that m in the proposed FSEFTISRI should be 1 so that each super-pixel is as irregular as
possible, because the super-pixels generated by the proposed FSEFTISRI are bigger than
those generated by the common SLIC. If the super-pixel is a regular n-polygon, it cannot fit
the target boundary accurately.
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The super-pixel of the image is composed of multiple pixels, so it is necessary to
select statistics to describe the brightness information of the super-pixel block as its gray
feature. Therefore, the gray mean of each super-pixel is taken. When calculating the energy
function, we take the mean as the gray value of the super-pixel, as shown in Figure 2c. In
other words, the gray mean of all pixels in a super-pixel is the value of the super-pixel.

In Equation (5), the spatial feature S denotes the change of membership value in the
neighborhood with scale λ. Because the IT2FSWCC algorithm calculates the stretching
energy based on the square neighborhood of a single pixel, that is, the change of member-
ship value in the neighborhood with scale λ, the performance of the IT2FSWCC algorithm
is limited and affected by the neighborhood scale parameter λ.The proposed FSEFTISRI
algorithm then uses the super-pixel strategy to pre-block the image. Since the super-pixel
has an irregular shape, it is not suitable to use the traditional neighborhood to represent
the stretching energy.

Therefore, the pixel neighborhood is generalized, and the idea of an extended neigh-
borhood is introduced for the image super-pixel in this paper. Based on the idea of extended
neighborhood, the stretching energy is obtained by counting the sum of changes in mem-
bership values between all pairs of super-pixels. This strategy can not only extract the
spatial features of irregular super-pixels, but also does not need to consider the selection of
traditional neighborhood parameter λ. Since the number of super-pixels is far fewer than
the number of image pixels, the computation of the proposed FSEFTISRI can be effectively
reduced. In the proposed FSEFTISRI algorithm, the calculation formula of the improved
spatial feature term S∗is as follows:

S∗ =
2

∑
i=1

(NRi ∑
k∈Ri

∑
k′ ∈ Ri
k′ 6= k

(µ(k)− µ(k′))2
) (12)

where, NRi represents the number of super-pixels in the target or background Ri, µ(k) and
µ(k′) denotes the membership values of two super-pixels k and k′ belonging to the same
category, respectively.

Using the space feature term in Equation (12), a new energy function constructed as
the objective function of the proposed FSEFTISRI algorithm and the specific formula is
shown in Equation (13):

E∗ = D∗ + S∗ + P∗ (13)

here, the distance term D∗ and penalty term P∗ are as follows:

D∗ =
2

∑
i=1

∑
k∈Ri

(k− v(Ri))
2 (14)

P∗ = α
2

∑
i=1

∑
k∈Ri

b(kx) (15)
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where, center of gravity v(Ri) is calculated as follows:

v(Ri) =
∑k∈Ri

µ(k) · k
∑k∈Ri

µ(k)
(16)

here, the IT2FS needs to be reduced:µ(k) =
µ(k)+µ(k)

2 , krepresents gray value of super-pixel, b(kx)
denotes a Boolean value, which is 1 at the boundary point and 0 at the non-boundary point. Given a set
of boundary pixels (x, x′) satisfying {(x, x′)|(x, x′) are adjacent, x ≤ t&x′ > t or x > t&x′ ≤ t}.

Remark 1. A super-pixel is a collection of multiple pixels. When calculating the Boolean value,
if the super-pixel is judged as a boundary super-pixel, only the Boolean values of pixels on the
boundary of a super-pixel is set to 1, and the Boolean values of other pixels are set to 0.

Figure 3 shows the Boolean value of image #253036 (the original image ref. Figure 2a)
under the optimal threshold, that is, the Boolean matrix of the image.
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3.3. Adaptive Selection of Uncertain Parameters α

During the process of image segmentation, penalty term P∗ is related to the location
of discontinuities between target and background. In fact, both S∗ and P∗ in Equation (13)
represent the spatial features of the image, and P∗ can also be called the penalty term. As
mentioned above, the super-pixel should be punished when it violates the weak continuity
constraint, and the penalty term P∗ in the energy function can reflect the cost it should pay.

In the proposed FSEFTISRI algorithm, the value of penalty parameter α has a great
impact on the penalty term P∗. If the value of α is inappropriate, the algorithm may detect
false inter class discontinuities. If the contrast between target and background is high, α
should be small. For this case, the value of energy function E∗ decreases accordingly, which
helps to minimize the energy function and obtain the optimal threshold. Otherwise, α
should be appropriately increased to avoid the detection of false discontinuities through
increasing the value of energy E∗.

