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Abstract: In the field of image watermarking, imperceptibility, robustness, and watermarking capacity
are key indicators for evaluating the performance of watermarking techniques. However, these three
factors are often mutually constrained, posing a challenge in achieving a balance among them. To
address this issue, this paper presents a novel image watermark detection algorithm based on local
fast and accurate polar harmonic Fourier moments (FAPHFMs) and the BKF–Rayleigh distribution
model. Firstly, the original image is chunked without overlapping, the entropy value is calculated,
the high-entropy chunks are selected in descending order, and the local FAPHFM magnitudes
are calculated. Secondly, the watermarking signals are embedded into the robust local FAPHFM
magnitudes by the multiplication function, and then MMLE based on the RSS method is utilized to
estimate the statistical parameters of the BKF–Rayleigh distribution model. Finally, a blind image
watermarking detector is designed using BKF–Rayleigh distribution and LO decision criteria. In
addition, we derive the closed expression of the watermark detector using the BKF–Rayleigh model.
The experiments proved that the algorithm in this paper outperforms the existing methods in terms
of performance, maintains robustness well under a large watermarking capacity, and has excellent
imperceptibility at the same time. The algorithm maintains a well-balanced relationship between
robustness, imperceptibility, and watermarking capacity.

Keywords: image watermarking; FAPHFM magnitudes; BKF–Rayleigh distribution model; LO
decision criteria

MSC: 68-06

1. Introduction

With the rapid advancement of digital technology, the transmission of multimedia
digital works over the Internet has become prevalent. This advancement has enabled the
low-cost, high-speed reproduction and dissemination of digital media, leading to improved
efficiency and accuracy in information expression and contributing to increased socio-
economic benefits. However, this open Internet environment poses significant security
threats and challenges for digital media resources. To address these challenges, digital
watermarking has emerged as a promising solution for copyright protection and integrity
authentication in open network environments. Digital watermarks, which are embedded
within multimedia data, enable one to access, represent, manipulate, and distribute media
without degrading its quality. As a result, digital watermarking technology finds extensive
applications in various domains such as copyright protection, digital content authentica-
tion, anti-counterfeiting and traceability, broadcast monitoring, billing security, content
management, and digital forensics. By employing digital watermarking technology, the fea-
sibility of copyright protection and data integrity verification can be significantly improved,
presenting a robust solution to the global issue of intellectual property protection.

Digital image watermarking technology is evaluated based on three crucial metrics:
robustness, imperceptibility, and watermark capacity. There are mutual constraints among
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the three, so it is difficult to design a digital image watermarking algorithm that optimizes
these three metrics simultaneously. Image watermarking algorithms are categorized into
the spatial and frequency domains based on the embedding domain. The spatial-domain
algorithm inserts the watermark data directly into the pixels of the original image. The
method is simple to operate, but the robustness of the watermark is not sufficient to
resist signaling attacks. In the frequency-domain algorithm, the watermark is embedded
by changing the image transform domain coefficients. The robustness of the method is
somewhat improved compared to null-domain watermark embedding. Some of the popular
transforms include the wavelet family, such as the wavelet transform [1], discrete wavelet
transform (DWT) [2,3], discrete cosine transform (DCT) [4], redundant discrete wavelet
transform (RDWT) [5], dual-tree complex wavelet transform (DTCWT) [6], and integer
wavelet transform (IWT) [7]; the contourlet family, such as the contourlet transform (CT) [8]
and non-subsampled contourlet transform (NSCT) [9]; and the shearlet family, such as the
discrete shearlet transform (DST) [10] and non-subsampled shearlet transform (NSST) [11].
In recent years, a novel watermarking method that considers the geometric invariance
of images has emerged. This approach involves determining the geometric invariance of
the carrier image before embedding and detecting the watermark. A breakthrough was
achieved in 2000 when Alghoniemy et al. [12] applied image moments for the first time to
image watermarking techniques.

There are many factors that affect the accuracy of watermark detection. In addition to
the watermark carrier, they include the establishment of statistical models, the estimation
of model parameters, and the construction method of the detector. The main statistical
models commonly used are Gaussian distribution (GD) [13], generalized Gaussian distri-
bution (GGD) [14], normal indicator distribution (NIG) [15], the Gaussian mixture model
(GMM) [16], Bessel K-form (BKF) distribution [17,18], t location-scale (tLS) distribution [19],
Cauchy distribution [20], Laplace distribution [21], and Weibull distribution [4]. However,
a single distribution model cannot capture the correlation of coefficients at different scales
and in different directions. Therefore, a single distribution model does not fit the coeffi-
cients well. In view of this, researchers have proposed joint statistical models, which have
strong scale dependence and more fully consider the correlation between the coefficients.
Common examples are multivariate Cauchy distribution (MCD) [9], the multivariate gener-
alized Gaussian (MVGG) model [22], the hidden Markov model (HMM) [23], the Gaussian
mixing-based vector hidden Markov tree model (HMTM) [24], the Cauchy mixture-based
vector hidden Markov tree model [25], and the two-dimensional generalized autoregressive
conditional heteroscedasticity (2D-GARCH) model [26]. Depending on the extraction re-
quirements, watermarking algorithms can be categorized into watermark decoding [27–30]
and watermark detection [4,31,32]. Watermark decoding is the extraction of watermark
information at the receiver side, whereas watermark detection is the use of a binary de-
cision criterion at the receiver side to determine whether the image contains watermark
information or not. Watermark detection can be thought of as the detection of a signal
in a noisy environment, where the coefficients represent the noisy environment and the
watermark is the signal to be detected. The role of the detector is to detect the presence of
hidden binary information in the observed image coefficients. The accuracy of parameter
estimation also affects the performance of watermark detection. Currently, expectation
maximization (EM) and maximum likelihood estimation (MLE) methods are widely used
for the parameter estimation of statistical models. According to the presence or absence of
the original medium in the detector, watermarking methods can be categorized into two
main groups: blind watermarking and non-blind watermarking. In many practical appli-
cations, blind watermarking detectors are more applicable. In past studies, the decision
rules for constructing detectors included the log-likelihood ratio test (LLRT) [15,19], RAO
test [33], generalized likelihood ratio test (GLRT) [34], local maximum power (LMP) test [9],
and log-likelihood ratio test (LRT) [21].

