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Abstract: Determining the optimal slaughter age of fast-growing animals regarding the mortality
rates and breeding costs plays an important and major role for companies that benefit from their
meat. Additionally, the effects of carbon dioxide (CO2) emissions during the growth cycle of animals
are a significant concern for governments. This study proposes an economic order quantity (EOQ)
for growing items with a mortality function under a sustainable green breeding policy. It assumes
that CO2 production is a practical polynomial function that depends on the age of the animals as well
as the mortality function. The aim of the model is to determine the optimal slaughter age and the
optimal number of newborn chicks, purchased from the supplier, to minimize the total costs. We
propose an analytical approach, with five simple steps, to find the optimal solutions. Finally, we
provide a numerical example and some model management insights to help practitioners in this area.

Keywords: economic order quantity (EOQ); economic growing quantity (EGQ); growing items;
mortality; carbon dioxide emissions
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1. Introduction

Companies in business rivalries do not achieve success unless they overcome inventory
management issues. Therefore, they concentrate on the inventory level of items to decrease
the total costs and, subsequently, increase the total profit of the company. The U.S. Small
Business Administration stated that inventory costs account for approximately 40% to
90% of total costs. In other words, many small businesses cannot tolerate the types of
losses arising from poor inventory management. Effective inventory management involves
balancing inventory costs with customer demand. According to Nobil and Taleizadeh [1],
research on inventory problems is very popular and useful for achieving business goals.
Two fundamental and significant questions in inventory problems are when and how many
products are ordered such that the total costs are minimized. Therefore, a lot of researchers
have worked in this area since the early twentieth century and have proposed a lot of
models that optimize diverse and complex inventory systems (Pasandideh et al., [2]).

According to MacLeod et al. [3], during the breeding process, growing items such
as chickens emits greenhouse gases (GHGs), particularly carbon dioxide, because of pro-
cessing, transformation and manure emissions from housing and manure management.
Consequently, reducing GHG emissions is one of the most crucial problems for companies
because most governments impose a tax on polluters for each ton of GHGs they produce.
The occurrence of death during the breeding period, owing to various circumstances,
including disease, injury and inactivity, is an additional crucial factor for businesses to
consider. Cockram and Dula [4] mentioned that the mortality risk of animals rises with
advancing age and, subsequently, weight gain. Therefore, companies need to know how
long the breeding period of growing items takes, and then they can find a suitable time.
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This study extended the classic growing economic order quantity model by considering
these issues.

The scientific study of inventory systems started in February 1913 with Harris’s model,
which involves balancing the costs of inventory and ordering. Afterward, this model
was developed with respect to different characteristics of practical circumstances, such as
pricing and marketing policies, the behavior of customers and the nature of products; see,
for instance, the work of Nobil et al. [5]. Most studies assume that the ordered items have a
fixed weight or weight loss over time. Rezaei [6] extended the EOQ model with ameliorating
activities, such as breeding and feeding. He presented an economic growth quantity (EGQ)
model focused on fast-growing animals with real growth and feeding functions and used a
logistic function that relates feeding to the age of the animals. Initially, Rezaei [6] presented
a general inventory model for growing items, even though researchers could use it for
different items. Later, he developed a general model for a specific item, namely the broiler.
This model determines the optimal slaughter date and the number of ordered birds so that
the total profit per unit of time is maximized. Rezaei’s [6] model assumes that all birds are
alive during the breeding period, which is an impractical assumption within the economic
growth model. One major concern of breeding farms is the occurrence of death during the
breeding period due to diverse causes, such as illness, injury and inactivity. On the other
hand, increased age and, subsequently, weight gain can increase the mortality risk in some
situations. Consequently, the current research trend has addressed these circumstances
within the economic growing inventory model by introducing a mortality function that
depends on the age of animals during the breeding period.

According to MacLeod et al. [3] GHG emissions from bird meat manufacturing are
mostly associated with two causes: first, feed production, processing and transportation
of animals, and second, manure emissions from housing and manure organization. The
importance of this subject forces governments in most countries to set a tax that emitters
must pay for each ton of GHGs produced. Liu et al. [7] stated that companies and businesses
take steps to reduce GHGs emissions in order to avoid paying those taxes. Almeida et al. [8]
said that carbon dioxide (CO2) is a type of GHG that is vital for animals, plants and
humans. Too much of it can jeopardize life around the world. Therefore, the effects of taxes
on carbon dioxide are calculated into the total costs of the proposed model. Carbon dioxide
production is considered a polynomial function that relates CO2 production to the age
of animals during the breeding cycle. As part of this research work, we improve several
circumstances of Rezaei’s [6] work by proposing several practical constraints.

The rest of the paper is set up as follows: Section 2 lists the studies that are similar to
the current work. In Section 3, we formulate the proposed growth inventory model. In
Section 4, we explain how to solve the model and give a numerical example. Moreover,
Section 5 illustrates a sensitivity analysis of several parameters and provides managerial
insights. Finally, the conclusion and future research are stated in Section 6.

2. Related Literature Review

As stated before, Rezaei [6] made a new approach to the economic order quantity for
fast-growing animals when growth and feeding functions are introduced. He investigated
a poultry farm where a lot of newborn birds with an initial weight were bought from
sellers at the beginning of the breeding period, and then they would be ready for sale
when the market slaughter weight was reached. He formulated the inventory system
without shortage with non-constraint nonlinear programming and solved it with a bi-
section method. Later, Nobil et al. [9] extended Rezaei’s [6] model and presented an
economic growing quantity (EGQ) model with a full backorder. They stated that item
shortages are permitted in the inventory system, and any shortage is satisfied as soon as an
adequate-sized replenishment arrives. In the same year, Nobil and Taleizadeh [1] proposed
a solution procedure for Nobil et al.’s [9] model without shortage. The procedure obtains
discrete optimal solutions for the ordered items and slaughter date. Later studies have only
formulated one type of item in the growing inventory model until Khalilpourazari and
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Pasandideh [10] addressed an economic growing problem for a system with several types
of growing animals and different operational constraints, including warehouse capacity,
budget and total allowable inventory cost limitations.