The theory of class uncertainty is based on the probability distribution of gray levels
of the target or background in an image as prior knowledge to determine the uncertainty
of image pixels belonging to the target or background under different thresholds. When
the selected threshold is close to the optimal threshold, the class uncertainty of the image
under this threshold is small. Figure 4 shows the class uncertainty of the image #253036 from
BSDS [20] (shown in Figure 2a) under different super-pixel gray values. When the optimal
threshold (th∗ = 155) is selected, the class uncertainty value of the image is the smallest.
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The proposed FSEFTISRI selects parameter α adaptively by calculating the class uncer-
tainty of the image. When the selected threshold is closer to the optimal threshold, the class
uncertainty value calculated by the threshold is smaller, so that the value of penalty term P∗

is smaller and the value of energy function E∗ is smaller; When the selected threshold is far
from the optimal threshold, the class uncertainty value of the image is large, so the penalty
term P∗ value is large, which greatly affects the value of the energy function E∗, which has a
positive impact on minimizing the energy function to calculate the optimal threshold.

The following is the class uncertainty Ht(k) with a super-pixel value of k at threshold
t defined by Shannon entropy:

Ht(k) = −
θ(t)p1,t(k)

pt(k)
log

θ(t)p1,t(k)
pt(k)

− (1− θ(t))p2,t(k)
pt(k)

log
(1− θ(t))p2,t(k)

pt(k)
(17)

where, θ(t)is the prior probability that the super-pixel belongs to the target at the threshold
t, p1,t(k) and p2,t(k) are the probability density functions of gray k belonging to the target
and background pixels at the threshold t respectively. The calculations are as follows:

p1,t(k) =
1√

2πσ1(t)
e
− (k−m1(t))

2

2σ1(t)
2 (18)

p2,t(k) =
1√

2πσ2(t)
e
− (k−m2(t))

2

2σ2(t)
2 (19)

where, σ1(t) and σ2(t) represent the standard deviation of the super-pixel intensity belong-
ing to the target and background, m1(t) and m2(t) are the average values of the super-pixel
intensities belonging to the target and the background respectively.

According to Equations (18) and (19), the calculation formula of pt(k) is constructed
as follows:

pt(k) = θ(t)p1,t(k) + (1− θ(t))p2,t(k) (20)

In summary, the penalty parameter α in Equation (15) can be calculated as follows:

α = ∑
k∈R

Ht(k) (21)
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where R represents the whole image.

3.4. The Steps of the Proposed FSEFTISRI Algorithm

To overcome the shortcomings of the IT2FSWCC algorithm, which has a long running
time and cannot adaptively select parameters, the fast single-parameter energy function
thresholding for image segmentation based on region information is proposed. The pro-
posed FSEFTISRI algorithm uses SLIC to segment the super-pixel of the image, and im-
proves the calculation of pixel information to the calculation of super-pixel information of
the image, which effectively improves the operation efficiency of the algorithm. At the same
time, the λ× λ neighborhood of the image pixel is extended to all homogeneous regions of
the super-pixel. According to the class uncertainty of the image, the penalty parameters are
selected adaptively to improve the adaptability of the algorithm. The proposed FSEFTISRI
algorithm is shown in Algorithm 1.

Algorithm 1. The proposed FSEFTISRI algorithm.

FSEFTISRI: A fast single-parameter energy function thresholding for image segmentation based
on region information
Input: The gray level image img.
Output: Optimal threshold th∗, image segmented by optimal threshold.
Step 1: Generate K super-pixels by SLIC.
Step 2: Calculate the gray mean k of each super-pixel and sort it from small to large.
Step 3: For each super-pixel value k:

(a) Transform super-pixel kj to T1FS according to Equation (7)
(b) Calculate the IT2FS according to T1FS through Equation (8)
(c) Calculate v(R1) and v(R2) for sets [k1, kj] and [kj, kK ] by Equation (16), then, the distance

term D∗ is calculated according to Equation (14)
(d) Compute the spatial feature term S∗ and penalty term P∗ by Equation (12) and

Equation (21) respectively
(e) Compute E∗ = D∗ + S∗ + P∗

Step 4: Find kj for which E∗ is minimum is the optimal threshold th∗.
Step 5: Segment the image by the optimal threshold th∗.

