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Abstract: In this paper, new third-order finite volume unequal-sized weighted essentially non-
oscillatory (US-WENO) Lagrangian schemes are designed to solve Euler equations in two and three
dimensions. The spatial reconstruction procedures are implemented by using a convex combination
of a quadratic polynomial with several linear polynomials specified on unequal-sized stencils, so the
new US-WENO Lagrangian schemes can achieve the designed third-order accuracy and maintain
an essentially non-oscillatory property near strong discontinuities in multi-dimensions. Unlike the
traditional WENO reconstruction procedures specified on unstructured meshes, the linear weights of
these new two-dimensional and three-dimensional US-WENO spatial reconstructions can be selected
as any positive numbers as long as their summation equals one and they are not related to the local
mesh topology or the location of quadrature points. Moreover, the linear weights do not have to
be recalculated even if the grid moves with the fluid, avoiding the appearance of negative linear
weights, thus improving computation efficiency and robustness in multi-dimensional Lagrangian
numerical simulations. Finally, extensive benchmark numerical cases are employed to display the
excellent capability of the presented US-WENO Lagrangian schemes.

Keywords: Lagrangian scheme; finite volume; US-WENO reconstruction; unequal-sized stencil; high-
order accuracy

MSC: 65M60; 35L65

1. Introduction

In this paper, new third-order finite volume unequal-sized weighted essentially non-
oscillatory (US-WENO) Lagrangian schemes are developed to solve Euler equations on
quadrilateral and hexahedral meshes. The new finite volume US-WENO Lagrangian schemes
have some features and advantages. First, the spatial reconstruction procedures are im-
plemented using a convex combination of different degrees of polynomials specified on
associated unequal-sized spatial stencils. Compared with the high-order essentially non-
oscillatory (ENO) Lagrangian scheme in [1,2], smaller spatial stencils are utilized in this
new US-WENO Lagrangian scheme. Moreover, the proposed scheme can reach third-order
accuracy and simulate strong discontinuity problems without introducing any additional
procedures. Compared with the traditional weighted ENO (WENO) spatial reconstruction
procedures specified on triangular and tetrahedral meshes [3,4], the linear weights can be
set as any positive numbers as long as their sums are one. Furthermore, associated linear
weights do not rely on the mesh topology or the location of quadrature points, so the
designed US-WENO schemes have better computational efficiency and robustness in the
multi-dimensional Lagrangian framework. Lastly, such new US-WENO spatial reconstruc-
tion procedures are simple to implement in high dimensions with high-order accuracy.
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In computational fluid dynamics (CFD), there are two main perspectives: the Eule-
rian framework and the Lagrangian framework. Each framework has its own strengths
and limitations. The Eulerian method describes the fluid motion with time-independent
meshes and has been widely used in various CFD simulations. The Lagrangian method
can obtain sharper contact discontinuity solutions [1,5], as the grid moves with the fluid.
A more general framework is arbitrary Lagrangian–Eulerian (ALE), which combines the
best properties of the above two methods. Generally, there are two types of Lagrangian
methods: the staggered method and the cell-centered method. The staggered method [6–11]
specifies all of the fluid’s thermodynamic variables in the center of cells while defining
velocity at the vertex. The cell-centered method [1,2,6,12–19] specifies physical variables
and velocity in the center of cells, making it simple to achieve high-order accuracy. There-
fore, we will construct the scheme based on the cell-centered Lagrangian method for its
simplicity in achieving high-order accuracy. The first finite volume Lagrangian scheme was
developed by Munz [20] in 1994. Later, Després et al. [21,22] developed the finite volume
cell-centered Lagrangian scheme in multi-dimensions. In 2007, Maire et al. [16] constructed
a cell-centered Lagrangian scheme in two dimensions by introducing additional freedoms
on each edge and extending it to second-order accuracy [17]. Furthermore, the high-order
scheme has many superior properties, such as smaller numerical errors and sharper shock
transitions, so Lagrangian schemes with high-order accuracy need to be developed. ENO
schemes [23,24] and WENO schemes [3,4,25–27], as classical high-order schemes, have
achieved successful applications in many fields due to their superior properties. Therefore,
depending on high-order ENO reconstruction, Cheng and Shu [1] constructed a class of La-
grangian schemes for Euler equations in Cartesian and cylindrical coordinates. In addition,
they obtained a scheme up to second-order accuracy in two dimensions owing to geometric
errors in the straight-line edge. Later, Cheng and Shu [2] achieved third-order accuracy by
using curved quadrilateral meshes with high-order ENO and crude WENO reconstructions.
Dumbser et al. [28–32] developed a class of high-order Lagrangian one-step ADER-WENO
finite volume schemes for hyperbolic systems on triangular and tetrahedral meshes, and
achieved spatial accuracy mainly by using associated robust WENO reconstructions [33,34].
Meanwhile, the ALE method has also been greatly developed, such as is shown in [35–43].

However, the traditional WENO schemes [3,4,44] attain high-order accuracy by com-
bining lower-order polynomials in a nonlinear fashion. The linear weights are decided by
a linear system related to the selection of stencils, the topological mesh relation, and the
position of quadrature points. The high-order accuracy relying on linear weights leads
to a number of problems. One is that the negative weights will appear if the quadrature
points are not appropriately selected [44,45], so some additional procedures are needed to
deal with such drawbacks [44]. Another is that the linear weights do not even exist when
the computational meshes [4] are stiff enough. The robust WENO scheme [33,34] is a new
way to deal with this, as its linear weights can be artificially set when the optimal order is
not achieved and too many stencils are introduced. The above problems are more serious
when the traditional WENO reconstruction [3,4,44] is applied to the Lagrangian method, in
which the computation mesh moves with the fluid, inevitably worsening the mesh quality.
In addition, the linear weights must be updated whenever the mesh moves since the linear
weights rely on the mesh topological relation. So, the efficiency of multi-dimensional La-
grangian simulations will significantly decrease. To solve the drawbacks mentioned above
and improve the computational efficiency and robustness without destroying the designed
high-order accuracy, we proposed high-order US-WENO Lagrangian schemes by adopting
the ideas of unequal-sized spatial reconstructions [46–48]. By constructing the polynomials
of different degrees specified on unequal-sized stencils, the linear weights can be chosen
artificially, and they do not depend on local mesh topology or the position of quadrature
points. Meanwhile, the linear weights do not need to be updated even if the grid moves
with the fluid, avoiding the appearance of negative linear weights and thus improving the
computation efficiency and robustness of multi-dimensional Lagrangian simulations. This
paper constructs a new third-order finite volume US-WENO Lagrangian scheme for Euler
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equations on two-dimensional quadrilateral and three-dimensional hexahedral meshes.
The proposed US-WENO Lagrangian scheme has high-order accuracy, computational effi-
ciency, and robustness. Extensive numerical examples are given to evaluate the superior
capabilities of the designed US-WENO Lagrangian schemes.