This paper focuses on exploring the issue of image copyright protection. Although
digital watermarking technology has been widely used in the field of image copyright, there
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are still areas that need to be improved. First, regarding digital watermarking technology
for copyright protection, the direct modification of the transform domain coefficients can
satisfy the invisibility requirement, but it cannot effectively resist all kinds of attacks, so it
is crucial to choose a more robust carrier to ensure the effectiveness of copyright protection.
Secondly, a single distribution cannot effectively characterize the coefficient distribution
and is not sufficient to resist stronger attacks, so choosing a joint statistical model can more
accurately describe the coefficient distribution law. Thirdly, watermark information belongs
to weak signals in non-Gaussian distributions, and a strong decision criterion is needed to
improve the detection probability.

In this paper, an image watermarking algorithm based on BKF–Rayleigh distribution
and the magnitudes of FAPHFMs is designed, which can still maintain good invisibility
and robustness under a large watermarking capacity.

In summary, the contributions of this paper are as follows:
We take the magnitudes of FAPHFMs as the modeling object and provide a carrier

object with higher robustness while ensuring imperceptibility.
We propose the BKF–Rayleigh distribution model, which can more accurately charac-

terize the statistics of peaks and heavy tails and better capture the non-Gaussian distribution
properties of the FAPHFM magnitudes.

We choose MMLE based on the RSS method to effectively solve the problem of model
parameter estimation.

We construct a locally optimal detector based on BKF–Rayleigh distribution and the
LO decision criterion to realize watermark detection.

Finally, we conduct many experiments to verify the advantages of the image water-
mark detector in this paper.

The remaining chapters are structured as follows: Section 2 focuses on statistical
model-based digital image watermarking techniques in recent years. Section 3 briefly
introduces the concept of FAPHFMs and investigates the robustness of FAPHFM magni-
tudes. Section 4 mainly studies the statistical characteristics of FAPHFM magnitudes and
then fits the FAPHFM magnitude coefficients using the BKF–Rayleigh model. In order to
improve the accuracy and reliability of the model, MMLE based on the RSS method is used
to estimate the parameters of the BKF–Rayleigh model more accurately. In Section 5, we
detail the embedding process of the watermarking algorithm. Section 6 derives the LO
watermark detector based on the BKF–Rayleigh model and gives a detailed description of
the performance of the new detection method. In Section 7, we analyze the detection proba-
bility of the proposed watermark detection method through a large number of simulation
experiments and compare it with other excellent detectors. Section 8 is the conclusion.

2. Related Work

In this section, we introduce the relevant achievements of watermark detection tech-
niques and watermark algorithms in the past few years. Chen et al. [35] used the Karush–
Kuhn–Tucker (KKT) theorem to minimize the difference between the low-frequency coeffi-
cients of the DWT and the watermarked coefficients in order to modify the low-frequency
amplitude of the watermark embedding. However, the obvious drawbacks and limitations
of this system are its low robustness and low transparency. Moreover, the detection method
in this system is semi-blind and faces implementation challenges in industrial applications.
Amirmazlaghani [26] proposed a new additive image watermark detection method using
the 2D-GARCH model to represent the wavelet coefficients and designed a watermark
detector based on the 2D-GARCH model, which demonstrated excellent performance in
experimental evaluations. However, the wavelet transform has limitations in 2D signals
despite its high resolution in both the frequency and time domains. Etemad et al. [19]
proposed a contourlet-domain multiplicative watermark detection method based on t-LS
distribution, designed an optimal multiplicative watermark detector using the likelihood
ratio decision rule and t position scale distribution, and derived the receiver operating
characteristics. Kilari et al. [36] proposed a hybrid approach using the redundant discrete
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wavelet transform (RDWT) and digital image watermarking singular-value decomposition
(SVD) schemes to provide authentication and security for aerial remote sensing images
transmitted over the Internet. Three-level symmetric encryption with a low computational
cost was used to ensure the security of the watermark. In order to obtain high-quality
digital image watermarking results, an optimization algorithm based on hybrid locust-
bat (G-BAT) soft computing (SC) was also proposed. The experimental results showed
that the algorithm had high imperceptibility, robustness, embedding ability, and security
when dealing with digital image watermarking for aerial remote sensing images. Zeb-
biche et al. [14] proposed a blind additive image watermarking scheme in the DTCWT
domain. The high-frequency DTCWT coefficients were modeled using GG distribution,
and the watermark detector was constructed based on RAO. The experimental results
showed that the proposed algorithm was improved in terms of stealth, detection accuracy,
and robustness to common attacks. However, RAO hypothesis testing requires sufficiently
large amounts of sample data to achieve optimal asymptotic performance, which greatly
increases the computational cost. As aviation technology continues to advance, aerial
remote sensing images also need to be protected. Hu et al. [32] proposed a watermark
detection method based on a non-parametric model. They used kernel density estimation
(KDE) and non-parametric detection to model the speech frame coefficients of a tertiary
DWT, designed a maximum likelihood (ML) detector during the watermark detection
process, and used the Neyman–Pearson criterion to calculate the decision threshold. Exper-
iments showed that the algorithm had good steganography performance and robustness.
However, this algorithm was only applicable to a small sample size, which limited its use-
fulness. Oswaldo et al. [37] proposed a copyright protection and information transmission
algorithm. This algorithm utilized histogram distortion caused by embedding strategies
and introduced a new histogram position function method to display any watermark of
sufficient quality to be recognized or decoded by any application. Ahmaderaghi et al. [21]
proposed a DST-based blind watermarking algorithm for images. The maximum like-
lihood detection algorithm was implemented using the Neyman–Pearson criterion for
the Laplace model of DST coefficients under certain assumptions. Gong et al. [38] de-
signed a new watermarking scheme with higher concealment performance and robustness
to enhance the imperceptibility of the watermark by selecting the watermark insertion
region through Canny edge detection. During the watermark embedding process, the
robustness of the digital watermarking scheme was further improved due to the stability
of the additional threshold and singular-value decomposition. The experimental results
showed that the watermarking scheme outperformed other typical watermarking schemes
in terms of imperceptibility and robustness. Niu et al. [39] proposed a blind statistical
color image watermarking scheme based on Cauchy–Rayleigh distribution and the LMP
decision criteria, introduced the MLE method to estimate the parameters of the statistical
model of Cauchy–Rayleigh distribution, and subsequently developed a blind color image
watermarking detector using the Cauchy–Rayleigh statistical model and the LMP decision
criteria. Numerous experiments demonstrated the excellent performance of the proposed
method in all aspects. Wang et al. [9] proposed a locally optimal image watermark de-
tector based on the NSCT domain. Using the LMP decision criteria rule and RSS-based
Cauchy distribution, an optimal multiplicative watermarking detector was proposed, and
a statistical model was used to derive a closed-form expression for the watermarking
detector. The experimental results showed that the watermarking algorithm was highly
efficient and provided better steganography performance. Amini et al. [24] proposed a
novel sparse-domain color image watermarking algorithm and its corresponding detector.
They used a hidden Markov model to consider the correlation between RGB channels
and the interscale correlation of the sparse coefficients of color images and designed an
effective detector to check the existence of watermarks by establishing a binary hypothesis
test. Experiments showed that the proposed detector provided a higher detection rate and
exhibited better performance in terms of robustness. In the context of advancing medical
technology, the protection of copyright for medical images has gained great importance.
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Huang et al. [40] proposed a robust zero watermarking algorithm designed specifically for
medical images, which employed DTCWT, Hessenberg decomposition, and the multilevel
discrete cosine transform (MDCT), in addition to combining cryptographic algorithms,
third-party concepts, and chaotic sequences to encrypt watermarked images in order to im-
prove their security. By utilizing the zero watermarking technique, the algorithm ensured
the integrity, robustness, and concealment of medical images. The algorithm was effective
in extracting watermarked images and was resistant to various attacks. In recent years,
deep neural networks (DNNs) have gained popularity in the field of digital watermarking,
with researchers exploring their potential for watermark embedding and detection [41,42].
Pavlović et al. [43] utilized deep neural networks for the robust digital watermarking and
authentication of speech signals, employing two neural networks, the employer and the
detector. The embedding networks achieved imperceptible watermark embedding by
minimizing the difference between the original and watermarked signals, and the detector
could always detect watermarks without error, even if its input was a signal that had been
attacked multiple times.