3.5. Computational Complexity

To objectively analyze the operating efficiency of the proposed FSEFTISRI, the time
complexity of the proposed FSEFTISRI is shown in this section. Assume that an image
has N pixels and is divided into K super-pixels, then the computational complexity of the
proposed FSEFTISRI algorithm is O(K2 + N).

Accordingly, the computational complexity of IT2FSWCC algorithm is O(N2).
Since the number of pixels K is far fewer than the number of pixels N, the computa-

tional complexity of the proposed FSEFTISRI algorithm is much smaller than that of the
IT2FSWCC algorithm.

The proposed FSEFTISRI algorithm improves the IT2FSWCC algorithm through SLIC
technology, which seems to use a more complex process, but the addition of SLIC generates
super-pixels, which greatly reduces the calculation times of the objective function and its
neighborhood information, and also reduces the mapping times of the image to IT2FS, so
the efficiency of the proposed FSEFTISRI algorithm is improved.

4. Experimental Results and Analysis

This section introduces the experimental results and analysis. The experiment was
performed on a PC with AMD Ryzen 7 5800H with Radeon Graphics (3.20 GHz) CPU and
16 GB of memory on a Windows 10 (64-bit) operating system. The software specification is
MATLAB R2018a.
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4.1. Comparison Algorithm and Quantitative Evaluation Index

The proposed FSEFTISRI algorithm is compared with five related algorithms, such
as Otus [21], a local threshold algorithm based on class uncertainty such as MRCUT [9],
algorithms based on weak continuous constraint theory such as IT2FSWCC [12], and
NSWCC [13], an algorithm based on energy function minimization technology such as
EITMIS [22], to verify the performance of the proposed FSEFTISRI in segmentation visual
effect and quantization index.

To objectively evaluate the segmentation performance of each algorithm, ME [23], fea-
ture similarity (FSIM) [24], peak signal-to-noise ratio (PSNR) [25] and structural similarity
(SSIM) [26] are used as evaluation indexes to quantitatively analyze the experimental results.

ME is used to measure the ratio of misclassified pixels in all pixels. The smaller the
value is, the fewer misclassified pixels are and the more accurate the segmentation result is.
ME ∈ [0, 1].

FSIM is a measure of similarity between two images. The range of FSIM is [0, 1]. For
the satisfactory segmented images, a higher FSIM is required.

PSNR is an objective standard to measure image distortion, which can be computed
by mean square error, and its unit is dB. The higher the PSNR is, the lower the distortion it
represents. The minimum value of PSNR is 0, and there is no fixed upper limit.

SSIM is an index to evaluate the similarity between two images. SSIM ∈ [0, 1]. Higher
SSIM means better image segmentation.

4.2. Experimental Results and Analysis

In order to test the performance of the proposed FSEFTISRI algorithm, simulation
experiments were conducted on two image databases: the NDT database [27] and the
BSDS [20]. The visual segmentation effects of NDT and BSDS are revealed in Sections 4.2.1
and 4.2.2, respectively. In order to verify the stability of the proposed algorithm, Sec-
tion 4.2.3 introduces the mean and variance of the evaluation indicators of 50 images from
BSDS and 10 NDT images. In addition, the line chart of the evaluation indicators of 50
images from BSDS is also described in Section 4.2.3. The comparison experiment of the
operation efficiency of the six algorithms is shown in Section 4.2.4.

When the IT2FS of the image is established, ε1 = 0.25, ε2 = 0.75,β= 1.25. In addition,
this paper sets the number of pixels K = 100 for NDT database and K = 30 for BSDS.

4.2.1. Analysis of Experimental Results of NDT Images

NDT image segmentation can be used for industrial fault detection. The NDT dataset
includes 25 images and their ground images, including eddy current for thermal, printed
circuit board images, light microscope, and ultrasonic, etc. NDT images are often very fuzzy,
so it is very difficult to segment defective parts from the image. In this section, the proposed
FSEFTISRI and comparison algorithms are applied to NDT images with a high gray scale and
spatial ambiguity. The visual effect of image segmentation is shown in Figures 5–10.
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(e) EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI. 
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Figure 6. Image2 and its segmentation results: (a) #image2, (b) ground-truth, (c) Otus, (d) MRCUT, 
(e) EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI. 
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Figure 7. Image3 and its segmentation results: (a) #image3, (b) ground-truth, (c) Otus, (d) MRCUT, 
(e) EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI. 
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Figure 8. Image6 and its segmentation results: (a) #image6, (b) ground-truth, (c) Otus, (d) MRCUT, 
(e) EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI. 
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Figure 9. Image13 and its segmentation results: (a) #image13, (b) ground-truth, (c) Otus, (d) 
MRCUT, (e) EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI. 