The remainder of this paper is organized as follows. The algorithm of the US-WENO
Lagrangian schemes for solving multi-dimensional Euler equations is introduced in Section 2.
In Section 3, numerical examples are presented to illustrate the capability of the scheme
developed in this paper. Finally, Section 4 gives some concluding remarks.

2. New US-WENO Lagrangian Scheme

This section proposes a new finite volume US-WENO Lagrangian scheme for solving
Euler equations in two and three dimensions. Like in [1,5], the Euler equations can be
expressed as follows:

d
dt

∫
Ω(t)

UdΩ +
∫

Γ(t)
FdΓ = 0, (1)

where Ω(t) denotes the moving control volume enclosed by its boundary Γ(t). The con-
served variables vector U and the flux vector F are defined as follows:

U =

 ρ
M
E

, F =

 (u− ẋ) · nρ
(u− ẋ) · nM + p · n
(u− ẋ) · nE + pu · n

, (2)

where ρ denotes the density, u denotes the velocity, M = ρu denotes the momentum, E
denotes the total energy, and p denotes the pressure. ẋ is the velocity of the control volume
boundary Γ(t) and n denotes the unit outward normal vector of Γ(t).

The Euler equation, Equation (1), is closed by adding an equation of state (EOS), with
the general form shown below

p = p(ρ, e), (3)

where e = E
ρ −

1
2 |u|2 is the specific internal energy. When considering the ideal gas, the

equation of state has a simple form:

p = (γ− 1)ρe, (4)

where γ is the ratio of the specific heats. In this paper, the governing equation, Equation (1),
is considered under the Lagrangian framework, and it can be assumed that ẋ = u, so the
vectors (2) have the following simple form:

U =

 ρ
M
E

, F =

 0
p · n

pu · n

. (5)

Next, the two-dimensional and three-dimensional algorithms for solving Euler equa-
tions will be described separately in the following.

2.1. Two-Dimensional Case

Two-dimensional spatial domain Ω can be dividied into Nx × Ny computational cells.
A quadrilateral cell Ωi,j consists of four vertices: (xi,j, yi,j), (xi+1,j, yi+1,j), (xi+1,j+1, yi+1,j+1),
and (xi,j+1, yi,j+1), and Si,j denotes its area. The velocity of vertex (xi,j, yi,j) is denoted as
(ui,j, vi,j), and other variables are saved in cell averages, which form in the center of cells.
For instance, ρ̄i,j, M̄x

i,j, M̄y
i,j, and Ēi,j are defined below:



Mathematics 2023, 11, 4842 4 of 21

ρ̄i,j =
1

Si,j

∫∫
Ωi,j

ρ(x, y)dxdy,

M̄x
i,j =

1
Si,j

∫∫
Ωi,j

Mx(x, y)dxdy,

M̄y
i,j =

1
Si,j

∫∫
Ωi,j

My(x, y)dxdy,

Ēi,j =
1

Si,j

∫∫
Ωi,j

E(x, y)dxdy.

(6)

2.1.1. Finite Volume Discretization

The conservative semi-discrete formula for two-dimensional Euler equations is given
below [1,2]:

d
dt


ρ̄i,jSi,j
M̄x

i,jSi,j

M̄y
i,jSi,j

Ēi,jSi,j

 = L(Ui,j) = −
∫

∂Ωi,j

F̂ · ndl. (7)

We use the Gaussian numerical quadrature rules to calculate the integration, then
obtain ∫

∂Ωi,j

F̂ · ndl ≈
4

∑
`=1

∆l`
2

∑
m=1

ωmF̂(U−(G`
m), U+(G`

m)) · n`, (8)

where ∆l` represents the length of the boundary edge ` and G`
m = (xG`

m
, yG`

m
) is the m-th

Gaussian quadrature point on this edge, ωm are the two-point Gaussian quadrature weights,
and n` represents outward an unit normal of the `-th edge. Here F̂(U−(G`

m), U+(G`
m))

is numerical flux, and we apply an HLLC flux [5,49] to guarantee without mass across
the interface. U−(G`

m) and U+(G`
m) are reconstructed values of U on different quadrature

points. The following subsection will describe the procedures of spatial reconstruction.

2.1.2. Unequal-Sized WENO Reconstruction

The procedures for obtaining the high-order approximation values of U−(G`
m) by

the unequal-sized WENO spatial reconstruction are given in this subsection. To facilitate
presentation, as shown in Figure 1, we rename cell Ωi,j = I5 and its eight adjacent cells as
I1, . . . , I9.

I1 I2 I3

I4 I5 I6

I7 I8 I9

Figure 1. The target cell Ωi,j = I5 and its eight adjacent cells.