Several moment-based image watermarking algorithms are described below.
Hosny et al. [44] proposed a new robust watermarking algorithm for color images by
deriving new fractional-order multichannel orthogonal exponent moments (MFrEMs)
and their invariants for geometric transformations. A new robust color image water-
marking algorithm was constructed using these high-precision moments, and the experi-
mental results showed that the proposed robust watermarking algorithm outperformed
existing algorithms in terms of visual imperceptibility and robustness to various attacks.
Wang et al. [45] proposed GPHFMs based on geranion theory and polar harmonic Fourier
moments (PHFMs) and used them for light-field image watermarking, which effectively
solved the problem of weak resistance to geometric attacks commonly found in existing
light-field image watermarking schemes. Gong et al. [46] proposed a robust color im-
age watermarking algorithm with geometric correction by LS-SVR based on low-order
quaternion fractional-order orthogonal Fourier–Mellin moments (QFrOOFMMs). In most
cases, the algorithm outperformed typical algorithms in resisting both common and ge-
ometric attacks, but there was still room for improvement in terms of computational
accuracy. Yamni et al. [47] proposed a watermarking algorithm for digital image copyright
protection based on fractional Charlier–Meixner moments (FrCMMs), which embedded
watermarks into FrCMM coefficients, thus improving invisibility, robustness, and security.
Wang et al. [48] proposed a robust zero watermark algorithm based on MZMs (modi-
fied Zernike moments) to resist geometric attacks. Firstly, MZMs were constructed by
improving the radial basis function of ZMs (Zernike moments), and then a robust zero
watermark algorithm to resist geometric attacks was proposed, which could achieve the
lossless copyright protection of images.

3. Robustness Analysis of the FAPHFM Magnitudes
3.1. Fast and Accurate Polar Harmonic Fourier Moments (FAPHFMs)

If a gray image in polar coordinates is f (ρ, θ), then the fast and accurate polar harmonic
Fourier moments (FAPHFMs) on the unit circle can be expressed as [49]

Pnm =
2
π ∑

u
∑
v

[
8

∑
i=0

fi(ρuv, θuv)
(

Hnm(ρuv, θuv)
1 + jHnm(ρuv, θuv)

2
)]

(1)

where fi(ρuv, θu,v) denotes the pixel values of the eight symmetry points corresponding to
each ring in the polar coordinate sector grid. Moreover, there exist{

Hnm(ρuv, θuv)1 = H′nm(ρ)cos(mθ)
Hnm(ρuv, θuv)2 = H′nm(ρ)sin(mθ)

(2)
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The original image can be approximately reconstructed using the formula below:

f̃ (x, y) =
K

∑
n=0

K

∑
m=−n

P̃nmHn(rxy)exp(−jmθxy) (3)

3.2. Analysis of the Magnitudes of FAPHFMs

Due to the geometric invariance, low time complexity, and high noise immunity of
FAPHFMs, we chose the magnitudes of the FAPHFMs as the embedding position of the
watermark. First, the original image with pixels of 512× 512 is segmented into 8× 8 non-
overlapping sub-blocks; then, the fifth-order FAPHFM transform is applied to each block
to obtain the FAPHFM magnitudes of the image. Figure 1 shows the fifth-order transforms
of different images with a size of 340× 192.

(a) Lena

(b) Barbara

(c) Peppers

(d) Boat

Figure 1. Original images and FAPHFM magnitude images (original images on the left, FAPHFM
magnitude images in the center, and FAPHFM magnitude images (×10) on the right).

In order to verify the robustness and applicability of the FAPHFM magnitudes, we
introduce the concept of the normalization error. The most common normalization method
is data Z-score normalization, which maps the data uniformly into the interval [0, 1]. The
normalization error is denoted as

P = |I − Iattack| (4)
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where Iattack is the attacked signal and I is the original signal.

E =
1
n

n

∑
i

∣∣∣∣P− µ

σ

∣∣∣∣ (5)

where n is the number of attack signals, µ is the mean of P, and σ is the standard deviation
of P.

Table 1 presents the normalized error values for the original and FAPHFM magnitude
images under various attacks. The test images are referred to as Lena, Barbara, and Peppers.

Table 1. The error normalization between the original image and the attacked image.