On a related topic, several studies have considered a common practice in farms that
requires that all slaughtered growing items need to pass a quality inspection before they
are sold to the market. The inspection stage separates the acceptable quality of slaughtered
items from those of poorer quality. Sebatjane and Adetunji [11] developed the work of
Rezaei [6] by incorporating the fraction of slaughtered items of good quality into the
growing inventory system. Furthermore, Alfares and Afzal [12] extended Nobil et al.’s [9]
model by including a defective proportion of slaughtered items to detect and remove all
poor-quality items; an inspection screening period was added to the model. Moreover, the
slaughtered items deteriorate over time. Mokhtari et al. [13] extended the work of Sebatjane
and Adetunji [11] by combining growing and deteriorating items for a livestock breeding
company. They used a proposed genetic algorithm to determine how many animals to
order and when to kill them to make the most money overall. Pourmohammad-Zia and
Karimi [14] developed a growing inventory model with respect to the deterioration process
for slaughtered items. They proposed an analytic solution procedure to optimize the
newborn order quantity and breeding period.

Most works on growing problems have assumed that the purchasing price of newborn
animals is fixed, even though suppliers occasionally offer incremental discount policies
over a fixed price. Sebatjane and Adetunji [15] presented an EOQ model for growing
animals with incremental discounts. Their model obtains the optimal order quantity and
cycle length, minimizing the total costs in both rented and owned facilities. After that,
Hidayat et al. [16] extended the work of Sebatjane and Adetunji [15] by combining the
limited on-hand budget and warehouse capacity.

Some other works have focused on the food supply chain (FSC) and have considered
several supply chain echelons. Sebatjane and Adetunji [17] proposed a three-level FSC
model for growing items. Their research aim was to create a coordinated inventory model
for livestock items in a food supply chain with the breeding farm, processor and retailer.
Pourmohammad-Zia et al. [18] investigated the effects of pricing policies and deteriorating
items in place for a two-level FSC with a supplier and a retailer. Their model addresses
both supply chain scenarios, centralized and decentralized, with a profit-sharing contract.

Moreover, Pourmohammad-Zia et al. [19] developed an economic growing inventory
problem for a three-echelon FSC. The model includes a supplier, a manufacturer and
multiple retailers and considers a trade-off between cost efficiency and market coverage.
Mahato et al. [20] investigated the ignoring area of fast-growing items through a two-level
FSC with a dependent demand rate, which relates to the stock quantity and sale price under
the trade credit policy. Their model studies a process that starts when a supplier breeds
newborn birds concerning a biological growth pattern.

A critical issue in the growing inventory model is the attention to dead animals during
the breeding period. The mortality risk increases by two factors: aging and increased
weight. Malekitabar et al. [21] proposed a fast-growing EOQ model for a specific item,
rainbow trout, with an average mortality rate. This study aimed to address the growing
cycle in the supplier process and then in the breeding farm to maximize the total profit of
the supplier and the farmer as a leader and follower under a Stackelberg game. Sebatjane
and Adetunji [22] assumed that a fraction of the birds that are breeding die during the
growth period, and this fraction is assumed to be constant and independent of the age of
the birds. Moreover, Sebatjane and Adetunji [23] presented an EGQ model for a four-level
livestock supply chain, including a farmer, a processor, a screening facility and a retailer,
with shipping policies and considerations for death. The mortality is assumed to be a
fraction of the total items during the farming stage. Two other articles by the same authors,
Sebatjane and Adetunji [24] and Sebatjane and Adetunji [25], considered mortality as a
fraction of total items during the breeding period. Gharaei and Almehdawe [26] used
uniform distribution to determine the survival and death probability density functions.
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GHG emissions arising from bird meat manufacturing are mostly associated with
feed production and manure emissions. Due to this subject’s importance, governments
typically set a tax, so emitters must pay for GHG production. Therefore, researchers
have tried to find ways to cut costs while keeping the green production process in mind.
Zhang et al. [27] considered the tax imposed for carbon emissions associated with items
procured, feeding periods, inventory holds and orders initiated. Then, De-la-Cruz-Márquez
et al. [28] extended the work of Zhang et al. [27] with imperfect quality and price-dependent
demand considerations under shortage and carbon emissions. Their model determines
the optimal selling price of fine-quality slaughtered items, the backorder quantity and
the newborn order quantity using an analytical approach. De-la-Cruz-Márquez et al. [29]
developed a three-stage supply system for growing items with imperfect quality, mortality
and shortages under carbon emission regulations. Choudhury and Mahata [30] considered
carbon emission costs due to the transportation of slaughtered items from the supplier to
the retailer. Rana et al. [31] formulated a growing items EOQ model for carbon emissions
with a deteriorating process and a partially backlogged policy under the permissible delay
in payment. In the same year, Gharaei and Almehdawe [32] looked into how GHGs from
fermentation, manure and transportation affect the environment. The costs of emissions
concerning the carbon tax were considered.

Table 1 shows what is different about the proposed inventory model compared to
other EGQ models of growing things. As seen in Table 1, seven works looked at the effects
of death, but none of them gave a relationship between the number of dead things and the
age of animals. Moreover, five studies used a carbon production tax in their production
systems, but the amount of carbon emissions emitted is fixed and independent of the
birds’ age. This study formulates the economic order quantity model for survival and
dead animals with carbon dioxide production under consideration. The percentage of the
cumulative dead items is a polynomial function that relates to the age of animals during
the breeding cycle as well as carbon dioxide production. Therefore, both functions, which
are used for the percentage of the cumulative dead items and carbon dioxide in the current
study, are related to the animals’ age. One of the other vital extensions of the current model
considers that the number order of newborn animals is an integer number because all the
past studies, except for that of Nobil and Taleizadeh [1], have assumed that this number
is continuous, which is not practical in the real world. Finally, the optimal solution of the
proposed model is determined using an analytical approach.
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Table 1. The proposed EGQ model compared with related models.