Step 1. We first select a big stencil as T0 = {I1, . . . , I9} and construct a quadratic

polynomial q0(x, y) ∈ span{1, (x−x0)

|I5|
1
2

, (y−y0)

|I5|
1
2

, (x−x0)
2

|I5|
, (x−x0)(y−y0)

|I5|
, (y−y0)

2

|I5|
} on T0, in which

(x0, y0) represents the barycenter of target cell I5, and |I5| denotes the cell’s area. The
quadratic polynomial q0(x, y) is obtained by the least squares method [3]:

1
|I5|

∫
I5

q0(x, y)dxdy = Ū5, (9)

and

q0(x, y) = argmin ∑
Il∈T0\I5

(
1
|Il |

∫
Il

q0(x, y)dxdy− Ūl)
2. (10)
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Then, four linear polynomials q`(x, y) ∈ span{1, x−x0

|I5|
1
2

, y−y0

|I5|
1
2
} are constructed, which

are defined on sub-stencils T`, ` = 1, 2, 3, 4. They satisfy

1
|Il |

∫
Il

q`(x, y)dxdy = Ūl , Il ∈ T`, ` = 1, 2, 3, 4,

T1 = {I2, I4, I5}, T2 = {I2, I5, I6}, T3 = {I4, I5, I8}, T4 = {I5, I6, I8}.
(11)

Step 2. We take p`(x, y) = q`(x, y), ` = 1, 2, 3, 4, and

p0(x, y) =
1

γ0
q0(x, y)−

4

∑
`=1

γ`

γ0
p`(x, y), (12)

to obtain the equal expressions for different degree polynomials, where γ` are the linear
weights and they satisfy ∑4

`=0 γ` = 1, γ0 6= 0. And quadratic polynomial q0(x, y) can be
rewritten as

q0(x, y) =
4

∑
`=0

γ`p`(x, y), (13)

so the designed third-order accuracy can be recovered. The linear weights need to be
replaced by associated nonlinear weights to repress the spurious oscillations near strong
discontinuities.

Step 3. We compute the smoothness indicators β`(` = 0, . . . , 4), representing the
smooth measurement of polynomial p`(x, y), ` = 0, . . . , 4, and are calculated following the
same methodology in [3,25]:

β` =
r

∑
|α|=1

∫
I5

|I5||α|−1

(
∂|α|

∂xα1 ∂yα2
p`(x, y)

)2

dxdy, ` = 0, . . . , 4, (14)

where α = (α1, α2), |α| = α1 + α2. We set r = 2 when ` = 0, and r = 1 when ` = 1, . . . , 4.
Step 4. We calculate the nonlinear weights depending on the linear weights and

smoothness indicators. Following [46–48], they are computed by

τ =

(
∑4
`=1 |β0 − β`|

4

)2

, ω̄` = γ`

(
1 +

τ

β` + ε

)
, ω` =

ω̄`

∑4
ll=0 ω̄ll

, ` = 0, . . . , 4. (15)

Here, ε = 10−6 is a small positive number to avoid a zero denominator.
Step 5. The final reconstruction polynomial is

Q(x, y) =
4

∑
`=0

ω`p`(x, y), (16)

and the reconstructed values on different quadrature points can be obtained:

U−(G`
m) = U−(xG`

m
, yG`

m
) = Q(xG`

m
, yG`

m
),

m = 1, 2, ` = 1, . . . , 4.
(17)

The reconstruction of polynomials on the neighboring cells can be carried out similarly
to obtain the reconstructed values of U+(G`

m).

2.1.3. The Velocity of Vertex

In the Lagrangian method, the computational mesh needs to change with fluids, so the
velocity of the vortex must be considered. We calculate the vertex velocity by the simple
Roe-average [50] method. It shows good performance in numerical experiments and has a
simple form, as follows:
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ui,j =

∑
`∈A

√
ρ`u`

∑
`∈A

√
ρ`

, vi,j =

∑
`∈A

√
ρ`v`

∑
`∈A

√
ρ`

, (18)

where A is the cell set that contains the vortex (i, j).

2.1.4. Time Discretization

The SSP Runge–Kutta method [51] is used for time marching of semi-discrete schemes (7).
The computation mesh changes as time advances, so we need to consider the mesh changes
at each stage. Once the mesh moves at each stage, the location of vertexes and each cell’s
area must be updated accordingly. Hence, the third-order Runge–Kutta time discretization
method in the Lagrangian framework is given as:

x(1) = xn + un∆tn, y(1) = yn + vn∆tn,
S(1) = S(x(1), y(1)),
U(1)S(1) = UnSn + ∆tnL(Un),

x(2) = 3
4 xn + 1

4 [x
(1) + u(1)∆tn], y(2) = 3

4 yn + 1
4 [y

(1) + v(1)∆tn],
S(2) = S(x(2), y(2)),
U(2)S(2) = 3

4 UnSn + 1
4 [U

(1)S(1) + ∆tnL(U(1))],

xn+1 = 1
3 xn + 2

3 [x
(2) + u(2)∆tn], yn+1 = 1

3 yn + 2
3 [y

(2) + v(2)∆tn],
Sn+1 = S(xn+1, yn+1)

Un+1Sn+1 = 1
3 UnSn + 2

3 [U
(2)S(2) + ∆tnL(U(2))].

(19)

As used in [1], the computation time step ∆tn is decided by

∆tn = CFL ·min
∆ln

i,j

cn
i,j

, i = 1, . . . , Nx, j = 1, . . . , Ny, (20)

where ∆ln
i,j is the shortest edge of cell Ωi,j and cn

i,j denotes the sound speed.

2.2. Three-Dimensional Case

Three-dimensional spatial domain Ω can be divided into Nx × Ny × Nz computa-
tional cells. Ωi,j,k is a hexahedral cell, which consists of eight vertices: (xi,j,k, yi,j,k, zi,j,k),
(xi+1,j,k, yi+1,j,k, zi+1,j,k), (xi+1,j+1,k, yi+1,j+1,k, zi+1,j+1,k), (xi,j+1,k, yi,j+1,k, zi,j+1,k), (xi,j,k+1,
yi,j,k+1, zi,j,k+1), (xi+1,j,k+1, yi+1,j,k+1, zi+1,j,k+1), (xi+1,j+1,k+1, yi+1,j+1,k+1, zi+1,j+1,k+1), and
(xi,j+1,k+1, yi,j+1,k+1, zi,j+1,k+1), and Vi,j,k denotes its volume. The fluid velocity (ui,j,k, vi,j,k,
wi,j,k) is defined at the vertex (xi,j,k, yi,j,k, zi,j,k), and other variables are saved at the cell
center in cell averages form. For instance, ρ̄i,j,k, M̄x

i,j,k, M̄y
i,j,k, M̄z

i,j,k, and Ēi,j,k are given
as follows:

ρ̄i,j,k =
1

Vi,j,k

∫∫∫
Ωi,j,k

ρ(x, y, z)dxdydz,

M̄x
i,j,k =

1
Vi,j,k

∫∫∫
Ωi,j,k

Mx(x, y, z)dxdydz,

M̄y
i,j,k =

1
Vi,j,k

∫∫∫
Ωi,j,k

My(x, y, z)dxdydz,

M̄z
i,j,k =

1
Vi,j,k

∫∫∫
Ωi,j,k

Mz(x, y, z)dxdydz,

Ēi,j,k =
1

Vi,j,k

∫∫∫
Ωi,j,k

E(x, y, z)dxdydz.