  

Figure 6. Image2 and its segmentation results: (a) #image2, (b) ground-truth, (c) Otus, (d) MRCUT,
(e) EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI.
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Figure 9. Image13 and its segmentation results: (a) #image13, (b) ground-truth, (c) Otus, (d) 
MRCUT, (e) EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI. 
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(e) EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI.
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Figure 9. Image13 and its segmentation results: (a) #image13, (b) ground-truth, (c) Otus, (d) 
MRCUT, (e) EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI. 
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(e) EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI.
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Figure 9. Image13 and its segmentation results: (a) #image13, (b) ground-truth, (c) Otus, (d) 
MRCUT, (e) EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI. 

  

Figure 9. Image13 and its segmentation results: (a) #image13, (b) ground-truth, (c) Otus, (d) MRCUT,
(e) EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI.
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Figure 10. Image22 and its segmentation results: (a) #image22, (b) ground-truth, (c) Otus, (d) 
MRCUT, (e) EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI. 

In Figure 10, the targets segmented by the MRCUT and IT2FSWCC algorithms are 
larger and smaller than the ground-truth, respectively, as the segmentation results are not 
ideal. At the same time, the segmentation results of Otus, NSWCC and the proposed 
FSEFTISRI are very similar to the ground-truth. However, there are different levels of 
noise in the targets in Figure 10c,f. Thus, the segmentation results of the proposed FSEFT-
ISRI algorithm are more advantageous. It should be noted that the EITMIS algorithm fails 
in most NDT images because it is not suitable for small target image segmentation. 

The comparison results of performance indexes of each algorithm for NDT images 
are shown in Table 1. Table 1 indicates that the performance of the proposed FSEFTISRI 
algorithm is better than the comparison algorithms, which is basically consistent with the 
results of visual effect, indicating that the proposed FSEFTISRI has great applicability to 
the images in the NDT Database. 

4.2.2. Analysis of Experimental Results of BSDS 
BSDS is a popular image benchmark. The early BSDS contains 300 images, so it is 

called BSDS300. Now BSDS has 500 images, so it is called BSDS500. The images in BSDS 
are basically natural images with the same size of 321 481× , and there is often environ-
mental noise during acquisition. This section will objectively discuss the segmentation 
performance of the proposed FSEFTISRI algorithm from two aspects: visual effect and 
quantitative assessment. 

The visual effects of the proposed FSEFTISRI algorithm and the five comparison al-
gorithms for image segmentation are shown in Figures 11–16. According to Figures 11–
16, the proposed FSEFTISRI has a good segmentation effect on images from BSDS and can 
completely segment the target and background. 

Table 1. Comparison of evaluation indexes of several algorithms in NDT images. 

Image Evaluation In-
dexes 

Algorithms 
Otus MRCUT EITMIS NSWCC IT2FSWCC FSEFTISRI 

#image1 

ME 0.0665 0.4394 0.0181 0.0665 0.0392 0.0136 
FSIM 0.7430 0.4252 0.9587 0.7430 0.8365 0.9687 
PSNR 11.8046 3.5722 17.7079 11.8046 14.1568 19.3667 
SSIM 0.5654 0.0721 0.8817 0.5654 0.7463 0.8986 

#image2 

ME 0.5255 0.3381 0.0044 0.4943 0.0032 0.0008 
FSIM 0.2391 0.3021 ---- 0.2397 0.9686 0.9933 
PSNR 2.7941 4.7094 23.5946 3.0602 24.9415 30.8839 
SSIM 0.0024 0.0041 0.9508 0.0027 0.9542 0.9848 

#image3 

ME 0.5448 0.3681 0.0238 0.5132 0.0075 0.0015 
FSIM 0.3310 0.3358 ---- 0.3257 0.9753 0.9949 
PSNR 2.6378 4.3407 16.2351 2.8975 21.232 28.2217 
SSIM 0.0087 0.0173 0.9145 0.0088 0.9573 0.9891 

#image6 
ME 0.4466 0.4780 0.0652 0.4281 0.0438 0.0196 

FSIM 0.5899 0.5831 ---- 0.5976 0.8428 0.9139 
PSNR 3.5011 3.2054 11.8589 3.6844 13.5845 17.0671 

Figure 10. Image22 and its segmentation results: (a) #image22, (b) ground-truth, (c) Otus, (d) MRCUT,
(e) EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI.

