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Abstract: A class for systems of nonlinear second-order differential equations with periodic impulse
action are considered. An urgent problem for this class of differential equations is the problem of
the quantitative study (existence) in the case when the phase space of the equation is, in the general
case, some Banach space. In this work, sufficient conditions for the existence of solutions for a system
with parameters are obtained. The results are obtained by using fixed point theorems for operators
on a cone. Our approach is based on Schaefer’s fixed point theorem more precisely. In addition, the
existence of positive solutions is also investigated.
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1. Introduction and Some Historical Review

Differential equations with impulse action are an important subclass of hybrid systems,
i.e., systems of differential equations that merge continuous and discrete time dynamics.
They are a new direction in differential equations theory, which has many applications
to models of mathematical problems in mechanics, biology, and engineering [1,2]. The
very important problem for this type of system is the question of the qualitative properties
of solutions. The fundamentals of the theory of the stability of solutions to problems of
differential equations with impulse action are presented in [3], where a direct Lyapunov
method for this type of problem was also developed. Certain of the relevant results are
generalized in monograph [4] using piecewise differentiable auxiliary functions. The
works [5,6] show the universality of the direct Lyapunov method in this class of auxiliary
functions. In [7], stability conditions for solutions of a nonlinear system with impulse action
were obtained based on two auxiliary functions. It is shown that the obtained stability
conditions generalize theorems from the monograph [3]. Relevant and important from a
practical point of view is the question of the stability for systems of differential equations
with impulse action in critical cases. In [8], the problem of generalizing the reduction
principle for certain classes of systems of differential equations with impulse action is
considered. This principle is a very important tool for study of critical cases; actually, it
is reduced to the study of the qualitative properties for a system on the central manifold.
Studying the properties of a system of differential equations on a central manifold requires
a certain skill of the researcher, since there are no general research methods.
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We consider a system of nonlinear second-order and impulsive differential equations
with the periodic boundary

u′′ − λ2u = − f1(t, u, v, θ), t ∈ J = [0, 2π], t 6= tk, k ∈ [1, m]N,
v′′ − λ2v = − f2(t, u, v, θ) t ∈ J , t 6= tk, k ∈ [1, m]N,
u(t+k )− u(t−k ) = I1

k (u(t
−
k ), v(t−k )), k ∈ [1, m]N,

v(t+k )− v(t−k ) = I2
k (u(t

−
k ), v(t−k )), k ∈ [1, m]N,

u′(t+k )− u′(t−k ) = Ī1
k (u(t

−
k ), v(t−k )), k ∈ [1, m]N,

v′(t+k )− v′(t−k ) = Ī2
k (u(t

−
k ), v(t−k )), k ∈ [1, m]N,

u(t = 0) = u(t = 2π), u′(t = 0) = u′(t = 2π),
v(t = 0) = v(t = 2π), v′(t = 0) = v′(2π),

(1)
where [n, m]N = {n, n + 1, ..., m}, for all n, m ∈ N, λ ∈ R∗, u = u(t), v = v(t), and θ is a
real parameter, f1, f2 ∈ C0(J ×R×R,R) are given functions, Ii

k, Īi
k ∈ C(R×R,R), tk ∈ J ,

0 = t0 < t1 < . . . < tm < tm+1 = 2π, u(t+k ) = lim
h→0+

u(tk + h) and u(t−k ) = lim
h→0+

u(tk − h)

represent the right and left limits of u(t) at t = tk. It is well known that much research
has been conducted on the question of the existence of solutions for a system of impulsive
differential equations; see, for example, [9–13]. In [9,14], the existence of solutions for
systems with a nonlocal coupled nonlinear initial condition is studied owing to the different
fixed point principles. In this work, in particular, the problem of the existence of positive
solutions for the original system of differential equations in second order with impulse
action is reduced to the study of a system of nonlinear differential equations with impulse
action with equidistant moments of impulse action. The purpose of this work is to develop
some existing ideas for differential equations with impulse action. At the same time,
along with the ideas in the work [15], new ideas are proposed related to the second-order
differential equations with impulse action, see Refs. [16–18].

The paper proceeds as follows. After the introduction and position of problem, in
Section 2, we recall some related definitions and facts, which will be useful in our analysis.
In Section 3, we use the Perov and Schaefer’s type to obtain additional existence results. In
Section 4, some existence results based on the Krasnosel’skii-type Theorem in generalized
Banach spaces is obtained. Our study concludes with a discussion.

2. Statement of the Problem and Auxiliary Results

Let us recall some important results on the existence of linear/nonlinear impulsive
systems, which are generalized in this paper. To this end, let us first set

J0 = [0, t1],Jk = (tk, tk+1], k ∈ [1, m]N,

and let uk be the restriction of the function u to Jk. We consider the space C(J ,R) to be the
Banach space of all continuous functions from J into R with the norm

‖u‖∞ = sup
t∈J
|u(t)|.

L1(J ,R) denotes the Banach space of measurable functions u ∈ C0(J ,R), which are
Bochner integrable and normed by

‖u‖L1 =
∫
J
|u(t)|dt.

AC i(J ,R) is the space of i-times differentiable functions u ∈ C0(J ,R), whose ith
derivative, u(i), is absolutely continuous

PC(J ,R) =
{

u ∈ C0(J ,R) : u is continuous everywhere except for some
at which u(t−k ) and u(t+k ) exist, and u(t−k ) = u(tk), ∀k ∈ [1, m]N

}
.
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Clearly, PC is a Banach space with the norm

‖u‖PC = sup
t∈J
|u(t)|.