Attack Type
Lena Barbara Peppers

FAPHFM Host FAPHFM Host FAPHFM Host
Magnitudes Image Magnitudes Image Magnitudes Image

JPEG compression
QF = 90 0.0142 0.0521 0.0154 0.0502 0.0175 0.0564

JPEG compression
QF = 30 0.0187 0.0769 0.0173 0.0836 0.0191 0.0832

Median filtering
9× 9 0.0107 0.0287 0.0186 0.0364 0.0122 0.0253

Median filtering
5× 5 0.0101 0.0232 0.0154 0.0337 0.0096 0.0121

Gaussian filtering
9× 9 0.0126 0.0293 0.0298 0.0465 0.0134 0.0303

Gaussian filtering
5× 5 0.0103 0.0244 0.0159 0.0324 0.0113 0.0226

Gamma correction
γ = 0.9 0.0224 0.0375 0.0237 0.0405 0.0287 0.0398

Gamma correction
γ = 2 0.0414 0.0649 0.0426 0.0627 0.0408 0.0619

It is well known that the smaller the normalization error value, the less significant and
more robust the difference between the attacked image and the original image. Figure 2
shows the normalized-error images obtained using the Lena, Barbara, Peppers, and Boat
test images under various attacks. The left side of the figure shows the normalized-error
images based on the original images, and the right side shows the normalized-error images
based on the magnitudes of the FAPHFMs. The darker the color of the image, the smaller
the normalization error value.

(a) Gaussian filtering (5× 5) (b) Median filtering (5× 5)

(c) JPEG (QF = 50) (d) Gamma correction γ = 2

Figure 2. Normalized-error images under various attacks.
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Based on the analysis in Table 1, it can be concluded that the normalization error of
the FAPHFM magnitude coefficients is smaller than the normalization error of the original
images. In addition, as shown in Figure 1, the normalization-error image of the FAPHFM
magnitudes is darker compared to the original images. Both subjective and objective results
indicate that the FAPHFM magnitudes are more robust than the original images. Therefore,
in this paper, the local FAPHFM magnitudes are selected as the embedding location of the
watermarking information.

4. Modeling the Magnitudes of FAPHFMs
4.1. Statistical Analysis of the FAPHFM Magnitudes

Studying the distribution characteristics of the FAPHFM magnitudes is one of the
key steps for accurate modeling. In this paper, we take four typical grayscale images as
an example and analyze the edge statistical characteristics of the FAPHFM magnitudes
using distribution histograms and kurtosis values. In the experiment, the test image of size
512× 512 is divided into 8× 8 non-overlapping sub-blocks of size 64× 64, and then the
FAPHFM magnitudes of each image block are calculated, resulting in a total of 4096 mo-
ments values. The histograms of these moment values are given in Figure 3. It is clear
from the histograms that the magnitude coefficients distributed on the positive half-axis
of the x-axis are mainly distributed near zero, and the farther away from zero, the smaller
the coefficients, with the magnitude coefficients of the FAPHFMs being characterized by
spiky and heavy tails. The kurtosis values are 36.7894, 26.7264, 32.0963, and 21.0022, much
larger than 3 (the kurtosis of Gaussian distribution), which indicates that the magnitude
coefficients show non-Gaussian distribution. Therefore, a reasonable model is needed to
accurately characterize the magnitude coefficients. The standard grayscale images used in
this section are from the CVG-UGR database.

(a) Lena (b) Barbara

(c) Peppers (d) Boat

Figure 3. Distribution histograms of FAPHFM magnitude coefficients.
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4.2. Statistical Modeling of FAPHFM Magnitudes

In the current field of statistical modeling, most models are usually described via a
single probability density function (PDF). However, the use of a single probability distribu-
tion assumes independence between the coefficients and ignores the strong correlation that
exists between the coefficients in the modeling process. This simple modeling approach has
low computational complexity and poor modeling accuracy. BKF distribution, also known
as Bessel K-distribution, has gained popularity in various research fields due to its supe-
rior data fitting ability. This model can effectively capture the interdependence between
coefficients, which greatly improves the descriptive ability of the image [50]. Rayleigh
distribution is a subclass of lifetime distribution and a type of Weibull distribution with a
shape parameter of 2. It has a wide range of applications in the fields of radiocommuni-
cation engineering and engineering measurements. It is commonly used to characterize
the statistical time-varying properties of the received envelope of a flat fading signal or
independent multipath components [51]. In order to improve the modeling accuracy and
capture the distributional characteristics of the FAPHFM magnitude coefficients more
effectively, the BFK–Rayleigh distribution model is proposed in this study. The model
comprehensively reflects the statistical characteristics of FAPHFM magnitudes.

Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , ym} be random variables obeying the
distribution of the BKF–Rayleigh model. The fit plot is defined as follows:

f (X, Y) =
2α

Γ(z1, z2)
e−(z1xm+z2ym)

√
1
2

xm

(
1− e−(z1xm+z2ym)

)
(6)

where Γ denotes the gamma function, α is the scale parameter, and z1 and z2 are the shape
parameters.

The Kolmogorov–Smirnov (K-S) test is an effective method for testing whether an
empirical distribution conforms to a known theoretical distribution, and its core is based on
the cumulative distribution function (CDF). The expression for the K-S test is as follows:

Qks = max|Ce(x)− Ct(x)| (7)

where Ce(x) is the empirical cumulative distribution function, and Ct(x) is the reference
cumulative distribution function. The smaller the K-S value, the better the fit of the
distribution function used.

In order to verify the ability of BKF–Rayleigh distribution to characterize the fringe
properties of the FAPHFM magnitude coefficients, K-S tests were performed on each of
the four images in this paper. Table 2 records the K-S values of the FAPHFM magnitude
coefficients with different theoretical distributions. It can be seen that the K-S value of BKF–
Rayleigh distribution was the smallest, which indicates that BKF–Rayleigh distribution was
able to accurately characterize the edge features of the FAPHFM magnitude coefficients
and outperformed the other models.

Table 2. Comparison of K-S values of various statistical distributions.

Image Rayleigh BKF Cauchy Weibull Cauchy–Rayleigh BKF–Rayleigh
Distribution Distribution Distribution Distribution Distribution Distribution

Lena 0.0466 0.0521 0.0642 0.2135 0.0864 0.0202
Barbara 0.0457 0.0574 0.0576 0.3013 0.0953 0.0186
Peppers 0.0514 0.0493 0.0507 0.2341 0.0821 0.0124

Boat 0.0485 0.0471 0.0497 0.2414 0.0954 0.0203

In order to analyze the performance of BFK–Rayleigh distribution more intuitively, the
modeling results of the four image magnitude coefficients with different distribution models
are recorded in Figure 4. A comparison shows that the fitting degree of the BFK–Rayleigh
distribution model was higher than that of the other distribution models. Therefore, it
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can be concluded that the BFK–Rayleigh distribution model more accurately describes the
magnitude coefficients of FAPHFMs.