From Figures 5–10, the proposed FSEFTISRI has satisfactory segmentation results on
NDT images; the images after the segmentation of the proposed FSEFTISRI algorithm are
closest to the ground-truth. In particular, as shown in Figures 6 and 7, both the IT2FSWCC
algorithm and the proposed FSEFTISRI algorithm can obtain effective segmentation. In
Figure 6, the proposed FSEFTISRI can completely segment four targets, while the segmen-
tation result of IT2FSWCC misses a target: the white point in the lower left corner. In
Figure 7, the proposed FSEFTISRI can completely segment the strip target and background,
while the strip target of the IT2FSWCC algorithm is thinner than the ground-truth.

In Figure 10, the targets segmented by the MRCUT and IT2FSWCC algorithms are
larger and smaller than the ground-truth, respectively, as the segmentation results are
not ideal. At the same time, the segmentation results of Otus, NSWCC and the proposed
FSEFTISRI are very similar to the ground-truth. However, there are different levels of noise
in the targets in Figure 10c,f. Thus, the segmentation results of the proposed FSEFTISRI
algorithm are more advantageous. It should be noted that the EITMIS algorithm fails in
most NDT images because it is not suitable for small target image segmentation.

The comparison results of performance indexes of each algorithm for NDT images
are shown in Table 1. Table 1 indicates that the performance of the proposed FSEFTISRI
algorithm is better than the comparison algorithms, which is basically consistent with the
results of visual effect, indicating that the proposed FSEFTISRI has great applicability to
the images in the NDT Database.

4.2.2. Analysis of Experimental Results of BSDS

BSDS is a popular image benchmark. The early BSDS contains 300 images, so it is
called BSDS300. Now BSDS has 500 images, so it is called BSDS500. The images in BSDS are
basically natural images with the same size of 321× 481, and there is often environmental
noise during acquisition. This section will objectively discuss the segmentation performance
of the proposed FSEFTISRI algorithm from two aspects: visual effect and quantitative
assessment.

The visual effects of the proposed FSEFTISRI algorithm and the five comparison
algorithms for image segmentation are shown in Figures 11–16. According to Figures 11–16,
the proposed FSEFTISRI has a good segmentation effect on images from BSDS and can
completely segment the target and background.
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Table 1. Comparison of evaluation indexes of several algorithms in NDT images.

Image Evaluation
Indexes

Algorithms

Otus MRCUT EITMIS NSWCC IT2FSWCC FSEFTISRI

#image1

ME 0.0665 0.4394 0.0181 0.0665 0.0392 0.0136
FSIM 0.7430 0.4252 0.9587 0.7430 0.8365 0.9687
PSNR 11.8046 3.5722 17.7079 11.8046 14.1568 19.3667
SSIM 0.5654 0.0721 0.8817 0.5654 0.7463 0.8986

#image2

ME 0.5255 0.3381 0.0044 0.4943 0.0032 0.0008
FSIM 0.2391 0.3021 —- 0.2397 0.9686 0.9933
PSNR 2.7941 4.7094 23.5946 3.0602 24.9415 30.8839
SSIM 0.0024 0.0041 0.9508 0.0027 0.9542 0.9848

#image3

ME 0.5448 0.3681 0.0238 0.5132 0.0075 0.0015
FSIM 0.3310 0.3358 —- 0.3257 0.9753 0.9949
PSNR 2.6378 4.3407 16.2351 2.8975 21.232 28.2217
SSIM 0.0087 0.0173 0.9145 0.0088 0.9573 0.9891

#image6

ME 0.4466 0.4780 0.0652 0.4281 0.0438 0.0196
FSIM 0.5899 0.5831 —- 0.5976 0.8428 0.9139
PSNR 3.5011 3.2054 11.8589 3.6844 13.5845 17.0671
SSIM 0.1208 0.0943 0.731 0.127 0.7389 0.8162