(21)
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2.2.1. Finite Volume Discretization

The conservative semi-discrete formula for three-dimensional Euler equations can be
given as

d
dt


ρ̄i,j,kVi,j,k
M̄x

i,j,kVi,j,k

M̄y
i,j,kVi,j,k

M̄z
i,j,kVi,j,k

Ēi,j,kVi,j,k

 = L(Ui,j,k) =−
∫

∂Ωi,j,k

F̂ · nds. (22)

We apply the Gaussian numerical quadrature rules to calculate the integration, and
obtain ∫

∂Ωi,j,k

F̂ · nds ≈
6

∑
`=1
|∂Ω`

i,j,k|
4

∑
m=1

ωmF̂(U−(G`
m), U+(G`

m)) · n`, (23)

where |∂Ω`
i,j,k| is the area of the face ` and G`

m = (xG`
m

, yG`
m

, zG`
m
) is the m-th quadrature

point on this face, ωm are the four-point Gaussian quadrature weights, and n` represents
outward unit normal of face ∂Ω`

i,j,k. Here F̂(U−(G`
m), U+(G`

m)) is numerical flux, and we
also apply an HLLC numerical flux [5,49] to guarantee without mass across the interface.
U−(G`

m) and U+(G`
m) are reconstructed values of U on different quadrature points. The

following subsection will give the procedures of spatial reconstruction.

2.2.2. Unequal-Sized WENO Reconstruction

The three-dimensional unequal-sized WENO reconstruction procedures are given in
this subsection to obtain the high-order approximation values U−(G`

m). For the sake of
understanding, let us make a notation here: Ωi+i0,j+j0,k+k0 represents the cell that moves
the target cell Ωi,j,k by i0 cells in x positive direction, j0 cells in y positive direction, and k0
cells in z positive direction. And the target cell Ωi,j,k is denoted as Ω0.

Step 1. We first select a big stencil,

T0 = {Ωi+i0,j+j0,k+k0,i0,j0,k0=−1,0,1,i0·j0·k0 6=±1} = {Ωl , l = 0, . . . , 18}, (24)

which is shown in Figure 2, and construct a quadratic polynomial q0(x, y, z) ∈ span{1,
(x−x0)

|Ω0|
1
3

, (y−y0)

|Ω0|
1
3

, (z−z0)

|Ω0|
1
3

, (x−x0)
2

|Ω0|
2
3

, (x−x0)(y−y0)

|Ω0|
2
3

, (x−x0)(z−z0)

|Ω0|
2
3

, (y−y0)
2

|Ω0|
2
3

, (y−y0)(z−z0)

|Ω0|
2
3

, (z−z0)
2

|Ω0|
2
3
} based

on T0, in which (x0, y0, z0) is the barycenter of target cell Ω0, and |Ω0| is the cell’s volume.
The quadratic polynomial q0(x, y, z) is also obtained by the least squares method [3]:

1
|Ω0|

∫
Ω0

q0(x, y, z)dxdydz = Ū0, (25)

and
q0(x, y, z) = argmin ∑

Ω`∈T0\Ω0

(
1
|Ω`|

∫
Ω`

q0(x, y, z)dxdydz− Ū`)
2. (26)

In this paper, the quadratic polynomial q0(x, y, z) is constructed by using the associated
nineteen hexahedral cells to maintain a balance performance between numerical stability
and computational cost. Then, we construct eight linear polynomials q`(x, y, z) ∈ span{1,
(x−x0)

|Ω0|
1
3

, (y−y0)

|Ω0|
1
3

, (z−z0)

|Ω0|
1
3
} defined on smaller stencils T`, ` = 1, . . . , 8, respectively. And the

eight smaller stencils are
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T1 = {Ωi,j,k, Ωi−1,j,k, Ωi,j−1,k, Ωi,j,k+1}, T2 = {Ωi,j,k, Ωi,j−1,k, Ωi+1,j,k, Ωi,j,k+1},
T3 = {Ωi,j,k, Ωi+1,j,k, Ωi,j+1,k, Ωi,j,k+1}, T4 = {Ωi,j,k, Ωi,j+1,k, Ωi−1,j,k, Ωi,j,k+1},
T5 = {Ωi,j,k, Ωi−1,j,k, Ωi,j−1,k, Ωi,j,k−1}, T6 = {Ωi,j,k, Ωi,j−1,k, Ωi+1,j,k, Ωi,j,k−1},
T7 = {Ωi,j,k, Ωi+1,j,k, Ωi,j+1,k, Ωi,j,k−1}, T8 = {Ωi,j,k, Ωi,j+1,k, Ωi−1,j,k, Ωi,j,k−1}.

(27)

These linear polynomials satisfy

1
|Ωl |

∫
Ωl

q`(x, y, z)dxdydz = Ūl , Ωl ∈ T`, ` = 1, . . . , 8. (28)

Step 2. We take p`(x, y, z) = q`(x, y, z), ` = 1, . . . , 8, and

p0(x, y, z) =
1

γ0
q0(x, y, z)−

8

∑
`=1

γ`

γ0
p`(x, y, z), (29)

to obtain the equal expressions for different degree polynomials, where γ` are the linear
weights, and they satisfy ∑8

`=0 γ` = 1, γ0 6= 0. Moreover, we can rewrite q0(x, y, z) as

q0(x, y, z) =
8

∑
`=0

γ`p`(x, y, z), (30)

So, the designed third-order accuracy can be recovered. The linear weights need to be
replaced by associated nonlinear weights to repress the oscillations near strong discontinuities.