(a) Lena (b) Barbara

(c) Peppers (d) Boat

Figure 4. Fitting diagrams of FAPHFM magnitude coefficients.

4.3. Model Parameter Estimation

Parameter estimation plays a vital role in statistical modeling watermarking tech-
niques, and accurate parameter values can ensure the performance of the watermark
detector. Compared with maximum likelihood estimation (MLE) based on ranked set
sampling (RSS), modified maximum likelihood estimation (MMLE) based on the RSS
method is more robust and efficient for location parameter estimation and has lower time
complexity [52]. In this paper, we use MMLE based on RSS for the parameter estimation of
the BFK–Rayleigh distribution model.

MMLE based on RSS is described as follows:

Tm(x) =

(
2 ∑m

i=1(m− i + 1)x2
i(i)

m2 + 3m

) 1
2

(8)

where xi is the sorted set of samples, and m is the sorted capacity.
Defining X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , ym} as two sets of training samples,

the parameter values of the BFK–Rayleigh model are estimated as follows:
(1) The log-likelihood function of the BFK–Rayleigh distribution model is deter-

mined as

ln L(α, z1, z2) = −
√

2
2

ln
2α

Γ(z1, z2)
· (z1xm + z2ym)xm + ln

2α

Γ(z1, z2)
· (2z1xm + 2z2ym) (9)
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The training samples are sorted in ascending order:

x1 ≤ x2 ≤ · · · ≤ xm (10)

y1 ≤ y2 ≤ · · · ≤ ym (11)

(2) The function g(xi, yi) = e(z1xmz2ym) is obtained by implementing a Taylor series
expansion at the point (ti, ri):

g(xi, yi) = g(ti, xi) +
∂g(xi, yi)

∂xi

∣∣∣∣
ti ,ri

+ (yi − ti)
∂g(xi, yi)

∂yi

∣∣∣∣
ti ,ri

∼= e−(z1ti+z2ti) · [(−z1)(xi − ti) + (−z2)(yi − ti)]

(12)

(3) Finally, the likelihood equation is solved, and a unique solution is obtained with
the following results for parameters α, z1, and z2:

∂ ln(α, z1, z2)

∂α
= −
√

2
2α
· g(xi, yi)xm +

m

∑
i=1

2
α
· g(xi, yi) (13)

∂ ln(α, z1, z2)

∂z1
= −
√

2
2z1
· g(xi, yi)xm +

m

∑
i=1

ln
2α

Γ(z1, z2)
· 2xm (14)

∂ ln(α, z1, z2)

∂z2
= −
√

2
2z2
· g(xi, yi)xm +

m

∑
i=1

ln
2α

Γ(z1, z2)
· 2xm (15)

Numerical solutions for the parameters are obtained by equating the above equation
to 0.

Monte Carlo simulation experiments were conducted to compare the performance
of MMLE based on the RSS method with commonly used MMLE methods. The findings
verified the superior performance of MMLE based on the RSS method in terms of both time
complexity and parameter estimation accuracy. In our experiments, we used the inverse
distribution function method to generate discrete random variables that obeyed the shape
parameter z1 = 1. For the estimation of the shape parameter z2, this experiment generated
1000 random sets of random variables under each shape parameter z2 for 1000 sampling
experiments. When the random sample size was 5000, the average estimates and average
error values calculated by the two parameter estimation methods are presented in Table 3.

Table 3. The average estimated results of shape parameter z2.

Actual Shape MMLE Based on RSS MMLE
Parameter Average Average Average Average

z2 Error Estimated Value Error Estimated Value

5.0 0.0113 5.0113 0.0184 4.9816
4.0 0.0101 4.0101 0.0159 4.0159
3.0 0.0086 2.9914 0.0138 3.0138
2.0 0.0071 1.9929 0.0112 1.9888
1.0 0.0054 1.0054 0.0089 1.0069

Figure 5 illustrates the comparison of the average error and average running time
between MMLE based on the RSS method and the MMLE method.

The following conclusions can be drawn from Table 3 and Figure 5: the larger the
sample size, the smaller the average error of the parameter estimates, but the longer the
average running time. This is due to the small sample problem in statistical theory, whereby
it is difficult to represent the totality adequately with a small sample, leading to limitations
in the accuracy and reliability of the estimates. As the sample size increases, the computa-
tional time increases accordingly. In the simulation experiments, for different sample sizes,
MMLE based on the RSS parameter estimation method showed better performance, and
compared with the MMLE method, MMLE based on RSS parameter estimation had lower
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time complexity. Therefore, in this paper, MMLE based on the RSS method was chosen to
obtain the parameters of the BFK–Rayleigh statistical model.
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Figure 5. A comparison of results between the two methods under different sample sizes.

5. Digital Watermark Embedding

The image digital watermarking technique studied in this paper comprises two parts:
watermark embedding and watermark detection. This section mainly introduces the
watermark embedding process, which uses the multiplicative method to embed the wa-
termark information in the magnitudes of the FAPHFMs with local geometric invariance.
Algorithm 1 gives the pseudo-code for watermark embedding.

Algorithm 1 Watermark embedding algorithm

Input: Original I, watermark information w;
Output: Watermarked image I′;

1: Image segmentation 8× 8;
2: High-entropy block selection by Equation (16);
3: FAPHFM magnitude;
4: Magnitude moment selection;
5: Multiplicative watermark embedding by Equation (17);
6: Watermarked image block;
7: Watermarked image I′;
8: return I′.

I = { f (x, y), 0 ≤ x ≤ N, 0 ≤ y ≤ N} represents the original carrier image, where f (x, y)
represents the image pixel; w = {wl ∈ {−1, 1}, 1 ≤ l ≤ L} represents the binary watermark
bit; and I′ = { f (x, y), 0 ≤ x ≤ N, 0 ≤ y ≤ N} represents the image with a watermark.