Paper
Objective Growth Function Solution Method

Mortality
Items

Mortality
Function

Carbon
Emission

Carbon
Emission
Function

Feeding
Function

Types of
ItemsCost Profit Linear

Rate
Biological

Weight
Closed
Form

Game
Theory Analytical Meta-

Heuristic

Alfares and Afzal [12] * * * LF Poultry
Choudhury and Mahata [30] * * * * CA EF Poultry

De-la-Cruz-Márquez et al. [28] * * * * CA EF Poultry
De-la-Cruz-Márquez et al. [29] * * * * CA EF Poultry
Gharaei and Almehdawe [26] * * * * AR LF Poultry
Gharaei and Almehdawe [32] * * * * AR * CA LF Poultry

Hidayat et al. [16] * * * LF Livestock
Khalilpourazari and

Pasandideh [10] * * * PF Poultry

Mahato et al. [20] * * * EF Poultry
Malekitabar et al. [21] * * * * AR EF Fish

Mokhtari et al. [13] * * * EF/Q/P Livestock
Nobil et al. [9] * * * LF Poultry

Nobil and Taleizadeh [1] * * * LF Poultry
Pourmohammad-Zia and

Karimi [14] * * * EF Poultry
Pourmohammad-Zia et al. [18] * * * EF Poultry
Pourmohammad-Zia et al. [19] * * * EF Poultry

Rana et al. [31] * * * * CA EF Poultry
Rezaei [6] * * * PF Poultry

Sebatjane and Adetunji [11] * * * * EF Poultry
Sebatjane and Adetunji [15] * * * * EF Livestock
Sebatjane and Adetunji [17] * * * EF Livestock
Sebatjane and Adetunji [22] * * * * CA EF Poultry
Sebatjane and Adetunji [23] * * * * CA EF Livestock
Sebatjane and Adetunji [24] * * * * CA EF Poultry
Sebatjane and Adetunji [25] * * * * CA EF Poultry

Zhang et al. [27] * * * * CA PF Poultry
This paper * * * * PF * PF PF Poultry

CA: Constant Amount, AR: Average Rate, PF: Polynomial Function, EF: Exponential Function, Q: Quadratic Function, LF: Linear Function, P: Power Function. The “*” means that the
research work includes the characteristic.
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3. MINLP Model

In this section, we explain the details of the proposed model, consisting of notations,
assumptions, an objective function and constraints, and thus, the mathematical formula-
tion of the model is presented based on the nature of the inventory system behavior for
growing items.

3.1. Notations and Assumptions

The notation of the proposed mathematical model is expressed as follows:
Index:
t: The index of the time.
Parameters:
wt: The weight of a unit item at time t (weight unit);
U: The maximum allowable length of the breeding period (day);
L: The minimum allowable length of the breeding period (day);
d: The constant demand rate per weight unit (weight unit/year);
h: The holding cost per weight unit (monetary unit/weight unit/year);
p: The purchasing cost per weight unit (monetary unit/year);
K: The setup cost per growing cycle (monetary unit/setup);
z: The production (feeding) cost per unit item during the growing cycle (monetary

unit/unit item);
a: The tax of carbon dioxide production (monetary unit/liter/day. weight unit);
r: The disposal cost of carcass (monetary unit/unit carcass);
M(t): The polynomial function of the fraction of dead items during the growing

cycle (percent);
F(t): The polynomial function of production (feeding) consumption (unit items);
C(t): The polynomial function of carbon dioxide production (liter/day. weight unit);
k: The growing rate;
A: The asymptotic weight;
b: The integration constant of the growing function;
n: The shape parameter of the growing function.
Dependent variables:
Q: The total weight of the inventory (weight unit);
t1: The breeding period (day);
t2: The consumption period (year);
TS: The annual setup cost in a year (monetary unit);
TP: The annual purchasing cost in a year (monetary unit);
TH: The annual holding cost in a year (monetary unit);
TD: The annual disposal cost in a year (monetary unit);
TE: The annual production (feeding) cost in a year (monetary unit);
TA: The annual carbon dioxide production tax in a year (monetary unit);
TC: The total cost in a year (monetary unit).
Decision variables:
t: The slaughter age (day);
y: The total number of growing items ordered at the beginning of a cycle (unit items).
At the beginning of the breeding period (t1) in the poultry farm, a lot of newborn birds

y with an initial weight w0 (the weight of newborn birds) are purchased from suppliers
and are then raised until they reach the market slaughter weight (wt). Once the birds
reach the proper size and weight, at the slaughter date (t), they are killed for market
consumption annually. During the breeding period, several chickens are dead before
reaching the slaughter date, mainly because they have reduced walking ability and due
to lameness and reduced access to water and feed, which lead to debilitation and death.
The number of dead birds at date t is equal to yM(t), where M(t) is the percentage of
the cumulative daily mortality. Therefore, on the slaughter date, the number of live birds
y(1−M(t)) are killed for consumption, and the rest of them, yM(t), are disposed. After
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the slaughtering process, the consumption period (t2) starts with the constant demand rate
(D) until the weight inventory level reaches zero. The behavior of the weight inventory
system of growing items is illustrated in Figure 1.
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For the growth function, there are several valuable studies that have measured bird
growth (Rezaei [6]); however, the Richards function, proposed by Richards [33], is one
of the most important growth functions for bird weight (see also Goliomytis et al. [34]).
Therefore, this function is used in this study, as follows:

wt = A
(

1 + be−kt
)− 1/n

(1)

where wt is the weight of the body of a live bird at age t.
As mentioned before, many birds are dead during breeding. In the current study, we

use the polynomial function of the percentage of cumulative daily mortality, which relates
the percentage of daily mortality to the age of birds, based on the work of Xin et al. [35],
as follows:

M(t) = m0 + m1t + m2t2 + m3t3 (2)

During the breeding period, birds grow and nurture with a feeding function, as
presented by Goliomytis et al. [34]. This function is a polynomial function, which depends
on the birds’ age. This function is fitted based on the collected data and is estimated
as follows:

F(t) = f0 + f1t + f2t2 + f3t3 (3)

Moreover, for carbon dioxide production function, we choose the commonly polyno-
mial function in the real world, which depends on the age of the birds, and it is fitted and
estimated according to Leonard et al. [36], as follows:

C(t) = c0 + c1t + c2t2 + c3t3 (4)