Let PC(J ,R)×PC(J ,R) be endowed with the vector norm ‖.‖ defined by

‖w‖ = (‖u‖PC , ‖v‖PC), ∀w = (u, v),

where for u ∈PC(J ,R), we set ‖u‖PC = sup
t∈J
|u(t)|; it is obvious that (PC × PC, ‖.‖) is a

generalized Banach space.
∀u = (u1, u2, · · · , un), v = (v1, v2, · · · , vn) ∈ Rn, and we note the partial order rela-

tion,
u ≤ v ≡ ui ≤ vi, ∀i ∈ [1, n]N.

Let (X, di)i∈[1,n]N
be a finite sequence of metric. Let the map d ∈ C0(X × X,Rn) be

given by
d(u, v) = (d1(u, v), ..., dn(u, v)),

and the pair (X, d) is called a generalized metric space.
Let ‖.‖i be an end sequence of norms on u, let the map ‖u‖ ∈ C0(X,Rn) be given by

‖u‖ = (‖u‖1, ..., ‖u‖n),

and the pair (X, ‖.‖) is called a generalized norms space.

Remark 1. Let (X, ‖.‖) be a generalized norms space, abd we pose

d(u, v) = ‖u− v‖, ∀u, v ∈ X;

then, (X, ‖.‖) is a generalized norms space.

Theorem 1 ([19]). Let M ∈ Mn×n(R+), and the next claims are equivalent:

(a) M is convergent towards 0,
(b) Mk → 0 as k→ ∞,

(c) The matrix (Id−M) is nonsingular, and (Id−M)−1 =
k=∞
∑

k=0
Ik,

(d) The matrix (Id−M) is nonsingular, and (Id−M)−1 has nonnegative elements.

Let (X, d) be a generalized metric space. An operator N ∈ C0(X, X) is said to be
contractive associated with d on X, if there exists a convergent to 0 matrix M, such that

d(T(u), T(v)) ≤ Md(u, v), ∀u, v ∈ X.

The function f ∈ C0([0, 1]×R×R,R) is an L1-Carathéodory function, if

1. t→ f (t, u, v) is measurable for any (u, v) ∈ R2,
2. (u, v)→ f (t, ., .) is a continuous almost everywhere 0 ≤ t ≤ 1,
3. For r1, r2 > 0, there exists φr1,r2 ∈ L1([0,+∞[), so that | f (t, u, v)| ≤ φr1,r2(t), ∀(u, v) ∈

R2, with |u| ≤ r1, |v| ≤ r2 and almost everywhere t ∈ [0, 1].

Theorem 2 ([15], page 149). Let X be a generalized Banach space, and let T : X → X be a
completely continuous map. If the set

Φ = {u ∈ X : u = λ1Tu, for some λ1 ∈ (0, 1)}

is bounded, then T has a fixed point.
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Then, we recall the vectorial version of the fixed point Theorem, see [20].

Theorem 3 (Perov fixed point Theorem). Let (X, d) be a complete generalized metric space and
T ∈ C0(X, X) be a contractive operator with Lipschitz matrix M. Then, T has a unique fixed point
u, and for each u0 ∈ X,

d(Tk(u0, u) ≤ Mk(Id−M)−1d(u0, T(u0)), where k ∈ N.

3. Existence of Solutions

A sufficient condition is given to prove the existence of solutions to (1) owing to
Perov’s fixed point Theorem. We state without proof the next Lemma 1, which is useful to
transform problem (1) into a fixed point problem. Its proof is not difficult.

Lemma 1. Let u, v ∈PC(J ,R) ∩ C1((tk, tk+1), k ∈ [0, m]N be a solution of (1), if and only if
u, v ∈PC(J ,R) is a solution of the following impulsive integral equation

u(t) =


∫ 2π

0 H(t, s) f1(t, u(s), v(s), θ)ds

−
m
∑

k=1

[
H(t, tk)I1

k (u(tk), v(tk)) + L(t, tk) Ī1
k (u(tk), v(tk))

]
, t ∈ J ,

and

v(t) =


∫ 2π

0 H(t, s) f2(t, u(s), v(s), θ)ds

−
m
∑

k=1

[
H(t, tk)I2

k (u(tk), v(tk)) + L(t, tk) Ī2
k (u(tk), v(tk))

]
, t ∈ J ,

where

H(t, s) =
1

2λ(e2λπ − 1)

{
eλ(t−s) + eλ(2π−t+s), 0 ≤ s < t ≤ 2π,
eλ(s−t) + eλ(2π−s+t), 0 ≤ t < s ≤ 2π,

and

L(t, s) =
∂

∂t
H(t, s)

=
−1

2(e2λπ − 1)

{
eλ(2π−t+s) − eλ(t−s), 0 ≤ s < t ≤ 2π,
eλ(s−t) − eλ(2π−s+t), 0 ≤ t < s ≤ 2π.

We assume that

(H1)There exist constants a fi
, b fi
∈ R+ for each i = 1, 2, such that

| fi(t, u, v, θ)− fi(t, u, v, θ)| ≤ a fi
|u− u|+ b fi

|v− v|,

for each t ∈ J and all u, ū, v, v̄ ∈ R.
(H2)There exist di

k, di+1
k , d

i
k, d

i+1
k ∈ R+ for each k ∈ [1, m]N, i = 1, 2, such that{

|Ii
k(u, v)− Ii

k(ū, v̄)| ≤ di
k|u− ū|+ di+1

k |v− v̄|
|Ii

k(u, v)− Ii
k(ū, v̄)| ≤ d

i
k|u− ū|+ d

i+1
k |v− v̄|,

for each t ∈ J and all u, ū, v, v̄ ∈ R.