Step 1: Original image segmentation. The original carrier image is segmented into
individual non-overlapping sub-blocks of size 64× 64, and the N sub-blocks are sorted
by the entropy value. Entropy (H) [53] is a stochastic statistical scale that can be used to
describe the texture of an image. High-entropy regions are rich in textural features and
are therefore suitable for anti-noise and facilitating information hiding. Using the entropy
masking model, we can effectively obtain invisible watermarked images. We calculate the
entropy value of all image blocks and sort the N sub-blocks in descending order according
to the entropy value:

H = −∑J
j=1 p(aj) · logp(aj) (16)

where aj represents a discrete set of possible events whose probability is expressed as p
(
aj
)
,

and J represents the number of possible events.
Step 2: The selection of high-entropy blocks and watermark embedding. The first M

high-entropy blocks Al(l = 1, 2, 3, . . . , L) are selected, and the magnitude coefficients based
on the fifth-order FAPHFMs are computed for each high-entropy block. The target point
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(5, 5) of the magnitude coefficient block is changed by the multiplication rule to embed the
watermark sequence wl so that each magnitude is embedded with the same watermark bit.
The embedding expression is as follows:

yi =

{
xi · (1 + λwl) if wl = 1,

xi · (1− λwl) if wl = −1.
i ∈ Al (17)

where yi represents the moment value containing the watermark; xi denotes the original
moment value; and λ represents the embedding strength, which plays a crucial role in
balancing the imperceptibility and robustness of the watermark and takes a value of
0 ≤ λ ≤ 1 in general. λ is computed by the watermark document ratio (WDR). The formula
is as follows:

WDR = 10log10(
λ2σ2

w

σ2
i

) (18)

where σ2
w is the variance of the watermark sequence, and σ2

i is the variance of the moment
value of the original image.

We rewrite the above formula as

λ =
√

10
WDR

10 × σ2
i

(19)

Step 3: Obtaining the watermark image block. The formula for an image block
containing watermark information is as follows:

fe(x, y) = f (x, y)− fr(x, y) + fe′ (x, y) (20)

where f (x, y) denotes an image block of original FAPHFMs, fe′ (x, y) denotes a recon-
structed image block of FAPHFMs containing watermarks, and fr(x, y) denotes a recon-
structed image block of original FAPHFMs.

Step 4: Obtaining a watermarked image. The high-entropy image block with a water-
mark is exchanged with the original image block to obtain the image I′ with a watermark.

6. Digital Watermark Detection

The purpose of watermark detection is to determine whether an image contains
watermark information or not, and in recent years, a variety of detection methods have
been developed based on the statistical properties of the moment coefficients, which have
proven to be effective in obtaining accurate and reliable detection results. In this section,
a novel image watermark detector is proposed using FAPHFM magnitude coefficients
and the BFK–Rayleigh model. The detection process incorporates the LMP to improve the
detection performance.

6.1. Locally Optimal Watermark Detector

When the watermark embedding strength is weak, watermark detection can be con-
sidered as a weak signal detection problem. Conversely, when the watermark strength
is high, it can be viewed as a strong signal detection problem. Given that the watermark
strength is usually weakened by attacks such as noise, rotation, and filtering, detecting a
strong watermark signal can also be considered as detecting a relatively small signal. In
detection theory, the local maximum potential (also known as the local optimum, LO) test is
considered to be the best detection method for weak signals in non-Gaussian environments.
It minimizes the detection error. Considering that the watermark information is usually
very weak, the watermark detector based on the LMP decision criterion is asymptotically
optimal for weak signals.

To determine the presence of watermark information, the watermark detection process
at the receiving end typically follows binary hypothesis theory, where H0 denotes that there
is no watermark information in the image, H1 denotes that the image contains watermark
information, x is the original FAPHFM magnitude coefficient, y is the watermark-containing
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FAPHFM magnitude coefficient, W = {wi ∈ {−1, 1}, 1 ≤ i ≤ L} is the L-bit watermark
signal, and λ is the embedding strength:

H0 : y = x
H1 : y = x · (1 + λW)

(21)

The likelihood ratio Λ(Y) designed according to the Neyman–Pearson (NP) criterion
is as follows:

Λ(Y) =
fY(y | H1)

fY(y | H0)

H1
>
<
H0

η (22)

where Λ(Y) denotes the likelihood ratio, and η denotes the detection threshold. fY(y|H0)
and fY(y|H1) are the conditional probability density functions under the two hypotheses.
If Λ(Y) > η, H1 exists; otherwise, H0 exists. In practical applications, the log-likelihood
is generally more commonly used than the likelihood ratio, and the log-likelihood ratio
expression is

l(Y) = ln[Λ(Y)] =
L

∑
i=1

ln
fY(yi | H1)

fY(yi | H0)

H1
>
<
H0

τ (23)

where τ = ln(η).
The Taylor series expansion of the above equation at λ = 0 according to the LMP

decision criterion is

l(yx)|λ = l(yx)|λ=0 +
∂l(yx)

∂λ

∣∣∣∣
λ=0
· λ + o(λ)

∼= gLO(yx) · λ + o(λ)

= gLO(xi) · λ

(24)

where gLO(xi) denotes the locally optimal non-linearity and is expressed according to the
BKF–Rayleigh model:

gLo(xi) =

∂ fX(yx)
∂yx

fX(yx)
=

(1− 2α)− xme−(z1xm+z2ym)

√
2α− e−(z1xm+z2ym)

(25)

The final detector expression is

l(gLO(Y)) = ∑L
i=1 gLO(yx) · λ

= ∑L
λwi(1−2α)−xme−(z1xm+z2ym)

√
2α−e−(z1xm+z2ym)

H1
>
<
H0

τ
(26)

where Y denotes the vector value of the FAPHFM magnitudes of the locally optimal
BKF–Rayleigh model, and gLO(Y) denotes the output value.