Step 3. We compute the smoothness indicators β`(` = 0, . . . , 8), representing the smooth
measurement of polynomial p`(x, y, z), ` = 0, . . . , 8, which are calculated following the same
methodology in [3,25]:

β` =
r

∑
|α|=1
|Ω0|

2|α|
3 −1

∫
Ω0

(
∂|α|

∂xα1 ∂yα2 ∂zα3
p`(x, y, z)

)2

dxdydz, ` = 0, . . . , 8. (31)

where α = (α1, α2, α3) and |α| = α1 + α2 + α3. We define r equals 2 when ` = 0, and r
equals 1 when ` = 1, . . . , 8.

Step 4. We calculate the nonlinear weights based on the linear weights and associated
smoothness indicators. Following [46–48], they are defined as follows:

τ =

(
∑8
`=1 |β0 − β`|

8

)2

, ω̄` = γ`

(
1 +

τ

β` + ε

)
, ω` =

ω̄`

∑8
ll=0 ω̄ll

, ` = 0, . . . , 8. (32)

Here, ε = 10−6 is a small positive number to avoid a zero denominator.
Step 5. The final reconstruction polynomial is

Q(x, y, z) =
8

∑
`=0

ω`p`(x, y, z), (33)

and the reconstructed values on different quadrature points can be obtained:

U−(G`
m) = U−(xG`

m
, yG`

m
, zG`

m
) = Q(xG`

m
, yG`

m
, zG`

m
),

m = 1, . . . , 4, ` = 1, . . . , 6.
(34)

The reconstruction of polynomials on the neighboring cells can be carried out similarly
to obtain the reconstructed values of U+(G`

m).



Mathematics 2023, 11, 4842 9 of 21

Figure 2. Stencils of target cell Ω0 (red cubic) for 3D spatial reconstruction.

2.2.3. The Velocity of Vertex

This subsection gives the calculation method of vertex velocity in three-dimensional
space. A hexahedral cell has eight vertices, which means that a vertex is shared by eight
cells, so the velocity of this vertex is related to the cells that are sharing with it. We also use
the simple Roe-average [50] method to calculate the velocity of the vertex, and it takes a
simple form, as follows:

ui,j,k =

∑
`∈A

√
ρ`u`

∑
`∈A

√
ρ`

, vi,j,k =

∑
`∈A

√
ρ`v`

∑
`∈A

√
ρ`

, wi,j,k =

∑
`∈A

√
ρ`w`

∑
`∈A

√
ρ`

, (35)

where A is the cell set that contains this vertex (i, j, k).

2.2.4. Time Discretization

In three dimensions, the SSP Runge–Kutta method is still used to advance the semi-
discrete scheme (22). The variables that rely on the mesh need to be updated accordingly at
each stage. So, the location of the vertices and each cell’s volume need to be updated once
the computational mesh moves. Because it is similar to the two-dimensional case (19), it
will not be repeated here for simplicity.

The computation time step ∆tn is decided by

∆tn = CFL ·min
|Ωi,j,k|

cn
i,j,k

,

i = 1, . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nz,

(36)

where |Ωi,j,k| is the minimum area among all faces of cell Ωi,j,k, and cn
i,j,k denotes the sound

speed.

3. Numerical Results

In this section, numerical examples in two and three dimensions are presented to
display the superior capability of the US-WENO Lagrangian schemes. The CFL number
is 0.6 for all examples. To reduce spurious oscillations, the reconstructions are carried out
in the local characteristic directions [3,52]. We select four types of linear weights to verify
the effect of their selection on the accuracy. The two-dimensional accuracy examples are
the following: (1) γ0 = 0.96, γ` = 0.01, ` = 1 . . . , 4; (2) γ0 = 0.6, γ` = 0.1, ` = 1 . . . , 4;
(3) γ0 = 0.2, γ` = 0.2, ` = 1 . . . , 4; (4) γ0 = 0.04, γ` = 0.24, ` = 1 . . . , 4. The three-
dimensional accuracy examples are the following: (1) γ0 = 0.92, γ` = 0.01, ` = 1 . . . , 8;
(2) γ0 = 0.6, γ` = 0.05, ` = 1 . . . , 8; (3) γ0 = 0.2, γ` = 0.1, ` = 1 . . . , 8; (4) γ0 = 0.04,
γ` = 0.12, ` = 1 . . . , 8. Following [46–48], we set the linear weights γ0 = 0.96, γ` = 0.01,
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` = 1 . . . , 4 and γ0 = 0.92, γ` = 0.01, ` = 1 . . . , 8 in the latter two and three dimensions
examples, respectively.

3.1. Accuracy Test

Example 1. Two-dimensional Euler equations are first considered to verify the numerical accu-
racy. The computational domain is [0, 2] × [0, 2] and periodic boundary conditions are applied
in two directions. The initial conditions are ρ(x, y, 0) = 1 + 0.2 sin(π(x + y)), u(x, y, 0) = 1,
v(x, y, 0) = 1, and p(x, y, 0) = 1. All boundaries are defined as periodic boundary conditions. The
exact density solution is ρ(x, y, t) = 1 + 0.2 sin(π(x + y− (u + v)t)). The final computing time
is t = 2.0. The errors and numerical orders with different types of linear weights are shown in
Table 1. It can be seen that the proposed scheme with different linear weights can obtain the expected
third-order accuracy.

Table 1. Accuracy test for 2D Euler equations. T = 2. L1 and L∞ errors.