Theorem 4. Assume that (H1)–(H2) are satisfied, and the matrix

Mtrix =

(
q1 q̄1
q2 q̄2

)
∈ M2×2(R+),
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where

q1 = 2π sup
(t,s)∈J 2

(H(t, s))a f1 +
m

∑
k=1

[
d1

k sup
t∈J
|H(t, tk)|+ d̄1

k sup
t∈J
|L(t, tk)|

]
,

q̄1 = 2π sup
(t,s)∈J 2

(H(t, s))b f1 +
m

∑
k=1

[
d2

k sup
t∈J
|H(t, tk)|+ d̄2

k sup
t∈J
|L(t, tk)|

]
,

and

q2 = 2π sup
(t,s)∈J 2

(H(t, s))a f2 +
m

∑
k=1

(
d2

k sup
t∈J
|H(t, tk)|+ d̄3

k sup
t∈J
|L(t, tk)|

)
,

q̄2 = 2π sup
(t,s)∈J 2

(H(t, s))b f2 +
m

∑
k=1

[
d2

k sup
t∈J
|H(t, tk)|+ d̄3

k sup
t∈J
|L(t, tk)|

]
.

If Mtrix converges to 0, then the problem (1) has a solution on J .

Proof. Consider the operator

N : PC × PC → PC × PC
(u, v) → (N1(t, u, v), N2(t, u, v)),

N1(u, v)(t) =


∫ 2π

0 H(t, s) f1(t, u(s), v(s), θ)ds

−
m
∑

k=1

(
H(t, tk)I1

k (u(tk), v(tk)) + L(t, tk) Ī1
k (u(tk), v(tk))

)
, t ∈ J ,

and

N2(u, v)(t) =


∫ 2π

0 H(t, s) f2(t, u(s), v(s), θ)ds

−
m
∑

k=1

(
H(t, tk)I2

k (u(tk), v(tk)) + L(t, tk) Ī2
k (u(tk), v(tk))

)
, t ∈ J .

We use Theorem 3 to prove that N has a fixed point. Indeed, let (u, v), (ū, v̄) ∈
PC × PC. Then, we have, for each t ∈ J ,

|N1(t, u, v)− N1(t, ū, v̄)|

≤ 2π sup
(t,s)∈J 2

(H(t, s))
(

a f1‖u− u‖PC + b f1‖v− v‖PC
)

+
m

∑
k=1

(
d1

k sup
t∈J
|H(t, tk)|+ d̄1

k sup
t∈J
|L(t, tk)|

)
‖u− ū‖PC

+
m

∑
k=1

(
d2

k sup
t∈J
|H(t, tk)|+ d̄2

k sup
t∈J
|L(t, tk)|

)
‖v− v̄‖PC

≤
(

2π sup
(t,s)∈J 2

(H(t, s))a f1 +
m

∑
k=1

[
d1

k sup
t∈J
|H(t, tk)|+ d̄1

k sup
t∈J
|L(t, tk)|

])
‖u− ū‖PC

+

(
2π sup

(t,s)∈J 2
(H(t, s))b f1 +

m

∑
k=1

[
d2

k sup
t∈J
|H(t, tk)|+ d̄2

k sup
t∈J
|L(t, tk)|

])
‖v− v̄‖PC .

Thus,
‖N1(t, u, v)− N1(t, ū, v̄)‖PC ≤ q1‖u− ū‖PC + q̄1‖v− v̄‖PC .

Similarly, we have

‖N2(t, u, v)− N2(t, ū, v̄)‖PC ≤ q2‖u− ū‖PC + q̄2‖v− v̄‖PC .
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Hence,

‖N(u, v)− N(u, v)‖PC =

(
‖N1((u, v)− N1(u, v)‖PC
‖N2(u, v)− N2(u, v)‖PC

)
≤

(
q1 q̄1
q2 q̄2

)(
‖u− u‖PC
‖v− v‖PC

)
.

This implies that

‖N(u, v)− N(u, v)‖PC ≤ Mtrix

(
‖u− u‖PC
‖v− v‖PC .

)
∀(u, v), (u, v) ∈ PC × PC.

From the Perov fixed point Theorem, the mapping N has a unique fixed (u, v) ∈
PC × PC, which is the unique solution of problem (1). This completes the proof.

Existence Results

In this section, we state our main existence results for problem (1). To this end, we
assume

(H3)There exist a function pi ∈ L1(J ,R+) and constants 0 ≤ αi, βi < 1, such that

| fi(t, u, v, θ)| ≤ p fi
(t)|u|αi + p̄ fi

(t)|v|βi ,

∀t ∈ J and u, v ∈ R, i = 1, 2.
(H4)There exist constants di

k, di+1
k , d

i
k, d

i+1
k ∈ R+ for each k ∈ [1, m]N, i = 1, 2 and a

constants 0 ≤ αi, βi < 1 such that{
|Ii

k(u, v)| ≤ di
k|u|

αi + di+1
k |v|

βi

|Ii
k(u, v)| ≤ d

i
k|u|αi + d

i+1
k |v|βi ,

∀t ∈ J and all u, v ∈ R, i = 1, 2.
(H5) fi ∈ C0(J ×R×R,R) is a Carathéodory function, and Ii

k, Īi
k ∈ C(R×R,R).

Theorem 5. Assume that (H3)–(H5) hold. Then, (1) has at least one solution on J . Moreover,
the solution set

S = {(u, v) ∈ PC × PC : (u, v) is the solution of (1)},

and it is compact.

Proof. Clearly, the fixed points of N are solutions to (1), where N is defined in Theorem 4.
In order to apply Theorem 2, we first show that N is completely continuous. The proof is
given in several steps.

Step 1: N = (N1, N2) is continuous.