#image13

ME 0.0218 0.4397 0.0588 0.0195 0.0218 0.0065
FSIM 0.7311 0.2354 —- 0.744 0.9466 0.9818
PSNR 16.6133 3.5684 12.3031 17.0987 16.6133 21.8552
SSIM 0.5573 0.0181 0.8555 0.5926 0.8771 0.9363

#image22

ME 0.0326 0.0678 0.8378 0.0326 0.0751 0.0256
FSIM 0.9571 0.7785 —- 0.9571 0.9136 0.9750
PSNR 17.5937 12.5955 0.8353 17.5937 1.8914 20.8514
SSIM 0.8511 0.6343 0.11 0.8511 0.7897 0.9053
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Figure 14. #253026 and its segmentations: (a) #253026, (b) ground-truth, (c) Otus, (d) MRCUT, (e) 
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Figure 15. #344010 and its segmentations: (a) #344010, (b) ground-truth, (c) Otus, (d) MRCUT, (e) 
EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI. 
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Figure 16. #351093 and its segmentations: (a) #351093, (b) ground-truth, (c) Otus, (d) MRCUT, (e) 
EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI. 

For images from BSDS, the EITMIS algorithm can obtain a relatively ideal effect, and 
there is no large number of failures like those in the NDT database, and the segmentation 
effect of Figure 15 is second only to that of the proposed FSEFTISRI algorithm. 

For the six test images selected from BSDS, Table 2 lists the quantitative indexes of 
the segmentation results of each algorithm. From Table 2, the performance indexes of the 

Figure 14. #253026 and its segmentations: (a) #253026, (b) ground-truth, (c) Otus, (d) MRCUT,
(e) EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI.

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 22 
 

 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 14. #253026 and its segmentations: (a) #253026, (b) ground-truth, (c) Otus, (d) MRCUT, (e) 
EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 15. #344010 and its segmentations: (a) #344010, (b) ground-truth, (c) Otus, (d) MRCUT, (e) 
EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 16. #351093 and its segmentations: (a) #351093, (b) ground-truth, (c) Otus, (d) MRCUT, (e) 
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there is no large number of failures like those in the NDT database, and the segmentation 
effect of Figure 15 is second only to that of the proposed FSEFTISRI algorithm. 
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Figure 15. #344010 and its segmentations: (a) #344010, (b) ground-truth, (c) Otus, (d) MRCUT,
(e) EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI.

In Figure 11, the Otus, MRCUT, EITMIS and NSWCC algorithms cannot separate the
cloud from the aircraft, while the IT2FSWCC algorithm extracts the target, but separates
the “+” flag on the fuselage, making the target incomplete. The segmentation effect of the
proposed FSEFTISRI is more ideal and closer to the standard segmentation. For the other
five images, compared with the five comparison algorithms, the segmentation results of
the proposed FSEFTISRI are relatively outstanding, and the target contains less noise.
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Figure 16. #351093 and its segmentations: (a) #351093, (b) ground-truth, (c) Otus, (d) MRCUT,
(e) EITMIS, (f) NSWCC, (g) IT2FSWCC, (h) FSEFTISRI.

For images from BSDS, the EITMIS algorithm can obtain a relatively ideal effect, and
there is no large number of failures like those in the NDT database, and the segmentation
effect of Figure 15 is second only to that of the proposed FSEFTISRI algorithm.

For the six test images selected from BSDS, Table 2 lists the quantitative indexes of the
segmentation results of each algorithm. From Table 2, the performance indexes of the proposed
FSEFTISRI algorithm are mostly better than those of the comparison algorithms. Only in
image #227046 are FSIM and SSIM slightly fewer than in the EITMIS algorithm. However,
in light of the perspective of visual effect, the EITMIS algorithm divides the mountains into
the same category as the sky in the upper left corner, which is visually different from the
ground-truth. The comparison information in Table 2 indicates that the proposed FSEFTISRI
can segment test images accurately without producing large amounts of distortion.

Table 2. Comparison of evaluation indexes of several algorithms in BSDS.