Mesh L1 Error Order L∞ Error Order L1 Error Order L∞ Error Order

Linear weights (1) Linear weights (2)
20× 20 4.03 × 10−4 1.07 × 10−3 4.04 × 10−4 1.07 × 10−3

40× 40 6.44 × 10−5 2.65 1.89 × 10−4 2.50 6.44 × 10−5 2.65 1.89 × 10−4 2.50
60× 60 1.98 × 10−5 2.91 5.93 × 10−5 2.86 1.98 × 10−5 2.91 5.93 × 10−5 2.86
80× 80 8.42 × 10−6 2.97 2.54 × 10−5 2.95 8.42 × 10−6 2.97 2.54 × 10−5 2.95

100× 100 4.33 × 10−6 2.98 1.31 × 10−5 2.97 4.33 × 10−6 2.98 1.31 × 10−5 2.97

Linear weights (3) Linear weights (4)
20× 20 4.04 × 10−4 1.07 × 10−3 4.04 × 10−4 1.07 × 10−3

40× 40 6.44 × 10−5 2.65 1.89 × 10−4 2.50 6.44 × 10−5 2.65 1.89 × 10−4 2.50
60× 60 1.98 × 10−5 2.91 5.93 × 10−5 2.86 1.98 × 10−5 2.91 5.93 × 10−5 2.86
80× 80 8.42 × 10−6 2.97 2.54 × 10−5 2.95 8.42 × 10−6 2.97 2.54 × 10−5 2.95

100× 100 4.33 × 10−6 2.98 1.31 × 10−5 2.97 4.33 × 10−6 2.98 1.31 × 10−5 2.97

Example 2. Here, we continue to test the numerical accuracy of three-dimensional Euler equations.
The computational domain is [0, 2]× [0, 2]× [0, 2]. The initial conditions are ρ(x, y, z, 0) = 1 +
0.2 sin(π(x + y + z)), u(x, y, z, 0) = 1, v(x, y, z, 0) = 1, w(x, y, z, 0) = 1, and p(x, y, z, 0) = 1
with periodic boundary conditions. The exact density solution is ρ(x, y, z, t) = 1 + 0.2 sin(π(x +
y + z− (u + v + w)t)). The final computing time is t = 1.0. The errors and numerical orders of
accuracy are provided in Table 2, and the theoretical order is reached with four types of linear weights.

Table 2. Accuracy test for 3D Euler equations. T = 1. L1 and L∞ errors.

Mesh L1 Error Order L∞ Error Order L1 Error Order L∞ Error Order

Linear weights (1) Linear weights (2)
10× 10× 10 8.25 × 10−4 1.62× 10−3 8.25 × 10−4 1.62× 10−3

20× 20× 20 8.52 × 10−5 3.28 1.99 × 10−4 3.03 8.53 × 10−5 3.27 2.00 × 10−4 3.02
30× 30× 30 2.38 × 10−5 3.15 6.03 × 10−5 2.94 2.38 × 10−5 3.15 6.03 × 10−5 2.96
40× 40× 40 1.05 × 10−6 2.84 2.44 × 10−5 3.14 1.05 × 10−6 2.84 2.44 × 10−5 3.14
50× 50× 50 5.23 × 10−6 3.12 1.26 × 10−5 2.96 5.23 × 10−6 3.12 1.26 × 10−5 2.96

Linear weights (3) Linear weights (4)
10× 10× 10 8.26 × 10−4 1.62× 10−3 8.26 × 10−4 1.62× 10−3

20× 20× 20 8.53 × 10−5 3.28 2.00 × 10−4 3.02 8.53 × 10−5 3.28 2.00 × 10−4 3.02
30× 30× 30 2.38 × 10−5 3.15 6.03 × 10−5 2.96 2.38 × 10−5 3.15 6.03 × 10−5 2.96
40× 40× 40 1.05 × 10−6 2.84 2.44 × 10−5 3.14 1.05 × 10−6 2.84 2.44 × 10−5 3.14
50× 50× 50 5.23 × 10−6 3.12 1.26 × 10−5 2.96 5.23 × 10−6 3.12 1.26 × 10−5 2.96

3.2. Two-Dimensional Lagrangian Tests

This subsection displays a series of two-dimensional Lagrangian test problems. The
Sod problem [53] and Lax problem [54], Shu–Osher problem [55], Blast wave problem [56],
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two-dimensional Sedov problem [1], two-dimensional Sod problem [57], and two-dimensional
Saltzman problem [58] are presented to display the capability of the designed scheme.

Example 3. We first consider two classical shock tube problems. The first is the Sod problem [53],
with the initial conditions

(ρ, u, v, p)T =

{
(1, 0, 0, 2.5)T , x ∈ [0, 0.5),
(0.125, 0, 0, 0.25)T , x ∈ [0.5, 1].

(37)

The second is the Lax problem [54], with the initial conditions

(ρ, u, v, p)T =

{
(0.445, 0.698, 0, 3.528)T , x ∈ [0, 0.5),
(0.5, 0, 0, 0.571)T , x ∈ [0.5, 1].

(38)

These two problems are calculated in the domain of [0, 1] × [−0.05, 0.05] with 100 × 10
uniform initial cells. The density profiles of the Sod problem at t = 0.2 and the Lax problem at
t = 0.12 are displayed in Figure 3. It can be seen that the designed scheme can obtain a sharp
capture of discontinuities.

Figure 3. Sod and Lax problem. Density cut at y = 0. Solid line: the exact solution; squares: the
results of US-WENO Lagrangian scheme.

Example 4. We now consider the Shu–Osher problem [55], with the following initial conditions

(ρ, u, v, p)T =

{
(3.857143, 2.629369, 0, 10.333333)T , x ∈ [−10,−4),
(1 + 0.2 sin(5x), 0, 0, 1)T , x ∈ [−4, 5].

(39)

The computation domain is [−10, 5]× [−0.05, 0.05] with a uniform 200× 10 cells initially.
The final computing time is t = 1.8. The density ρ calculated by the designed scheme is presented in
Figure 4, where the reference solution is the results of the fifth-order Eulerian WENO scheme [25]
with 2000 cells. It can be seen that the developed scheme obtains the desirable results in a fine
structure of density profile.

Example 5. We consider the two blast waves problem [56]. The initial conditions are

(ρ, u, v, p)T =


(1, 0, 0, 1000)T , x ∈ [0, 0.1),
(1, 0, 0, 0.01)T , x ∈ [0.1, 0.9),
(1, 0, 0, 100)T , x ∈ [0.9, 1.0].

(40)

The computation domain is [0, 1]× [−0.05, 0.05] with 200× 10 cells. The computed density ρ
at t = 0.038 is displayed in Figure 5, and the results of the fifth-order Eulerian WENO scheme [25]
with 2000 cells are also plotted for comparison. The designed US-WENO Lagrangian scheme could
obtain comparable results as before. Moreover, some overshoots occurred due to the Lagrangian
framework rather than the high-order spatial reconstructions, as mentioned in [1].
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Figure 4. Shu–Osher problem. T = 1.8. Density cut at y = 0. Solid line: the reference solution; squares:
the results of US-WENO Lagrangian scheme. (Left): overall view. (Right): enlarged view.