When l(gLO(Y)) > τ, the detector at the receiving end determines that the image con-
tains a watermark, and when l(gLO(Y)) < τ, the detector at the receiving end determines
that there is no watermark. Here, yx denotes the magnitude coefficients of the FAPHFMs
embedded with watermark information, and gLO(yx) denotes the inverse function of H1
under assumptions.
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Under the H0 hypothesis, the mean m0 and variance σ2
0 , respectively, are expressed

as follows:

m0 = E[gLo(Y) | H0] = E

[
L

∑
i=1

λwi(1− 2α)− xme−(z1xm+z2ym)

√
2α− e−(z1xm+z2ym)

]
= 0 (27)

σ2
0 = var[gLo(Y) | H0]

= E

( L

∑
i=1

λwi(1− 2α)− xme−(z1xm+z2ym)

√
2α− e−(z1xm+z2ym)

)2


=
L

∑
i=1

(λwi(1− 2α)− xme−(z1xm+z2ym)

√
2α− e−(z1xm+z2ym)

)2


(28)

Under the H1 hypothesis, the mean m1 and variance σ2
1 , respectively, are expressed

as follows:

m1 = E[gLo(Y) | H1]

= E

[
L

∑
i=1

λwi(1− 2α)− xme−(z1xm+z2ym)

√
2α− e−(z1xm+z2ym)

]

=
L

∑
i=1

[
λwi(1− 2α)− (xm + λxm)e−(z1(xm+λym)+z2(xm+λym))

√
2α− e−(z1(xm+λym)+z2(xm+λym))

] (29)

The above equation can be simplified to obtain

x1 =
λwi(1− 2α)√

2α− e−(z1(xm+λym)+z2(xm+λym))
(30)

x2 =
(xm + λxm)e−(z1(xm+λym)+z2(xm+λym))

√
2α− e−(z1(xm+λym)+z2(xm+λym))

(31)

m1 =
L

∑
i=1

(x1 + x2) (32)

σ2
1 = var(gLo(Y) | H1) = E

[
L

∑
l=1

(x1 + x2)
2

]
(33)

6.2. Watermark Detection

The pseudo-code for watermark detection is shown in Algorithm 2.
Step 1: Similar to the embedding process, watermarked image I′ is segmented into N

non-overlapping sub-blocks of size 64× 64, and the N sub-blocks are sorted in descending
order according to the entropy value.

Step 2: For high-entropy block selection, the first M high-entropy blocks Am (m = 1, 2,
3, . . . , M) are selected, and the magnitude coefficients based on the fifth-order FAPHFMs
are computed for each high-entropy block. The detector is constructed for the magnitudes
of the FAPHFMs containing watermarks.

Step 3:The characteristics are analyzed, and MMLE based on the RSS method is used
to estimate the magnitudes of the FAPHFMs containing watermarks.

Step 4: According to the decision criterion, an expression based on the BKF–Rayleigh
distribution model is derived to construct the watermark detector, which ultimately deter-
mines whether or not the image contains watermarked information based on the thresh-
old value.
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Algorithm 2 Watermark detection algorithm

Input: Watermarked image I′;
Output: Containing watermark information w1, no watermark information w1;

1: Image segmentation 8× 8;
2: High-entropy block selection by Equation (16);
3: FAPHFM magnitude;
4: Magnitude moment selection;
5: MMLE based on RSS by Equation (8);
6: Threshold value selection;
7: Construction of LO detector;
8: if l(gLO(Y)) > τ then
9: w1;

10: else
11: w0;
12: end if
13: return w0 or w1.

6.3. Performance Analysis of Watermark Detector

It is crucial to analyze the performance of watermark detection methods before practi-
cal application. The probability of a false alarm Pf a and the probability of detection Pdet are
two important metrics for image watermark detection algorithms. Pf a is the probability
that the detector incorrectly detects a watermark in the absence of a watermark, and Pdet is
the probability that the detector successfully detects a watermark if the image contains a
watermark. Pf a and Pdet, respectively, are defined as follows:

Pf a = P(lLO(Y) > τ | H0)

= P
(

lLO(Y)
σ0

>
τ −m0

σ0

)
= Q

(
τ −m0

σ0

) (34)

Pdet = P(l LO (Y) > τ | H1)

= P
(

lLO(Y)
σ1

>
τ −m1

σ1

)
= Q

(
τ −m1

σ1

) (35)

where Q(x) = 1√
2π

∫ +∞
x e−t2/2dt; m0 and σ0 represent the mean and variance, respectively,

under hypothesis H0; and m1 and σ1 represent the mean and variance, respectively, under
hypothesis H1. The expression of threshold τ is

τ = m0 + σ0Q−1(Pf a) (36)

Watermark detection at the receiver side can be achieved by incorporating the LO
statistic gLO(Y) and threshold τ into the equation. Combined with Equations (34) and (35),
the expression for the receiver operating characteristic (ROC) is as follows [54]:

Pdet = Q
(

τ − µ1

σ1

)
= Q

(
σ0

σ1
Q−1

(
Pf a

)
− µ1 − µ0

σ1

) (37)

ROC curves can be plotted with respect to Pf a and Pdet according to Equation (37) and
can be used to subjectively judge the performance of the watermark detector. In addition,
an objective judgment of the detector’s performance can be achieved by calculating the area
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under the receiver operating characteristic curve (AUROC), which takes values in the range
[0, 1] [55]. The AUROC can reflect the relationship between Pf a and Pdet. For a given Pf a,
the smaller the false-alarm probability Pm, the larger the Pdet value (Pdet = 1− Pm). In other
words, the higher the AUROC value, the better the detection performance of the detector.

7. Experimental Results

In this section, the performance of the image watermarking algorithm proposed in
this paper is tested and compared with that of other image watermarking algorithms
through detailed experiments. In the performance tests, we evaluated the algorithm in
terms of imperceptibility, robustness, watermarking capacity, time complexity, and accuracy
degree in comparison with other state-of-the-art watermark detection schemes. All the
experiments were implemented in MATLAB R2022a, with a personal computer configured
with a Windows 10 system and Intel(R) Xeon (R) CPU i7-3470 @ 3.20 GHz 8 GB RAM.

The test images used in this study were all standard grayscale images of size 512× 512
from a standard image database. The digital watermarks were generated by pseudo-
random sequences, and each watermark bit was represented by 1 or −1.

7.1. Watermark Detector Performance Evaluation
7.1.1. Accuracy

The theoretical ROC curve can be used to measure the performance of a detector and
needs to be close to the empirical ROC curve to prove its validity. In order to validate
the theoretical expression of the proposed detection method, the theoretical ROC curve
and the empirical ROC curve were compared by simulation experiments. We selected
96 standard grayscale images of size 512× 512 from the standard test image database.
In the Monte Carlo simulation experiment, 100 binary watermarking sequences with a
length of 4000 bits were randomly generated. The experiments were set to take values of
[10−8 ≤ Pf a ≤ 10−2], with a WDR ranging from −42 dB to −48 dB. Figure 6 presents the
average of the theoretical and empirical ROC curves. We could observe that the two ROC
curves basically overlapped, which indicated that the theoretical mean and variance of the
LO statistic were accurate. This validated the effectiveness of the theoretical ROC curves
for subsequent testing.
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Figure 6. Theoretical ROC curves (solid lines) and empirical ROC curves (dotted lines).