Image Evaluation
Indexes

Algorithms

Otus MRCUT EITMIS NSWCC IT2FSWCC FSEFTISRI

#3063

ME 0.2923 0.2777 0.2115 0.2851 0.0194 0.0109
FSIM 0.9241 0.9413 0.9638 0.9317 0.9931 0.9973
PSNR 53.4723 53.6944 54.8771 58.5813 65.2519 67.7694
SSIM 0.5685 0.6106 0.7404 0.5850 0.9230 0.9568

#198087

ME 0.0598 0.2092 0.0549 0.0997 0.0446 0.0441
FSIM 0.9540 0.9330 0.9749 0.9494 0.9725 0.9889
PSNR 60.3611 54.9245 60.7380 59.1137 61.6376 61.6897
SSIM 0.7905 0.6110 0.8442 0.7513 0.8424 0.8704

#227046

ME 0.0639 0.3227 0.0521 0.0623 0.0670 0.0467
FSIM 0.9152 0.8426 0.9824 0.9110 0.9403 0.9748
PSNR 60.0763 53.0431 60.9653 60.1856 59.8675 61.4355
SSIM 0.7620 0.3586 0.9162 0.7530 0.8024 0.8899

#253036

ME 0.0227 0.1820 0.0276 0.0210 0.0159 0.0060
FSIM 0.9930 0.9731 0.9888 0.9938 0.9960 0.9986
PSNR 64.5655 55.5306 63.7161 64.9065 66.1239 70.3653
SSIM 0.9322 0.7252 0.9377 0.9338 0.9396 0.9699

#344010

ME 0.0604 0.0538 0.0179 0.0636 0.0998 0.0170
FSIM 0.8948 0.9046 0.9900 0.8930 0.8716 0.9947
PSNR 60.3199 60.8202 65.6098 60.0988 58.1393 65.8244
SSIM 0.6205 0.6865 0.9003 0.6160 0.5691 0.9240

#351093

ME 0.0565 0.2712 0.0303 0.0624 0.0492 0.0264
FSIM 0.8918 0.8379 0.9434 0.8818 0.8996 0.9932
PSNR 60.6067 53.7984 63.3158 60.1788 61.2109 63.9203
SSIM 0.6294 0.38831 0.7986 0.6084 0.6525 0.9154
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4.2.3. Overall Analysis of Algorithm Performance Index

Due to there being 25 images in the NDT database and 500 images in the BSDS
database, in order to evaluate the stability of the proposed FSEFTISRI, this section selects
50 images in BSDS and 10 images in the NDT for the experiment. The mean and variance
of evaluation indexes of six algorithms are counted to verify the segmentation effect of the
proposed FSEFTISRI, as listed in Tables 3 and 4.

Table 3. Mean value and variance of evaluation indexes of 6 algorithms in NDT images.

Index Otus MRCUT EITMIS NSWCC IT2FSWCC FSEFTISRI

ME 0.0118± 0.0110 0.2764± 0.0133 0.0794± 0.0099 0.1140± 0.0106 0.0951± 0.0069 0.0466± 0.0013
FSIM 0.9194± 0.0025 0.8911± 0.0026 0.9577± 0.0041 0.9178± 0.0024 0.9368± 0.0023 0.9811± 0.0002
PSNR 59.4565± 21.8622 54.3484± 7.7089 62.1613± 30.7761 59.4905± 18.9487 60.3545± 29.1880 63.1714± 21.5154
SSIM 0.6874± 0.0349 0.4917± 0.0300 0.8529± 0.0149 0.6866± 0.0341 0.7322± 0.0366 0.8949± 0.0041

Table 4. Mean value and variance of evaluation indexes of several algorithms in BSDS.

Index Otus MRCUT EITMIS NSWCC IT2FSWCC FSEFTISRI

ME 0.1986± 0.0484 0.2588± 0.0288 0.2977± 0.1252 0.1904± 0.0429 0.0499± 0.0024 0.0039± 0.0015
FSIM 0.6793± 0.0631 0.5543± 0.0481 0.9192± 0.0031 0.6808± 0.0635 0.8709± 0.0138 0.9257± 0.0049
PSNR 11.9394± 87.8907 7.1171± 13.9700 9.9438± 62.9851 12.5205± 112.3919 14.8075± 52.1845 18.9732± 49.7260
SSIM 0.4451± 0.1327 0.2622± 0.0785 0.5518± 0.1562 0.4496± 0.1336 0.7422± 0.0613 0.8245± 0.0277

According to Tables 3 and 4, the mean of the four indexes of the proposed FSEFTISRI
algorithm are the best, and the variance is small. This shows that the segmentation results
of the proposed FSEFTISRI algorithm have obvious advantages among the six algorithms,
and are more stable.