Figure 5. Blast wave problem. T = 0.038. Density cut at y = 0. Solid line: the reference solution; squares:
the results of US-WENO Lagrangian scheme. (Left): overall view. (Right): enlarged view.

Example 6. We test the two-dimensional Sedov problem [1], a typical test example used to verify
the capability of the Lagrangian method. The computation is performed on [0, 1.1]× [0, 1.1] with
30× 30 cells initially. The initial conditions are ρ = 1, u = 0, v = 0, γ = 1.4, and the internal
energy is 10−14 except for the cell containing the origin, where we set e = 182.09. All boundaries
employ the reflection conditions. The analytical solution [59] is that the shock arrives at r = 1 at
time t = 1 with a peak density of 6. The computation results are presented in Figure 6, and the
figure shows that numerical solutions with good resolution are obtained for this benchmark example.

Example 7. We consider two-dimensional Sod problem [57]. The initial conditions are:

(ρ, u, v, p)T =

{
(1, 0, 0, 1)T , 0 ≤

√
x2 + y2 ≤ 0.5,

(0.125, 0, 0, 0.1)T , 0.5 <
√

x2 + y2 ≤ 1.
(41)

The computation domain is [−1, 1]× [−1, 1] and initially divided into 200× 200 uniform
cells. All of the boundaries are employed the non-reflection condition. It is a significant test case
since the wave propagation direction does not correspond with the initial grid. The computational
results including mesh, density distributions, pressure distributions, and density profiles along
y = 0 are displayed in Figure 7. The calculation results show that the numerical solution of density
and pressure agree well with the corresponding reference solution.
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Figure 6. The 2D Sedov problem. T = 1. (Top left): mesh and density distributions; (top right): mesh
and pressure distributions; (bottom): density in diagonal cells with respect to the radius.

Figure 7. The 2D Sod problem. T = 0.2. (Top left): mesh distributions; (top right): density distribu-
tions; (bottom left): pressure distributions; (bottom right): density profiles along y = 0.



Mathematics 2023, 11, 4842 14 of 21

Example 8. Two-dimensional Saltzman problem [58] is next considered. It describes a piston’s
prescribed motion impacting fluid in an enclosed space. The computation is carried out in [0, 1]×
[0, 0.1] with 100× 10 cells. The initial mesh, shown in Figure 8, is represented as

xi,j = i∆x + (10− j)∆ysin(
iπ
100

), yi,j = j∆y, (42)

where ∆x = ∆y = 0.01. As can be seen, the starting mesh is not consistent with the flow direction
to evaluate the robustness of the Lagrangian scheme. The fluid is described with ρ = 1, u = 0,
v = 0, e = 10−4, γ = 5/3. The left boundary is a moving piston with u = 1, and other boundaries
meet the conditions for a reflective boundary. The CFL number is 0.01 originally, and returns to
0.6 when the computation proceeds to t = 0.01 [1,2]. According to [14], the shock is supposed
to be at x = 0.8 when t = 0.6, the analytic value of post-shock is 4.0 for density and 1.333 for
pressure. The density and pressure distributions are displayed in Figure 9, and corresponding cut
lines are given for comparison. It can be seen that the designed scheme also works well for this mesh
distortion problem.

Figure 8. Initial mesh configuration for 2D Saltzman problem.

Figure 9. The 2D Saltzman problem. T = 0.6. (Top left): mesh and density distributions; (top right):
mesh and pressure distributions; (bottom left): density profiles along y = 0 comparison with
analytical solution; (bottom right): pressure profiles along y = 0 comparison with analytical solution.

3.3. Two-Dimensional ALE Tests

Two examples of two-dimensional ALE computations are given in this subsection to
further evaluate the capabilities of the proposed US-WENO Lagrangian scheme. Here,
we modify the two-dimensional third-order ENO remapping scheme [60] by taking the
procedures of US-WENO spatial reconstruction introduced in this paper. The rezone mesh
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is obtained by the variational method [61], and the corresponding Euler–Lagrange equation
has the following form (

Gxξ

)
ξ
+
(
Gxη

)
η
= 0,(

Gyξ

)
ξ
+
(
Gyη

)
η
= 0,

(43)

where (x, y) and (ξ, η) denote the physical and computational coordinates, G = ωI, ω is a
monitor function related to the flow variables. In general, the monitor function can take

the form: ω =
√

1 + α|∇ρ|2, and more details can be found in [61]. The two-dimensional
Riemann problem [62] and triple-point problem [63–65] are presented to illustrate the
superior capability of the developed scheme in two-dimensional ALE simulations.

Example 9. Two-dimensional Riemann problem [62] with the following initial conditions:
(ρ1, u1, v1, p1)

T = (0.5313, 0, 0, 0.4)T , x > 1, y > 1,
(ρ2, u2, v2, p2)

T = (1, 0, 0.7276, 1)T , x > 1, y < 1,
(ρ3, u3, v3, p3)

T = (1, 0.7276, 0, 1)T , x < 1, y > 1,
(ρ4, u4, v4, p4)

T = (0.8, 0, 0, 1)T , x < 1, y < 1.

(44)

The computational domain is [0, 2]× [0, 2] with 200× 200 uniform cells initially. The final com-
puting time is t = 0.52. In this case, we perform the rezoning and remapping algorithm every five-time
Lagrangian steps. As in [61], the monitor function used in this problem is ω =

√
1 + 2000(ρ2

ξ + ρ2
η).

The results of the mesh distribution and density contours are shown in Figure 10. It can be seen that
the results with better resolution are obtained due to the local mesh adaptation.

Figure 10. The 2D Riemann problem. T = 0.52. (Left): mesh distributions; (right): density contours.

Example 10. Triple-point problem [63–65] is a typical test problem to evaluate the performance of
Lagrangian or ALE methods with large mesh deformation. We consider the single material case, and
the initial conditions are

(ρ, u, v, p, γ)T =


(1, 0, 0, 1, 1.4)T , (x, y) ∈ [0, 1]× [0, 3],
(0.125, 0, 0, 0.1, 1.4)T , (x, y) ∈ [1, 9]× [0, 1.5],
(1, 0, 0, 0.1, 1.4)T , (x, y) ∈ [1, 9]× [1.5, 3].