Let (un, vn) be a sequence, such that (un, vn) → (u, v) ∈ PC × PC, as n → ∞. Since
f1, f2 is a Carathéodory function, by the Lebesgue dominated convergence Theorem, we
obtain

|N1(un, vn)(t)− N1(u, v)(t)|

≤ sup
(t,s)∈J 2

|H(t, s)|
∫ 2π

0
| f1(t, un(s), vn(s), θ)− f1(t, u(s), v(s), θ)|ds

+
m

∑
k=1

sup
t∈J
|H(t, tk)||I1

k (un(tk), vn(tk))− I1
k (u(tk), v(tk))|

+
m

∑
k=1

sup
t∈J
|L(t, tk)|| Ī1

k (un(tk), vn(tk))− Ī1
k (u(tk), v(tk))| → 0,
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as n→ ∞. Similarly,

|N2(un, vn)(t)− N2(u, v)(t)|

≤ sup
(t,s)∈J 2

|H(t, s)|
∫ 2π

0
| f2(t, un(s), vn(s), θ)− f2(t, u(s), v(s), θ)|ds

+
m

∑
k=1

sup
t∈J
|H(t, tk)||I2

k (un(tk), vn(tk))− I2
k (u(tk), v(tk))|

+
m

∑
k=1

sup
t∈J
|L(t, tk)|| Ī2

k (un(tk), vn(tk))− Ī2
k (u(tk), v(tk))| → 0,

when n→ ∞. Then, N is continuous.

Step 2: N maps bounded sets into bounded sets in PC × PC. It is enough to show that
∀q > 0, there exists l > 0, such that for each

(u, v) ∈ Bq = {(u, v) ∈ PC × PC : ‖u‖PC ≤ q, ‖v‖ ≤ q}.

We obtain
‖N(u, v)‖PC ≤ l = (l1, l2).

Then, for each t ∈ J , we obtain

|N1(u, v)(t)|

≤ sup
(t,s)∈J 2

|H(t, s)|
(

qα1

∫ 2π

0
p f1(s)ds + qβ1

∫ 2π

0
p̄ f1(s)ds

)

+
m

∑
k=1

sup
t∈J
|H(t, tk)|

(
d1

kqα1 + d2
kqβ1

)
+

m

∑
k=1

sup
t∈J
|L(t, tk)|

(
d̄1

kqα1 + d̄2
kqβ1

)
,

which implies that

‖N1(u, v)‖PC
≤ sup

(t,s)∈J 2
|H(t, s)|

(
qα1‖p f1‖L1 + qβ1‖ p̄ f1‖L1

)
+

m

∑
k=1

sup
t∈J
|H(t, tk)|

(
d1

kqα1 + d2
kqβ1

)
+

m

∑
k=1

sup
t∈J
|L(t, tk)|

(
d̄1

kqα1 + d̄2
kqβ1

)
= `1.

Similarly, we have

‖N2(u, v)‖PC
≤ sup

(t,s)∈J 2
|H(t, s)|

(
qα1‖p f2‖L1 + qβ1‖ p̄ f2‖L1

)
+

m

∑
k=1

sup
t∈J
|H(t, tk)|

(
d2

kqα2 + d3
kqβ2

)
+

m

∑
k=1

sup
t∈J
|L(t, tk)|

(
d̄2

kqα2 + d̄3
kqβ2

)
= `2.
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Step 3: N maps bounded sets into the equi-continuous one of PC × PC. We set t1, t2 ∈
J , t1, t2 > 0, and t1 < t2 with Bq as a bounded set of PC × PC, the same as in Step 2. Let
u, v ∈ Bq; then, for t ∈ J , we obtain

|N1(u, v)(t2)− N1(u, v)(t1)|

≤ qα1

∫ t1

0
|H(t2, s)− H(t1, s)|p f1(s)ds

+qβ1

∫ t1

0
|H(t2, s)− H(t1, s)| p̄ f1(s)ds

+qα1

∫ t2

t1

|H(t2, s)|p f1(s)ds + qβ1

∫ t2

t1

|H(t2, s)| p̄ f1(s)ds

+ ∑
t1<t<t2

|H(t2, tk)− H(t1, tk)|(d1
kqα1 + d2

kqβ1)

+ ∑
t1<t<t2

|L(t2, tk)− L(t1, tk)|(d̄1
kqα1 + d̄2

kqβ1),

and

|N2(u, v)(t2)− N2(u, v)(t1)|

≤ qα1

∫ t1

0
|H(t2, s)− H(t1, s)|p f2(s)ds

+qβ1

∫ t1

0
|H(t2, s)− H(t1, s)| p̄ f2(s)ds

+qα1

∫ t2

t1

|H(t2, s)|p f2(s)ds + qβ1

∫ t2

t1

|H(t2, s)| p̄ f2(s)ds

+ ∑
t1<t<t2

|H(t2, tk)− H(t1, tk)|(d2
kqα2 + d3

kqβ2)

+ ∑
t1<t<t2

|L(t2, tk)− L(t1, tk)|(d̄2
kqα2 + d̄3

kqβ2).

The term in the RHS tends to 0, as t2 − t1 goes to 0.
This proves the equi-continuity for the case where t 6= ti, i ∈ [1, m + 1]N. It remains to

examine the equi-continuity at t = ti. First, we prove equi-continuity at t = t−i . Fix ν1 > 0,
such that {tk : k 6= i} ∩ [ti − ν1, ti + ν1] = ∅. For 0 < h < ν1, we obtain

|N1(u, v)(ti)− N1(u, v)(ti − h)|

≤ qα1

∫ ti−h

0
|H(ti, s)− H(ti − h, s)|p f1(s)ds

+qβ1

∫ ti−h

0
|H(ti, s)− H(ti − h, s)| p̄ f1(s)ds

+qα1

∫ ti

ti−h
|H(ti, s)|p f1(s)ds + qβ1

∫ ti

ti−h
|H(ti, s)| p̄ f1(s)ds

+
i−1

∑
k=1
|H(ti, tk)− H(ti − h, tk)|(d1

kqα1 + d2
kqβ1)

+
i−1

∑
k=1
|L(ti, tk)− L(ti − h, tk)|(d̄1

kqα1 + d̄2
kqβ1).