3.2. Objective Function and Constraints

We consider a condition where a poultry farm purchases newborn birds, grows them
up to the market slaughter weight, kills them and responds to customer demand. The total
cost of the inventory system includes the setup cost, purchasing cost, holding cost, feeding
(production) cost, disposal cost and carbon dioxide production tax. Next, each component
of the total cost is obtained as follows:

- Setup cost
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At the beginning of the breeding cycle, some activities and processes, such as cleaning
and maintenance, are needed to start the breeding process, and the costs of these activities
are imposed as the setup cost (K) on the company for each cycle. Because we should obtain
the setup cost for a year, we can divide the setup cost per cycle by t2, as follows:

TS =
K
t2

(5)

where t2 is the consumption period, which can be obtained from Equation (6).

t2 =
ywt(1−M(t))

D
(6)

Considering t2, the annual setup cost is as follows:

TS =
DK

ywt(1−M(t))
(7)

- Purchasing cost

As Figure 1 shows, at first, a number of newborn birds (y) with an initial weight (w0)
are received from the supplier, and subsequently, the purchasing cost per growth cycle
becomes equal to pyw0, where p is the purchasing cost per weight unit. Therefore, the
annual purchasing cost is computed as follows:

TP =
pyw0

t2
=

Dpw0

wt(1−M(t))
(8)

- Holding cost

It is easy to derive from Figure 1 that the average weight of the inventory level during
the consumption period is y(1−M(t))wt/2, and the length of the consumption period is
t2. The holding cost per cycle is ht2y(1−M(t))wt/2, where h is the annual inventory cost
per weight unit. Therefore, the annual holding cost is calculated as follows:

TH =
ht2y(1−M(t))wt

2t2
=

h
2

ywt(1−M(t)) (9)

- Disposal cost

Several birds are dead during the breeding process as result of losing their ability
to walk, and the percentage of cumulative daily mortality at the slaughter date t is M(t).
Hence, the total number of birds that die during the breeding period is equal to yM(t), and
subsequently, the disposal cost per cycle is computed by multiplying yM(t) by r, where r
is the disposal cost of a dead bird. Finally, the annual disposal cost is obtained as follows:

TD =
ryM(t)

t2
=

DrM(t)
wt(1−M(t))

(10)

- Feeding (production) cost

The feeding function per weight unit, which depends on the age of the chicken, is
stated in Equation (3). Considering z and t1, the feeding cost per unit and the length of
the breeding period, respectively, the total feeding cost per cycle is ey

∫ t1
0 F(t)(1−M(t))dt.

Thus, the annual feeding cost is calculated as follows:

TF =
ey
∫ t

0 F(t)(1−M(t))dt
t2

=
Dz
∫ t

0 F(t)(1−M(t))dt
wt(1−M(t))

(11)

- Carbon Dioxide Production Tax
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According to Broucek and Cermák [37], CO2 production by animals is relative to their
metabolic heat production and consequently to their metabolic body weight, which, in
turn, is affected by bird activity and temperature. Carbon dioxide is produced during
the breeding process. The carbon dioxide production function, which depends on the
birds’ age, is indicated in Equation (4). Considering a and t1, the tax cost of carbon dioxide
production and the length of the breeding period, respectively, the annual tax of carbon
dioxide production is obtained as follows:

TA =
ay
∫ t

0 C(t)(1−M(t))dt
t2

=
Da
∫ t

0 C(t)(1−M(t))dt
wt(1−M(t))

(12)

- Total cost

The annual total cost is formulated as follows:

TC =
DK

ywt(1−M(t))
+

h
2

ywt(1−M(t)) +
D(pw0 + rM(t))

wt(1−M(t))
+

Dz
∫ t

0 F(t)(1−M(t))dt
wt(1−M(t))

+
Da
∫ t

0 C(t)(1−M(t))dt
wt(1−M(t))

(13)

Substituting wt from Equation (1), the annual total cost is as follows:

TC = DK
yA(1+be−kt)

−1/n
(1−M(t))

+ h
2 yA

(
1 + be−kt

)− 1/n

(1−M(t))+

D(pw0+rM(t))

A(1+be−kt)
− 1/n

(1−M(t))
+

Dz
∫ t

0 F(t)(1−M(t))dt

A(1+be−kt)
− 1/n

(1−M(t))
+

Da
∫ t

0 C(t)(1−M(t))dt

A(1+be−kt)
−1/n

(1−M(t))

(14)

- Constraints

When the company wants to order a number of newborn birds, the number of ordered
items must be an integer number, as the company can buy only live birds. Moreover, the
slaughter date must be an integer number between the minimum allowable length of the
breeding period (L) and the maximum allowable length of it (U), because, in the real world,
each domestic animal has a growth period that is determined by the market, breeding
process and its nature. Therefore, this constraint is L ≤ t ≤ U.

- Final Model

According to the objective function in Equation (14) and the constraints stated in the
above subsection, the final model of the proposed study is as follows:

Min TC = DK
yA(1+be−kt)

− 1/n
(1−M(t))

+ h
2 yA

(
1 + be−kt

)− 1/n

(1−M(t))+

D(pw0+rM(t))

A(1+be−kt)
− 1/n

(1−M(t))
+

Dz
∫ t

0 F(t)(1−M(t))dt

A(1+be−kt)
− 1/n

(1−M(t))
+

Da
∫ t1

0 C(t)(1−M(t))dt

A(1+be−kt)
− 1/n

(1−M(t))

st : L ≤ t ≤ U
t, y > 0 & integer

(15)

4. Solution Procedure and Numerical Example

At first, substituting M(t), F(t) and C(t) from Equations (2)–(4), respectively, into the
objective function Equation (15), the total cost is expressed as follows:

TC = DK
yA(1+be−kt)

− 1/n
(1−(m0+m1t+m2t2+m3t3))

+ h
2 yA

(
1 + be−kt

)− 1/n
(1− (m0 + m1t+

m2t2 + m3t3)) +
D(pw0+r(m0+m1t+m2t2+m3t3))

A(1+be−kt)
− 1/n

(1−(m0+m1t+m2t2+m3t3))
+

Daα2(t)

A(1+be−kt)
− 1/n

(1−(m0+m1t+m2t2+m3t3))
+ Dzα1(t)