(45)

Initially, 180× 60 cells are equally distributed. The final computing time is t = 4. In this case,
we perform the rezoning and remapping algorithm every five-time Lagrangian steps. As in [61], the
monitor function used here is ω =

√
1 + 100(ρ2

ξ + ρ2
η). The results of mesh distributions and density

contours are shown in Figure 11. It can be observed that the mesh is performed well and desirable
results are obtained by the proposed scheme combined with the rezoning and remapping algorithm.
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Figure 11. Triple-point problem. T = 4. (Top): mesh distributions; (bottom): density contours.

3.4. Three-Dimensional Lagrangian Tests

In this subsection, the three-dimensional Sedov problem [18,42,59], Sod problem [57],
and Saltzman problem [42] are given to illustrate the superior capability of the designed
scheme in high dimensions. In the Lagrangian method, the numerical simulations in
three dimensions are more difficult than in two dimensions, mainly because the mesh is
more easily distorted in three dimensions. We can calculate these three examples without
introducing any further procedures, showing that the designed US-WENO Lagrangian
scheme is quite robust in three-dimensional simulations.

Example 11. The three-dimensional Sedov problem [18,42,59], which describes blast wave energy
deposited from a singular point, is a typical test problem for the Lagrangian method. The initial
conditions are ρ = 1, u = 0, v = 0, w = 0, γ = 1.4, and the pressure is 10−6 everywhere except in
the cell containing the origin. For the cell containing the origin, the pressure is given by p = (γ−1)ε0

V ,
where ε0 = 0.106384 is the total amount of released energy, and V is the cell’s volume. The total
energy released is given to make the shock arrive at r = 1 when time t = 1 [18]. The computation is
performed on the domain of [0, 1.2]× [0, 1.2]× [0, 1.2] with uniform 30× 30× 30 cells initially.
The reflective boundary conditions are performed on x = 0, y = 0, and z = 0, and other boundaries
are non-reflective boundaries. In particular, a smaller CFL number of 0.01 is used first and returns
to 0.6 after 30 steps for the singularity of origin. The computation results of the designed scheme are
given in Figure 12. The figure shows that the distributions of density and pressure perform well
with mesh movement.

Example 12. The three-dimensional Sod problem [57]. The initial conditions are

(ρ, u, v, w, p)T =

{
(1, 0, 0, 0, 1)T , 0 ≤

√
x2 + y2 + z2 ≤ 0.5,

(0.125, 0, 0, 0, 0.1)T , 0.5 <
√

x2 + y2 + z2 ≤ 1.
(46)

The computation is performed on (x, y, z) ∈ [0, 1]× [0, 1]× [0, 1] with 50× 50× 50 uniform
cells. The symmetric boundary conditions are employed on x = 0, y = 0, and z = 0, and other
boundaries are defined as non-reflective. The computation results of density and pressure distributions
and their profiles against radius are presented in Figure 13. The designed scheme also performs well,
as before.
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Figure 12. The 3D Sedov problem. T = 1. (Top left): mesh and density distributions; (top right): mesh
and pressure distributions; (bottom): comparison between analytical and numerical density profiles
along the diagonal cell.

Figure 13. The 3D Sod problem. T = 0.25. (Top left): mesh and density distributions; (top right): mesh
and pressure distributions; (bottom left): comparison between analytical and numerical density
profiles along the diagonal cell; (bottom right): comparison between analytical and numerical
pressure profiles along the diagonal cell.



Mathematics 2023, 11, 4842 18 of 21

Example 13. The three-dimensional Saltzman problem [42] is considered to evaluate the robustness
of the Lagrangian method, which describes the motion of a planar shock wave on a skewed cartesian
grid. The computation is carried out in [0, 1]× [0, 0.1]× [0, 0.1] with 100× 10× 10 cells. The
initial mesh is displayed in Figure 14 and given by

xi,j,k = ξi +
(
0.5ηj + ζk − 15ηjζk

)
sin(πξi),

yi,j,k = ηj,
zi,j,k = ζk,

(47)

where ξi = i∆ξ, ηj = j∆η, ζk = k∆ζ with ∆ξ = ∆η = ∆ζ = 0.01. The box is filled with the
following gas: ρ = 1, u = 0, v = 0, w = 0, e = 10−4, γ = 5/3. The left boundary behaves like a
piston with u = 1, and the other boundaries are reflected walls. A smaller CFL number of 0.01 is
used at first and returns to 0.6 after t = 0.01. The shock is expected to be located at x = 0.8 at time
t = 0.6, and the analytic value post-shock are ρ = 4 and p = 1.333. Figure 15 gives the density
and pressure distributions, the comparison figures of the cut line with the analytical solution are
also presented. It can be seen that good results are also obtained for this three-dimensional mesh
distortion problem.

Figure 14. Initial mesh configuration for 3D Saltzman problem.

Figure 15. The 3D Saltzman problem. T = 0.6. (Top left): mesh and density distributions; (top right):
mesh and pressure distributions; (bottom left): density profiles plotted against the analytical solution;
(bottom right): pressure profiles plotted against the analytical solution.

4. Concluding Remarks

In this paper, a new finite volume US-WENO Lagrangian scheme is developed for
solving Euler equations on quadrilateral and hexahedral meshes. Compared with the high-
order ENO Lagrangian scheme [1,2], the most incredible benefits of the developed scheme
are its simplicity and robustness. The spatial reconstruction procedures are implemented
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by using a convex combination of a quadratic polynomial with several linear polynomials
defined on unequal-sized stencils, so the linear weights can be chosen artificially and are
not related to the local mesh topology or the location of the quadrature points. Moreover,
the linear weights no longer need to change, as the mesh moves with the fluid once
they are set initially, avoiding the appearance of negative linear weights. Meanwhile, the
designed scheme is quite robust and computationally efficient, so it has great potential for
complex multi-dimensional Lagrangian simulations. Our future investigation will focus on
developing high-order Lagrangian methods on three-dimensional hybrid grids.
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