The RHS tends to 0, as h goes to 0.
Next, we prove equi-continuity at t = t+i . We fix ν2 > 0, so that

{tk : k 6= i} ∩ [ti − ν2, ti + ν2] = ∅.
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For 0 < h < ν2, we obtain

|N1(u, v)(ti + h)− N1(u, v)(ti)|

≤ qα1

∫ ti

0
|H(ti + h, s)− H(ti, s)|p f1(s)ds

+qβ1

∫ ti

0
|H(ti + h, s)− H(ti, s)| p̄ f1(s)ds

+qα1

∫ ti+h

ti

|H(ti + h, s)|p f1(s)ds + qβ1

∫ ti+h

ti

|H(ti + h, s)| p̄ f1(s)ds

+ ∑
0<tk≤ti

|H(ti + h, tk)− G(ti, tk)|(d1
kqα1 + d2

kqβ1)

+ ∑
ti<t≤ti+h

|H(ti + h, tk)|(d1
kqα1 + d2

kqβ1)

+ ∑
0<tk≤ti

|L(ti + h, tk)− L(ti, tk)|(d̄1
kqα1 + d̄2

kqβ1)

+ ∑
ti<t≤ti+h

|L(ti + h, tk)|d̄k(d̄1
kqα1 + d̄2

kqβ1).

The RHS tends to 0, as h goes to 0.
As a consequence of Steps 1 to 3 and the Arzela–Ascoli Theorem, we can conclude

that N : PC × PC → PC ×PC is a completely continuous operator.

Step 4: Now, it remains to show that the set

E = {(u, v) ∈ PC × PC : u = µN1(u, v), v = µN2(u, v), for some 0 < µ < 1}

is bounded. Let u, v ∈ E ; then, u = µN1(u, v) and v = µN2(u, v), for 0 < µ < 1. Thus, for
t ∈ J , we obtain

|u(t)| ≤
∫ 2π

0
sup

(t,s)∈J 2
|H(t, s)|

(
p f1(s)|u(s)|

α1 + p̄ f1(s)|v(s)|
β1
)

ds

+
m

∑
k=1

sup
t∈J
|H(t, tk)|

(
d1

k |u(tk)|α1 + d2
k |v(tk)|β1

)
+

m

∑
k=1

sup
t∈J
|L(t, tk)|

(
d̄1

k |u(tk)|α1 + d̄2
k |v(tk)|β1

)
.

This implies by (H3)–(H5) that for each t ∈ J and v ∈ Γ(N), we have

‖u‖PC ≤ sup
(t,s)∈J 2

|H(t, s)|
(
‖p f1‖L1‖u‖γ

PC + ‖ p̄ f1‖L1‖v‖γ
PC

)
+

m

∑
k=1

sup
t∈J
|G(t, tk)|

(
d1

k‖u‖
γ
PC + d2

k‖v‖
γ
PC

)
+

m

∑
k=1

sup
t∈J
|L(t, tk)|

(
d̄1

k‖u‖
γ
PC + d̄2

k‖v‖
γ
PC

)
.



Mathematics 2023, 11, 4907 10 of 17

Similarly, we have

‖v‖PC ≤ sup
(t,s)∈J 2

|H(t, s)|
(
‖p f2‖L1‖u‖γ

PC + ‖ p̄ f2‖L1‖v‖γ
PC

)
+

m

∑
k=1

sup
t∈J
|H(t, tk)|

(
d2

k‖u‖
γ
PC + d3

k‖v‖
γ
PC

)
+

m

∑
k=1

sup
t∈J
|L(t, tk)|

(
d̄2

k‖u‖
γ
PC + d̄3

k‖v‖
γ
PC

)
.

Thus,

‖u‖PC + ‖v‖PC
≤

(
H∗(‖p f1‖L1 + ‖p f2‖L1) + G∗(d1

k + d2
k) + L∗(d̄1

k + d̄2
k)
)
‖u‖γ

PC

+
(

H∗(‖ p̄ f1‖L1 + ‖ p̄ f2‖L1) + G∗(d2
k + d3

k) + L∗(d̄2
k + d̄3

k)
)
‖v‖γ

PC

≤ K∗
(
‖u‖γ

PC + ‖v‖
γ
PC
)

≤ K∗(‖u‖PC + ‖v‖PC)γ,

where
γ = max{αi, βi},

and
K1 = H∗(‖p f1‖L1 + ‖p f2‖L1) + G∗(d1

k + d2
k) + L∗(d̄1

k + d̄2
k),

and
K2 = H∗(‖ p̄ f1‖L1 + ‖ p̄ f2‖L1) + G∗(d2

k + d3
k) + L∗(d̄2

k + d̄3
k),

and
K∗ = max{K1, K2}.

If
‖u‖PC + ‖v‖PC > 1,

we obtain

‖u‖PC + ‖v‖PC ≤ K
1

1−γ
∗ = ψ∗.

Consequently,

‖u‖PC ≤ max{1, ψ∗} = d̄∗ and ‖v‖PC ≤ max{1, ψ∗} = d̄∗.

This proves that E is bounded. By Theorem 2, we deduce that N has a fixed point
(u, v), which is a solution to (1).

Step 5: Now, we show that the set

S = {(u, v) ∈ PC × PC : (u, v) is solution of (1)},

and it is compact. Let (un, vn)n∈N be a sequence in S; we put B = {(un, vn) : n ∈ N} ⊆
PC × PC. Then, from earlier parts of the proof of this Theorem, we conclude that B is
bounded and equicontinuous. Then, from the Ascoli–Arzela Theorem, we can conclude
that B is compact. Hence, (un, vn)n∈N has a subsequence (un, vn)nm∈N ⊆ S, such that
(unm , vnm) converges to (u, v). Let

u0(t) =


∫ 2π

0 H(t, s) f1(t, u(s), v(s), θ)ds

−
m
∑

k=1

(
H(t, tk)I1

k (u(tk), v(tk)) + L(t, tk) Ī1
k (u(tk), v(tk))

)
, t ∈ J ,
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and

v0(t) =


∫ 2π

0 H(t, s) f2(t, u(s), v(s), θ)ds

−
m
∑

k=1

(
H(t, tk)I2

k (u(tk), v(tk)) + L(t, tk) Ī2
k (u(tk), v(tk))

)
, t ∈ J ,

and

|unm(t)− u0(t)|

≤
∫ 2π

0
|H(t, s)|| f1(t, unm(s), vnm(s), θ)− f1(t, u(s), v(s), θ)|ds

+
m

∑
k=1
|H(t, tk)||I1

k (unm(s), vnm(tk))− Ik(u(tk), v(tk))|

+
m

∑
k=1
|L(t, tk)|| Ī1

k (unm(s), vnm(tk))− Īk(u(tk), v(tk))|.