A(1+be−kt)
− 1/n

(1−(m0+m1t+m2t2+m3t3))

(16)

where α1(t) and α2(t) are determined in Appendix A.
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Next, we compute the partial derivation of the objective function (16) with respect to
the slaughter date (t) and set it equal to zero, as follows:

∂TC
∂t =

DK(be−kt+1)
1
n (3m3t2+2m2t+m1)

Ay(m3t3+m2t2+m1t+m0−1)2 +
DKbke−kt(be−kt+1)

1
n−1

Any(m3t3+m2t2+m1t+m0−1) −
Ahy(3m3t2+2m2t+m1)

2∗(be−kt+1)
1
n

−

Abhkye−kt(m3t3+m2t2+m1t+m0−1)

2n(be−kt+1)
1
n +1

+

D(r(m3t3+m2t2+m1t+m0)+pw0)(be−kt+1)
1
n (3m3t2+2m2t+m1)(

A(m3t3+m2t2+m1t+m0−1)2
) −

Dr(be−kt+1)
1
n (3m3t2+2m2t+m1)

(A(m3t3+m2t2+m1t+m0−1)) +
Dbke−kt(r(m3t3+m2t2+m1t+m0)+pw0)(be−kt+1)

1
n−1

(An(m3t3+m2t2+m1t+m0−1)) +

β1(t) + β1(t) = 0

(17)

where β1(t) and β2(t) are determined in Appendix B.
The lives of animals are cut extremely short within industrial agriculture scenarios.

Slaughter plants can kill animals in a limited predetermined age range. Therefore, if the
length of the slaughter date is known, the objective function (17) only has one decision
variable (y). As a result, the objective function (TC′), which depends on the value of y, is
expressed as follows:

TC′ = DK
yA(1+be−kt)

− 1/n
(1−(m0+m1t+m2t2+m3t3))

+ h
2 yA

(
1 + be−kt

)− 1/n
(1− (m0 + m1t+

m2t2 + m3t3)) (18)

Based on the study of García-Laguna et al. [38], the optimal integer value of each
objective function as ∆1/y + ∆2y; ∆1.∆2 > 0 is y =

⌈
−0.5 +

√
0.25 + ∆1/∆2

⌉
, where dye

is the biggest integer number of y, i.e., d2.5e = 3. Therefore, the optimal integer number of
newborn animals ordered is as follows:

y =

⌈
−0.5 +

√
0.25 +

2DK

A2
(
1 + be−kt

)− 2/n
(1− (m0 + m1t + m2t2 + m3t3))

2

⌉
(19)

Then, the optimal number of newborn items ordered is determined using Equation (19)
with respect to the constraints of Equation (15). Finally, the steps of the proposed solution
procedure are as follows:

Step 1. For t = L, L + 1, . . . , U

(a) Calculate the optimal number of y(t) using Equation (19).
(b) Determine the optimal value of TC∗(t) from Equation (16).

Step 2. Compare all TC∗(t) for t = L, L + 1, . . . , U. The pair (t.y(t)) is the optimal
solution of the problem that provides the lowest cost.

Numerical Example

We present a numerical example for a specific type of inventory system with fast-
growing birds, male broilers, to illustrate the proposed model. The lives of broiler chickens
are cut extremely short within industrial agriculture scenarios. Slaughter plants can kill
broilers from 21 days to 170 days old. However, the usual slaughter age is 47 days in
the US, whereas the slaughter age is 42 days in European countries (European Food
Safety Authority, [39]). Therefore, the values of the minimum (L) and maximum (U)
allowable length of the breeding period are 21 and 55, to make a practical model. We use
the parameters of Richard’s growth curve and the feed consumption curve estimated by
Goliomytis et al. [34], as follows:

n = 0.0087; b = 0.043; A = 6870.2; k = 0.036, and

f0 = 532.2; f1 = 67.15; f2 = −0.651; f3 = 0.0018
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As a result, the growth curve and the feed consumption curve are applied for this
instance, as follows (see Figures 2 and 3):

wt = 6870.2
(

1 + 0.043e−0.036t
)− 1/0.0087

; and F(t) = 532.2 + 67.15t− 0.651t2 + 0.0018t3
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Figure 3. Feed consumption curve.

For the mortality function, we use the polynomial function M(t) with the following
parameters, which are the same as those used by Xin et al. [35]:

m0 = 0.0126; m1 = 0.00174; m2 = −0.0000556; m3 = 0.000000753

Thus, the mortality curve is (see Figure 4)

M(t) = 0.0126 + 0.00174t− 0.0000556t2 + 0.000000753t3.
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Additionally, we apply the polynomial function C(t) for carbon dioxide production
(liter/day.bird) with the following parameters based on the work of Leonard et al. [36]:

c0 = 8.16; c1 = −0.9768; c2 = 0.13416; c3 = −0.0016392.

Consequently, the carbon dioxide production curve is as follows (see Figure 5):

C(t) = 8.16− 0.9768t + 0.13416t2 − 0.0016392t3.
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Figure 5. Carbon dioxide production curve.

All the parameters of the above growth, feed consumption, mortality and carbon
dioxide production curve functions were estimated based on the real cases for broilers
in the works of Richard [33], Goliomytis et al. [34], Xin et al. [35] and Leonard et al. [36],
respectively.

We assume that the rest of the parameters of the inventory system are as follows:

w0 = 45 g; h = 0.002 $/year; D = 100, 000, 000 g; z = 0.0001 $/g/day;
K = 5000 $/cycle; p = 0.01 $/g; a = 0.001 $/L/d·g; and r = 1 $/bird

Based on the proposed solution method, the optimal value of the slaughter age is
t∗ = 44 (see Figure 6). Then, substituting t∗ into Equations (16) and (19), the other optimal
results are determined, as follows: y∗ = 419 newborn chickens, and TC∗ = 878991.3 USD.
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5. Sensitivity Analysis and Managerial Insights

In this section, we consider all the cost parameters of the proposed model and the
initial weight as relevant variables for a sensitivity analysis. These parameters include the
holding cost, the setup cost, the initial weight of the chick, the feeding cost, the purchasing
cost, the tax on carbon dioxide production and the disposal cost per carcass. Tables 2–8
show the effects of the parameters on the optimal value of the objective function, the order
quantity and the slaughter age. Moreover, the effects of the parameter’s fluctuations on the
optimal value of TC∗, y∗ and t∗ are depicted in Figures 7–9.