In addition, the indexes of 50 images in BSDS are made into line charts to further
demonstrate the segmentation effect of the proposed FSEFTISRI, as shown in Figures 17–20.
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Figure 18. Comparison of FSIM of several algorithms.
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Figure 20. Comparison of SSIM of several algorithms.

According to the comparison of the line chart graph in Figure 17, the ME of the
proposed FSEFTISRI is maintained below 0.16, and the line chart is at the lowest, indicating
that the proposed FSEFTISRI can obtain greater accuracy. In the other three indexes shown
in Figures 18–20, the performance of the proposed FSEFTISRI is also basically maintained
at the highest level. These line charts show that the proposed FSEFTISRI algorithm has
high segmentation accuracy, a pleasant segmentation effect, and certain stability.

4.2.4. Comparative Experiment of the Operation Efficiency

In order to directly reflect the superiority of the proposed FSEFTISRI algorithm in
terms of operating efficiency, the CPU consumption of the proposed FSEFTISRI algorithm
and the comparison algorithms under the same software and hardware conditions is
calculated. Since images in the BSDS are the same size, this section counts the running time
of each algorithm in 50 images in BSDS and calculates the average CPU running time, as
shown in Figure 21. At the same time, in order to avoid contingency, the variance of the
running time of these 50 images is also shown in Table 4.
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Figure 21 illustrates that the operating efficiency of the proposed FSEFTISRI is only
inferior to Otus, because Otus only calculates the gray information of the image, has low
complexity, and its segmentation accuracy is not high either. The proposed FSEFTISRI algo-
rithm not only consumes less CPU time, but can also obtain ideal segmentation results. The
proposed FSEFTISRI greatly improves the running efficiency by using super-pixel technology,
and the CPU time of the proposed FSEFTISRI is much less than it is for IT2FSWCC, which is
consistent with the analysis result of computational complexity in Section 3.5.

Table 5 shows the variance of the running time of several algorithms on 50 images from
BSDS. The variance of the proposed FSEFTISRI algorithm is only 0.0011. Combined with
the running time of Figure 21, it can be concluded that the running time of the proposed
FSEFTISRI algorithm is short.

Table 5. Variance of running time of several algorithms.

Algorithms Otus MRCUT EITMIS NSWCC IT2FSWCC FSEFTISRI

Variance of running time 0.0208 0.2843 0.3365 25.6121 3017.7348 0.0011

5. Conclusions

To solve the problems that IT2FSWCC algorithm has in terms of low computational
efficiency and parameters that cannot be selected adaptively, this paper proposes a fast
single-parameter energy function thresholding for image segmentation based on region
information. In this paper, the original energy function is improved by SLIC, and the
objective function of the proposed FSEFTISRI algorithm is constructed, which improves
the operation efficiency of the proposed FSEFTISRI algorithm. The idea of extended
neighborhood is adopted to extract the spatial features of super-pixels, avoiding the manual
selection of spatial parameters. The theory of quasi-uncertainty is used to promote the
penalty terms to play a role in the energy function and to select the penalty parameters
adaptively, reducing the impact of the manual selection of parameters on the performance
of the algorithm. The experimental results show that the proposed FSEFTISRI can obtain
ideal segmentation results for NDT images and natural images in BSDS. Compared with the
comparison algorithms, the proposed FSEFTISRI has higher efficiency under the condition
of ensuring segmentation accuracy.

The proposed FSEFTISRI uses SLIC to divide the image into super-pixels. However,
SLIC needs to preset the number of super-pixels, which limits the automaticity of the
proposed FSEFTISRI to the image to a certain extent. Future studies will focus on the
adaptive selection of the number of super-pixels so as to improve the adaptability of the
algorithm to different types of images and improve the segmentation performance.
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Abbreviations
The following abbreviations are used in this manuscript:

BSDS Berkeley Segmentation Datasets and Benchmarks
CPU central processing unit
EITMIS An efficient iterative thresholding method for image segmentation

FSEFTISRI
fast single-parameter energy function thresholding for image segmentation based
on region information fusion

FSIM feature similarity
IT2FS interval type-2 fuzzy set
IT2FSWCC interval type-2 fuzzy set and theory of weak continuity constraints
ME mis-classification error
MRCUT multi-scale region and class uncertainty theory
NDT Non-destructive testing
NSWCC neutrosophic set and weak continuity constraints
PSNR peak signal-to-noise ratio
SLIC simple linear iterative clustering
SSIM structural similarity index measure
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