As nm → ∞, unm → u0, and then

u(t) =


∫ 2π

0 H(t, s) f1(t, u(s), v(s), θ)ds

−
m
∑

k=1

(
H(t, tk)I1

k (u(tk), v(tk)) + L(t, tk) Ī1
k (u(tk), v(tk))

)
, t ∈ J ,

and

v(t) =


∫ 2π

0 H(t, s) f2(t, u(s), v(s), θ)ds

−
m
∑

k=1

(
H(t, tk)I2

k (u(tk), v(tk)) + L(t, tk) Ī2
k (u(tk), v(tk))

)
, t ∈ J .

Thus, S is compact. This completes the proof.

4. Positive Solutions

For k ∈ [1, m]N, we assume

u′′ − λ2u = −θg1(t)h1(u, v) = − f1(t, u, v, θ), t ∈ J = [0, 2π], t 6= tk,
v′′ − λ2v = −θg2(t)h2(u, v) = − f2(t, u, v, θ), t ∈ J = [0, 2π], t 6= tk,
u(t+k )− u(t−k ) = I1

k (u(t
−
k ), v(t−k )), k ∈ [1, m]N,

v(t+k )− v(t−k ) = I2
k (u(t

−
k ), v(t−k )), k ∈ [1, m]N,

u′(t+k )− u′(t−k ) = Ī1
k (u(t

−
k ), v(t−k )), k ∈ [1, m]N,

v′(t+k )− v′(t−k ) = Ī2
k (u(t

−
k ), v(t−k )), k ∈ [1, m]N,

u(t = 0) = u(t = 2π), u′(t = 0) = u′(t = 2π),
v(t = 0) = v(t = 2π), v′(t = 0) = v′(t = 2π),

(2)

where (gi)i=1,2 : J → R, (hi)i=1,2 : R×R→ R are given functions. Our goal of this part is
the existence of positive solutions of (2).

Lemma 2. Assume that all the conditions of Theorem 4 are satisfied and

(H6)For each u, v ∈ R and k ∈ [1, m]N, I1
k (u, v) ≤ 0,

(H7)For each u, v ∈ R, i = 1, 2, and t ∈ J ,

gi(t)hi(u, v) ≥ 0.

(H8)For each u, v ∈ R, t ∈ J , and k ∈ [1, m]N,

L(t, tk) Ī1
k (u, v) ≤ 0

Then, problem (2) has a unique positive solution on J .
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Proof. Consider the operator

N : PC × PC → PC ×PC
(u, v) → (N1(t, u, v), N2(t, u, v))

N1(t, u, v) =

 θ
∫ 2π

0 H(t, s)g1(s)h1(u(s), v(s))ds

−
m
∑

k=1

(
H(t, tk)I1

k (u(tk), v(tk)) + L(t, tk) Ī1
k (u(tk, v(tk))

)
, t ∈ J ,

and

N2(t, u, v) =

 θ
∫ 2π

0 H(t, s)g1(s)h2(u(s), v(s))ds

−
m
∑

k=1

(
H(t, tk)I2

k (u(tk), v(tk)) + L(t, tk) Ī2
k (u(tk, v(tk))

)
, t ∈ J .

We prove that the fixed points of N are positive solutions to (2). Indeed, assume that
(u, v) ∈ PC × PC is a fixed point of N. It is clear that

u(t) =

 θ
∫ 2π

0 H(t, s)g1(s)h1(u(s), v(s))ds

−
m
∑

k=1

(
H(t, tk)I1

k (u(tk), v(tk)) + L(t, tk) Ī1
k (u(tk, v(tk))

)
, t ∈ J ,

and

v(t) =

 θ
∫ 2π

0 H(t, s)g2(s)h2(u(s), v(s))ds

−
m
∑

k=1

(
H(t, tk)I2

k (u(tk), v(tk)) + L(t, tk) Ī2
k (u(tk, v(tk))

)
, t ∈ J ,

which imply that (u, v) is a solution of (2).

If (u, v) is a fixed point of N, then (H6) through (H8) imply that (u(t), v(t)) ≥ (0, 0),
for each t ∈ J .

As in Theorem 3, we can show that N is a contraction; so, by Perov’s, we conclude
that N has a unique fixed point (u, v), which is a positive solution of problem (2). This
completes the proof.

Let X be a real generalized Banach space. A nonempty closed convex set K ⊂ E is a
cone, if it satisfies the following two conditions

(i) If v ∈ K and λ ≥ 0, then λv ∈ K,
(ii) If v,−v ∈ K, then v = 0.

K is a solid cone, if Int(K) 6= ∅, where Int(K) is the interior of K.

Remark 2. Any cone K ⊂ X induces a partial ordering < on E given by

u < v⇔ v− u ∈ K.