Table 2. Sensitivity analysis of the holding cost (h).

% Changes TC∗ y∗ t∗

−90 878,090 419 44
−70 878,290 419 44
−50 878,490 419 44
−30 878,691 419 44
−10 878,891 419 44

0 878,991 419 44
10 879,091 419 44
30 879,291 419 44
50 879,491 419 44
70 879,692 419 44
90 879,892 419 44

Table 3. Sensitivity analysis of the setup cost (K).

% Changes TC∗ y∗ t∗

−90 536,545 124 46
−70 652,210 222 45
−50 732,363 277 46
−30 797,899 363 43
−10 853,314 384 45
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Table 3. Cont.

% Changes TC∗ y∗ t∗

0 878,991 419 44
10 903,229 411 46
30 949,552 495 43
50 991,671 513 44
70 1,031,425 546 44
90 1,068,361 540 46

Table 4. Sensitivity analysis of the initial weight (w0).

% Changes TC∗ y∗ t∗

−90 861,989 434 43
−70 865,806 419 44
−50 869,573 419 44
−30 873,340 419 44
−10 877,107 419 44

0 878,991 419 44
10 880,874 419 44
30 884,641 419 44
50 888,207 368 48
70 891,519 368 48
90 894,793 348 50

Table 5. Sensitivity analysis of the feeding cost (z).

% Changes TC∗ y∗ t∗

−90 617,673 508 39
−70 676,195 419 44
−50 734,137 419 44
−30 792,078 419 44
−10 850,020 419 44

0 878,991 419 44
10 907,962 419 44
30 965,903 419 44
50 1,023,845 419 44
70 1,081,786 419 44
90 1,139,601 368 48

Table 6. Sensitivity analysis of the purchasing cost (p).

% Changes TC∗ y∗ t∗

−90 861,989 434 43
−70 865,806 419 44
−50 869,573 419 44
−30 873,340 419 44
−10 877,107 419 44

0 878,991 419 44
10 880,874 419 44
30 884,641 419 44
50 888,207 368 48
70 891,519 368 48
90 894,793 348 50
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Table 7. Sensitivity analysis of the tax of CO2 production (a).

% Changes TC∗ y∗ t∗

−90 814,140 348 50
−70 828,934 348 50
−50 843,729 348 50
−30 858,309 368 48
−10 872,185 419 44

0 878,991 419 44
10 885,797 419 44
30 899,408 419 44
50 913,020 419 44
70 926,387 468 41
90 939,369 468 41

Table 8. Sensitivity analysis of the disposal cost (r).

% Changes TC∗ y∗ t∗

−90 877,271 419 44
−70 877,653 419 44
−50 878,035 419 44
−30 878,417 419 44
−10 878,800 419 44

0 878,991 419 44
10 879,182 419 44
30 879,564 419 44
50 879,946 419 44
70 880,329 419 44
90 880,711 419 44

Mathematics 2023, 11, 1039 16 of 21 
 

 

 
Figure 7. The effects of the parameter’s fluctuations on the optimal value of the total cost. 

 
Figure 8. The effects of the parameter’s fluctuations on the optimal value of the order quantity. 

450,000

550,000

650,000

750,000

850,000

950,000

1,050,000

1,150,000

- 9 0 - 7 0 - 5 0 - 3 0 - 1 0 0 1 0 3 0 5 0 7 0 9 0

TO
TA

L 
CO

ST
 ($

)

% CHANGES

h K w0 z p a r

100

150

200

250

300

350

400

450

500

550

600

- 9 0 - 7 0 - 5 0 - 3 0 - 1 0 0 1 0 3 0 5 0 7 0 9 0

N
U

M
BE

R 
O

F 
O

RD
ER

ED
 N

EW
BO

RN
 C

H
IC

K
S

% CHANGES

h K w0 z p a r

Figure 7. The effects of the parameter’s fluctuations on the optimal value of the total cost.
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Figure 8. The effects of the parameter’s fluctuations on the optimal value of the order quantity.
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Figure 9. The effects of the parameter’s fluctuations on the optimal value of the slaughter age.

As illustrated in Figure 7, the optimal total cost increases if the value of the feeding,
setup and carbon dioxide production costs increase; however, it is highly sensitive to
changes in the value of the feeding cost and the setup cost. Additionally, the optimal
objective function is slightly sensitive to changes in the other parameters; however, if they
increase, there is an increasing trend for the objective function.

According to Figure 8, we can state that the optimal order quantity of newborn chicks
is highly sensitive to fluctuations in the value of the setup cost. On the other hand, this
quantity is not affected by the holding cost and/or the disposal cost. However, the value
of the optimal order quantity decreases if the value of the feeding cost, the initial weight
and/or the purchasing cost increases.

Finally, on the one hand, as shown in Figure 9, the optimal slaughter age decreases if
the value of the tax of carbon dioxide production increases; on the other hand, it increases if
the value of the purchasing cost and the initial weight increases. The duration of the birds’
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age is not notably affected by the feeding cost and setup cost. Moreover, this optimal age is
not sensitive to fluctuations in the value of the disposal cost and the holding cost.

Moreover, Table 3 shows that the setup cost (K) is imposed on the total cost in each
cycle and is not related to the order quantity. Therefore, as this cost goes up, so does the
number of chicks ordered because the model prefers to buy more chicks in each order to
find a balance between variable and fixed costs. However, this cost has no significant effect
on the breeding time. On the other hand, as shown in Table 6, the purchase price (p) is
related to the order quantity of newborn chicks, so if this cost increases, the system tries to
purchase fewer newborn items. Because the weight of chicks depends on how long it takes
to raise them, the system increases the breeding period to meet more demand. Moreover,
the carbon dioxide tax (a) and the chicks’ age are related together based on Table 7. Thus, if
the government increases the carbon dioxide tax, the company can try to purchase more
newborn chicks but breed them in less time so that the total cost is minimized.

5.1. Managerial Insights

The proposed model investigates the effects of growing items on the EOQ problem;
therefore, it can help companies to estimate the space of the breeding salon with respect to
the number of ordered newborn chicks and the weight of birds when they are supposed to
be slaughtered. Moreover, the required budget per cycle is computed by multiplying the
optimal initial purchase volume (yw0) by the purchasing cost per weight (p). The model
can easily estimate the running costs of a farming company. As stated, the goal of this
growing inventory model is to obtain the optimal slaughter age and the optimal number of
newborn chicks, purchased from the supplier, to minimize the total costs.

One way to get managers to reduce their carbon footprint is to add the cost of carbon
emissions to the total cost of the inventory management system; see, for example, the
work of Nobil et al. [39]. Carbon dioxide emissions are one of the most important issues
covered by this study. Carbon dioxide production is assumed to be a polynomial function
that relates CO2 production to the age of the birds. Based on this practical function, it
is simple to calculate the amount of carbon dioxide production emitted by a company,
and managers can then compute the associated costs because the government usually
determines a tax for each ton of carbon dioxide produced. Furthermore, to make the EOQ
problem with growing items more practical, this study constructs a solution procedure to
obtain a discrete number of newborn chicks. This issue was not considered in the solution
procedure proposed by Rezaei [6].

This study also investigates the effects of the disposal cost of carcasses during the
growth period. The number of dead chickens is calculated with a practical polynomial
function that depends on how old the chickens are. Therefore, based on how old the
chickens are, managers can determine how many of them die in each cycle and then take
the steps needed to get rid of their bodies. As can be seen in Table 8, the total cost increases
if the disposal cost per carcass increases, so the government can help companies destroy
the carcasses with financial support packages to prevent any illegal disposal methods. If
the disposal cost of carcasses is high, some companies may use illegal methods, which have
harmful effects on the environment and thus endanger the health of humans and animals.
Some of these illegal methods are: (I) using excessive additives, antibiotics, hormones and
drugs to prevent the deaths of the birds or to increase their growth rate and weight gain;
(II) selling carcasses to factories that manufacture processed meat “sausages”, as buying
carcasses is cheaper than buying live birds; (III) selling carcasses to companies that raise
other animals, such as pigs, who use them as a cheaper alternative to feed their animals;
and (IV) dumping carcasses into places such as wells and rivers or with improper burial
options in the soil. The government can help companies with a financial support package
or offer a proper disposal method to destroy the carcasses that were produced during the
growth cycle. It was discovered that the death rate of the living items has a considerable
impact on corporate performance. In general, profit increases as the mortality rate falls.
Therefore, management should take steps to maintain the lowest feasible death rates.
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5.2. Discussion

In this proposed model, if the assumption of the number of orders, which is supposed
to be an integer, is not considered, the proposed MINLP model becomes a nonlinear pro-
gramming (NLP) model. Therefore, instead of Equation (19), we can determine the number
of newborn chicks from Equation (20). However, if we do not stick to this assumption,
the answer to the NLP model does not fit the real world because the number of ordered
chickens cannot be a continuous number.

y =
2DK

A2
(
1 + be−kt

)− 2/n
(1− (m0 + m1t + m2t2 + m3t3))

2
(20)

In addition, if the carbon dioxide tax and the mortality function are not taken into
account, the proposed model of the current study approximates the mathematical model of
Rezaei [6]. However, if we disregard the carbon dioxide tax, the proposed model becomes
the model of Sebatjane and Adetunji [25], approximately.

6. Conclusions

CO2 emissions trap heat close to the Earth and, as a result, change the global climate.
Therefore, reducing CO2 emissions is vital, so their effects are mitigated. A significant
reduction promotes some benefits, such as decreasing the global climate temperature,
improving public health and boosting the global economy. If carbon emissions decrease,
we can benefit from cleaner food, water and air. As a contribution to this goal, this
study proposes an economic growth quantity model for fast-growing animals under a
sustainable green breeding policy. Carbon dioxide production is modeled as a practical
polynomial function that relates to the age of the birds. We also use another polynomial
function to determine the number of dead chickens in the growth cycle. Taking into
consideration carcasses is important due to two major causes: breeding and disposal costs.
Thus, the proposed mathematical model is formulated as an integer nonlinear programming
problem for a growing inventory system with mortality and CO2 production. The objective
function minimizes the total inventory cost, which includes the setup, the purchasing, the
holding, the feed (production) and the disposal costs, as well as the CO2 production tax,
to determine the optimal slaughter age of the birds and the optimal order quantity for
newborn chicks. Last, to find the best solutions, we use a proposed analytical method with
a few simple steps.

We can extend the proposed inventory model by (I) considering food supply chains for
the system, (II) assuming budget and warehouse space constraints for purchasing newborn
chicks and their breeding, (III) allowing the occurrence of shortages in the consumption
period, (IV) producing several types of animals, such as pigs, ducks and turkeys, (V) deteri-
orating slaughtered items during the consumption period, (VI) shipping the slaughtered
items to the retailer via discrete shipments, (VII) regarding the mathematical model’s un-
certainty parameters, such as demand and price, and (VIII) considering this model under
permissible delays in payments.
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Appendix A

The values of α1(t) and α2(t):

α1(t) = f0t + f1
2 t2 + f2

3 t3 + f3
4 t4 −m0 f0t− m0 f1

2 t2 − m0 f2
3 t3 − m0 f3

4 t4 − m1 f0
2 t2 − m1 f1

3 t3 − m1 f2
4 t4 − m1 f3

5 t5 − m2 f0
3 t3−

m2 f1
4 t4 − m2 f2

5 t5 − m2 f3
6 t6 − m3 f0

4 t4 − m3 f1
5 t5 − m3 f2

6 t6 − m3 f3
7 t7;

And,

α2(t) = c0t + f c1
2 t2 + c2

3 t3 + c3
4 t4 −m0c0t− m0c1

2 t2 − m0c2
3 t3 − m0c3

4 t4 − m1c0
2 t2 − m1c1

3 t3 − m1c2
4 t4 − m1c3

5 t5−
m2c0

3 t3 − m2c1
4 t4 − m2c2

5 t5 − m2c3
6 t6 − m3c0

4 t4 − m3c1
5 t5 − m3c2

6 t6 − m3c3
7 t7

Appendix B

The values of β1(t) and β2(t):