Theorem 6 ([21]). Let X be a real generalized Banach space, K ⊂ X a cone of X, and R > 0.
Let KR = {u ∈ K : ||u|| < R}, and let N : KR → C be a completely continuous operator, where
r ∈ (0, R). If

(i) ||N(u)|| < ||u||, ∀u ∈ ∂Kr,
(ii) ||N(u)|| > ||u||, ∀u ∈ ∂KR,

then N has at least two fixed points u, v,∈ KR, such that

||u|| < r, r < ||v|| ≤ R.
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Let K1, K2 be a solid cone of a real Banach space X and

N : Int(K1)× Int(K2)→ Int(K1)

be an operator; it is said that N is called an α-concave operator, if

N(tu, tv) ≥ tαN(u, v), for any (u, v) ∈ in(K) and 0 < t < 1, α ∈ [0, 1).

Let (Ki)i=1,2 be a solid cone of a real Banach space X and

N : Int(K1)× Int(K2)→ Int(K1)× Int(K2)

be an operator; it is said that N is called an α-concave operator, if {Ni}i=1,2 is called an
α-concave operator, with N = (N1, N2).

Lemma 3 ([22]). Let K be a normal solid cone of a real Banach space X, and

N : Int(K)× Int(K)→ Int(K)× Int(K)

be α-concave increasing operator. Then, N has only one fixed point in Int(K)× Int(K).

By Lemma 3, we deduce the following Corollary

Corollary 1. Let K1, K2 are a solid cone of a real Banach space X and

N : Int(K1)× Int(K2)→ Int(K1)× Int(K2),

is α-concave increasing operator. Then N has only one fixed point in Int(K1)× Int(K2).

Theorem 7. Assume (H6)–(H8) and the following conditions are satisfied:

( fi)i=1,2 : R+ ×R+ → R,

is nondecreasing function and Ii
k, Īi

k : R+ ×R+ → R are decreasing functions, with

∫ 2π
0 H(t, s)gi(s)hi(u(s), v(s))ds > 0,

H(t, tk)Ii
k(u(tk), v(tk)) + L(t, tk) Īi

k(u(tk), v(tk)) < 0,
fi(ηu, ηv) ≥ ηα fi(u, v),
Ii
k(ηu, ηv) ≤ ηα Ii

k(u, v),
Īk(ηu, ηv) ≤ ηα Īi

k(u, v),

∀u, v > 0, t ∈ J , i = 1, 2, 0 < η < 1, where 0 ≤ α < 1, i = 1, 2.
Then, problem (2) has a unique positive solution (uθ(t), vθ(t)).

Proof. We pose

K1 = {u ∈ PC : u(t) ≥ 0 for t ∈ J } and K2 = {v ∈ PC : v(t) ≥ 0, for t ∈ J }. (3)

Then,K1,K2 are cones inPC, by (H6) through (H8), which imply that, Ni(K1×K2) ⊂
Ki, for i = 1, 2. We assert that

N : Int(K1)× Int(K2)→ Int(K1)× Int(K2)
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is an α-concave increasing operator. Indeed,

Ni(ηu, ηv)

= θ
∫ 2π

0
H(t, s)gi(s)hi(ηu(s), ηv(s))ds

−
m

∑
k=1

(
H(t, tk)Ii

k(ηu(tk), ηv(tk)) + L(t, tk) Īi
k(ηu(tk), ηv(tk))

)
≥ ηαθ

∫ 2π

0
H(t, s)gi(s)hi(u(s), v(s))ds

−ηα
m

∑
k=1

(
H(t, tk)Ii

k(u(tk), v(tk)) + L(t, tk) Īi
k(u(tk), v(tk))

)
≥ ηαNi(u, v), for any 0 < η < 1,

where 0 ≤ α < 1. Since fi(u, v) is nondecreasing and Ii
k, Īi

k are decreasing, then

Ni(u1, v1)(t)

= θ
∫ 2π

0
H(t, s)gi(s)hi(u1(s), v1(s))ds

−
m

∑
k=1

(
H(t, tk)Ii

k(u1(tk), v1(tk)) + L(t, tk) Īi
k(u1(tk), v1(tk))

)
≤ θ

∫ 2π

0
H(t, s)gi(s)hi(u2(s), v2(s))ds

−
m

∑
k=1

(
H(t, tk)Ii

k(u2(tk), v2(tk)) + L(t, tk) Īi
k(u2(tk), v2(tk))

)
= Ni(u2, v2)(t), for (u1, v1) ≤ (u2, v2), (u1, v1), (u2, v2) ∈ C× C.

By Corollary 1, N has a unique fixed point (uθ , vθ) ∈ Int(K1)× Int(K2). This com-
pletes the proof of the Theorem.

Now, we seek a solution to problem (2) via the Krasnosel’skii twin fixed point Theorem

Theorem 8. Assume (H3)–(H8) and the following conditions are satisfied:

(H9)There exist R1, R2 > 0 and r1, r2 > 0, with r1 < R1 and r2 < R2, such that

θ sup
(t,s)∈J 2

|H(t, s)|‖g1‖∞h∗1(r1, r2) +
m
∑

k=1
sup
t∈J
|H(t, tk)|(d1

krα1
1 + d2

krβ1
2 )

+
m
∑

k=1
sup
t∈J
|L(t, tk)|(d̄1

krα1
1 + d̄2

krβ1
2 ) < r1

θ sup
(t,s)∈J 2

|H(t, s)|‖g2‖∞h∗2(r1, r2) +
m
∑

k=1
sup
t∈J
|H(t, tk)|(d2

krα2
1 + d3

krβ2
2 )

+
m
∑

k=1
sup
t∈J
|L(t, tk)|(d̄2

krα2
1 + d̄3

krβ2
2 ) < r2,

where
h∗i (r1, r2) = sup

(u,v)∈(0,r1]×(0,r2]

|hi(u, v)|, i = 1, 2,
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

min
t∈[0,2π]

θ
∫ 2π

0 H(t, s)g1(s)h1(µ1(s), µ2(s))ds

−
m
∑

k=1

((
H(t, tk)I1

k (µ1(tk), µ2(tk)) + L(t, tk) Ī1
k (µ1(tk), µ2(tk))

))
> R1,

if (r1, r2) < (µ1, µ2)

min
t∈[0,2π]

θ
∫ 2π

0 H(t, s)g2(s)h2(µ1(s), µ2(s))ds

−
m
∑

k=1

(
H(t, tk)I2

k (µ1(tk), µ2(tk)) + L(t, tk) Ī2
k (µ1(tk), µ2(tk))

)
> R2,

if (r1, r2) < (µ1, µ2).