β1(t) = ∂T
∂t

(
Dzα1(t)

A(1+be−kt)
−1
n (1−(m0+m1 t+m2 t2+m3 t3))

)
=

D∗z∗(b∗exp(−k∗t)+1)
1
n ∗

m0 ∗ f 0− f 0− f 1 ∗ t− f 2 ∗ t2 − f 3 ∗ t3 + m0 ∗ f 2 ∗ t2 + m1 ∗ f 1 ∗ t2 + m2 ∗ f 0 ∗ t2 + m0 ∗ f 3 ∗ t3 + m1 ∗ f 2 ∗ t3 + m2 ∗ f 1 ∗ t3+

m3 ∗ f 0 ∗ t3 + m1 ∗ f 3 ∗ t4 + m2 ∗ f 2 ∗ t4 ++m3 ∗ f 1 ∗ t4 + m2 ∗ f 3 ∗ t5 + m3 ∗ f 2 ∗ t5 + m3 ∗ f 3 ∗ t6 + m0 ∗ f 1 ∗ t + m1 ∗ f 0 ∗ t


A∗(m3∗t3+m2∗t2+m1∗t+m0−1) −

D∗z∗(b∗exp(−k∗t)+1)
1
n ∗(3∗m3∗t2+2∗m2∗t+m1)∗


m0∗ f 1∗t2

2 − f 1∗t2

2 − f 2∗t3

3 − f 3∗t4

4 − f 0 ∗ t + m1∗ f 0∗t2

2 + m0∗ f 2∗t3

3 + m1∗ f 1∗t3

3 +
m2∗ f 0∗t3

3 + m0∗ f 3∗t4

4 + m1∗ f 2∗t4

4 + m2∗ f 1∗t4

4 + m3∗ f 0∗t4

4 + m1∗ f 3∗t5

5 + m2∗ f 2∗t5

5 +
m3∗ f 1∗t5

5 + m2∗ f 3∗t6

6 + m3∗ f 2∗t6

6 + m3∗ f 3∗t7

7 + m0 ∗ f 0 ∗ t


A∗(m3∗t3+m2∗t2+m1∗t+m0−1)2 −

D∗b∗k∗z∗exp(−k∗t)∗(b∗exp(−k∗t)+1)(
1
n −1)∗

 m0∗ f 1∗t2

2 − f 1∗t2

2 − f 2∗t3

3 − f 3∗t4

4 − f 0 ∗ t + m1∗ f 0∗t2

2 + m0∗ f 2∗t3

3 + m1∗ f 1∗t3

3 + m2∗ f 0∗t3

3 + m0∗ f 3∗t4

4 + m1∗ f 2∗t4

4 +
m2∗ f 1∗t4

4 + m3∗ f 0∗t4

4 + m1∗ f 3∗t5

5 + m2∗ f 2∗t5

5 + m3∗ f 1∗t5

5 + m2∗ f 3∗t6

6 + m3∗ f 2∗t6

6 + m3∗ f 3∗t7

7 + m0 ∗ f 0 ∗ t


A∗n∗(m3∗t3+m2∗t2+m1∗t+m0−1)

And,

β2(t) = ∂T
∂t

(
Daα2(t)

A(1+be−kt)
−1
n (1−(m0+m1 t+m2 t2+m3 t3))

)
=

D∗a∗(b∗exp(−k∗t)+1)
1
n ∗

 c0 ∗m0− c0− c1 ∗ t− c2 ∗ t2 − c3 ∗ t3 + c0 ∗m2 ∗ t2 + c1 ∗m1 ∗ t2 + c2 ∗m0 ∗ t2 + c0 ∗m3 ∗ t3 + c1 ∗m2 ∗ t3+

c2 ∗m1 ∗ t3 + c3 ∗m0 ∗ t3 + c1 ∗m3 ∗ t4 + c2 ∗m2 ∗ t4 + c3 ∗m1 ∗ t4 + c2 ∗m3 ∗ t5 + c3 ∗m2 ∗ t5 + c3 ∗m3 ∗ t6 + c0 ∗m1 ∗ t + c1 ∗m0 ∗ t


A∗(m3∗t3+m2∗t2+m1∗t+m0−1) −

D∗a∗(b∗exp(−k∗t)+1)
1
n ∗(3∗m3∗t2+2∗m2∗t+m1)∗

 c0∗m1∗t2

2 − c1∗t2

2 − c2∗t3

3 − c3∗t4

4 − c0 ∗ t + c1∗m0∗t2

2 + c0∗m2∗t3

3 + c1∗m1∗t3

3 + c2∗m0∗t3

3 + c0∗m3∗t4

4 + c1∗m2∗t4

4

+ c2∗m1∗t4

4 + c3∗m0∗t4

4 + c1∗m3∗t5

5 + c2∗m2∗t5

5 + c3∗m1∗t5

5 + c2∗m3∗t6

6 + c3∗m2∗t6

6 + c3∗m3∗t7

7 + c0 ∗m0 ∗ t


A∗(m3∗t3+m2∗t2+m1∗t+m0−1)2 −

D∗a∗b∗k∗exp(−k∗t)∗(b∗exp(−k∗t)+1)(
1
n −1)∗

 c0∗m1∗t2

2 − c1∗t2

2 − c2∗t3

3 − c3∗t4

4 − c0 ∗ t + c1∗m0∗t2

2 + c0∗m2∗t3

3 + c1∗m1∗t3

3 + c2∗m0∗t3

3 + c0∗m3∗t4

4 + c1∗m2∗t4

4 +

c2∗m1∗t4

4 + c3∗m0∗t4

4 + c1∗m3∗t5

5 + c2∗m2∗t5

5 + c3∗m1∗t5

5 + c2∗m3∗t6

6 + c3∗m2∗t6

6 + c3∗m3∗t7

7 + c0 ∗m0 ∗ t


A∗n∗(m3∗t3+m2∗t2+m1∗t+m0−1)
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