Then, problem (2) has at least two positive solutions (u1, v1), (u2, v2), such that

‖u1‖ < r1, ‖v1‖ < r2 and r1 < ‖u2‖ ≤ R1, r2 < ‖v2‖ ≤ R2.

Proof. LetK1,K2 be a cone defined in (3). Then, (H6) through (H8) imply that N(K1,K2) ⊂
K1, K2. For any R1, R2 > 0,

KR1 = {u ∈ K1 : ‖u‖ < R1},

and
KR2 = {v ∈ K : ‖v‖ < R2}.

Using (H4)–(H7), we can show that N ∈ C1(KR1 × KR2 ,K1 × K2 is a completely
continuous operator.

We should deal with the hypotheses of the Krasnosel’skii twin fixed point Theorem 6.
Claim 1: (‖N1(u, v)‖PC , ‖N2(u, v)‖PC) < (‖u‖PC , ‖v‖PC), ∀(u, v) ∈ ∂Kr1 × ∂Kr2 , where

Kr1 = {u ∈ K : ‖u‖ < r1} and Kr2 = {v ∈ K : ‖v‖ < r2}.

For (u, v) ∈ ∂Kr1 × ∂Kr2 , from (H6), (H7) and (H9), we have

|N1(u, v)(t)|

≤ θ
∫ 2π

0
|H(t, s)||g1(s)h1(u(s), v(s))|ds

+
m

∑
k=1
|H(t, tk)||I1

k (u(tk), v(tk))|+
m

∑
k=1
|L(t, tk)|| Ī1

k (u(tk), v(tk))|

≤ θ sup
(t,s)∈J 2

|H(t, s)|‖g1‖∞h∗1(r1, r2) +
m

∑
k=1

sup
t∈J
|H(t, tk)|(d1

krα1
1 + d2

krβ1
2 )

+
m

∑
k=1

sup
t∈J
|L(t, tk)|(d̄1

krα1
1 + d̄2

krβ1
2 ) < r1 = ‖u‖PC .

Similarly, we have

|N2(u, v)(t)|

≤ θ sup
(t,s)∈J 2

|H(t, s)|‖g2‖∞h∗2(r1, r2) +
m

∑
k=1

sup
t∈J
|H(t, tk)|(d2

krα2
1 + d3

krβ2
2 )

+
m

∑
k=1

sup
t∈J
|L(t, tk)|(d̄2

krα2
1 + d̄3

krβ2
2 ) < r2 = ‖v‖PC .

Thus,

‖N1(u, v)‖PC < ‖u‖PC and ‖N2(u, v)‖PC < ‖v‖PC , for each (u, v) ∈ ∂Kr1 × ∂Cr2 .
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Claim 2: (‖N1(u, v)‖PC , ‖N2(u, v)‖PC) > (‖u‖PC , ‖v‖PC), ∀(u, v) ∈ (∂CR1 , ∂CR2), for
(u, v) ∈ ∂KR1 × ∂KR2 , and we have ‖u‖PC = R1, ‖v‖PC = R2; then, r1 < ‖u‖PC =
R1, r2 < ‖v‖PC = R2, and from (H9), we have

N1(u, v)(t) ≥ min t∈[0,2π]θ
∫ 2π

0
H(t, s)g1(s)h1(µ1(s), µ2(s))ds

−
m

∑
k=1

(
H(t, tk)I1

k (µ1(tk), µ2(tk)) + L(t, tk) Ī1
k (µ1(tk), µ2(tk))

)
> R1 = ‖u‖PC .

Similarly, we have

N2(u, v)(t) ≥ min
t∈[0,2π]

θ
∫ 2π

0
H(t, s)g2(s)h2(µ1(s), µ2(s))ds

−
m

∑
k=1

(
H(t, tk)I2

k (µ1(tk), µ2(tk)) + L(t, tk) Ī2
k (µ1(tk), µ2(tk))

)
> R2 = ‖v‖PC .

Thus,

‖N1(u, v)‖PC > ‖u‖PC and ‖N2(u, v)‖PC > ‖v‖PC , for each (u, v) ∈ ∂KR1 × ∂KR2 .

Then, problem (2) has at least two positive solutions (u1, v1), (u2, v2) ∈ KR1 ×KR2 ,
such that {

‖u1‖ < r1, ‖v1‖ < r2
r1 < ‖u2‖ ≤ R1, r2 < ‖v2‖ ≤ R2.

This completes the proof.

5. Conclusions and Discussion of the Results

Sufficient conditions for the existence of solutions to systems of nonlinear second-
order differential equations with periodic impulse action are constructed. The proposed
Schaefer’s fixed point theorem is quite effective in studying in such cases for systems of
nonlinear differential equations. Necessary and sufficient conditions for the existence of
positive solutions are also established.

Practical Significance

Transient processes in electrical circuits are modeled using degenerate differential
equations or differential algebraic equations. Taking into account pulsed effects on currents
and voltages in an electrical circuit at fixed times significantly complicates the study of
transient regimes. The obtained theoretical results make it possible to indicate the necessary
and sufficient conditions for the existence of the stated problem (1), which can model
electrical circuits with pulsed effects. The development of the mathematical theory of this
type of system is associated with practical problems in the theory of control for complex
systems and the widespread introduction of digital technologies, see [23–25].

Extending these results to consider the question of stability (Qualitative studies) will
make it possible to advance the study in this direction.
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