7.1.2. Imperceptibility

Imperceptibility is an important metric for watermarking algorithms, and the peak
signal-to-noise ratio (PSNR) is a widely accepted criterion for quantifying image impercep-
tibility. The test results of the imperceptibility of this algorithm are given in Figure 7. In this
experiment, 5000-bit pseudo-random sequences were embedded into a standard grayscale
image with a size of 512× 512 pixels. The WDR was −42 dB in the experiment. As shown
in Figure 7b, the naked eye could not recognize an obvious difference between the water-
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marked image and the original image. Figure 7c shows the differences between the original
image and the watermarked image, which was enlarged by 10 times in this paper for the
sake of clarity. The PSNRs of this algorithm were 49.5441, 47.7812, 46.2466, and 47.8112, all
greater than 38, indicating that the proposed algorithm had good imperceptibility.

(a) Original images

(b) Watermarked images

(c) Differences in the images (×10)

Figure 7. Imperceptibility analysis.

7.1.3. Robustness

In order to assess the robustness of the algorithms in this paper, we plotted the
following line graphs using the LO statistic gLO(Y) and the threshold τ to reflect the
responsiveness of the detector under different attacks. Figure 8a shows the detection
response under JPEG compression attack with a quality factor (QF) ranging from 10 to
100. Figure 8b shows the detection response based on Gaussian filtering, with the window
sizes of 3× 3, 5× 5, and 7× 7. Figure 8c shows the detection response for clipping, with
values of 2%, 5%, 10%, 15%, and 20%. Figure 8d demonstrates the detection response
under the attack of additive white Gaussian noise (AWGN) with σn values of 5 to 35. The
experimental results show that the LO detector in this paper always maintained accurate
detection under different kinds of attacks with different intensities, indicating the strong
robustness of the detector.

7.1.4. Capacity and Time

Watermarking capacity is an important metric for evaluating digital image water-
marking algorithms. Usually, increasing the watermarking capacity will reduce the imper-
ceptibility of the watermarked image and increase the time complexity of the algorithm.
Therefore, an excellent watermarking algorithm should have improved robustness without
affecting the imperceptibility of the watermarked image and try to expand the water-
marking capacity. In the experiments, watermark sequences of different lengths were
embedded into 20 standard grayscale images with sizes of 512× 512 pixels, and the WDR
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was set to −42 dB. The relationship between the average PSNR, the average watermark
embedding/detection time, and the watermarking capacity is shown in Tables 4–6. From
the tables, it can be seen that the image watermarking algorithm proposed in this paper
achieved and maintained good imperceptibility and ensured a sufficient watermark capac-
ity. In addition, the embedding and detection time of the watermarking algorithm was
relatively short.
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Figure 8. The detection responses for the Lena image.

Table 4. Objective PSNR values under different watermark capacities.

Watermark Capacity Lena Barbara Peppers Boat

1000 52.3469 51.6486 52.8765 51.4642
5000 50.2632 48.5375 49.1576 48.9754

10,000 48.3165 45.2492 47.2481 46.3571

Table 5. The watermark embedding time of the proposed scheme.

Watermark Capacity Lena Barbara Peppers Boat

1000 2.3642 2.5413 2.6715 2.3429
5000 3.2566 3.3611 3.2691 3.3615

10,000 4.4125 4.5429 4.3153 4.4362

Table 6. The watermark detection time of the proposed scheme.

Watermark Capacity Lena Barbara Peppers Boat

1000 2.5424 2.3125 2.1537 2.2153
5000 3.4698 3.2147 3.3243 3.1245

10,000 4.3142 4.2593 4.1244 4.7233

Table 7 gives the PSNR values under different watermarking capacities. By comparing
the results, it can be found that the PSNR of the proposed algorithm was slightly lower
than that of other methods presented in the literature [56] when the watermarking capacity
was 1000 bits, and our algorithm’s PSNR was the highest when the watermarking capac-
ity was increased to 5000 or 10,000 bits. This proves that our algorithm still had good
imperceptibility under the premise of ensuring a larger watermarking capacity.
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Table 7. Objective PSNR values for different algorithms.

Watermark Capacity Literature [57] Literature [56] Literature [58] Proposed

1000 50.1634 52.6166 51.2947 52.3469
5000 47.6129 49.4824 48.3342 50.2632

10,000 44.3462 45.1937 43.1673 48.3165

7.2. Comparison with State-of-the-Art Methods

In this section, the superiority of the watermark detection scheme proposed in this pa-
per is further verified by comparison with Cauchy–Rayleigh [39], BGWM-HMT [59], and
CHMM [24] distribution schemes. The same test images and experimental parameters were
used in the experiments.

7.2.1. Probability of Detection for Varying Watermark Strengths

This section focuses on comparing the detection probabilities of the four algorithms
at different embedding strengths. In the experiment, Pf a = 10−2, and the test images
were the grayscale Lena, Barbara, Peppers, Boat, Airplane, and Couple images with sizes
of 512× 512 pixels. Figure 9 shows the detection probability line graph of the different
detection algorithms under different WDRs. It can be clearly seen from the graph that
as the watermark embedding strength increased, the detection efficiency of the detector
also improved. It is noteworthy that our detection algorithm always maintained a high
detection probability under different WDRs.
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Figure 9. Comparison of detection probability results under different WDR values.
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7.2.2. AUROC Values under Various Attacks

In this section, we compare the detector proposed in this paper with detectors us-
ing Cauchy–Rayleigh distribution, BGWM-HMT distribution, and CHMM distribution.
Twenty-four grayscale images of size 512× 512 with WDR = −42 dB, Pf a = 10−2, and a
watermark sequence length of 1000 bits were selected for 100 experiments. The average
AUROC values of the 24 experimental images are given in Table 8. The results show that the
detector proposed in this paper consistently obtained the highest AUROC values compared
to the other detectors, i.e., the detector proposed in this paper surpassed other detectors in
terms of performance and effectiveness.

Table 8. The AUROC values of different detectors without attacks.

Methods CHMM BGWM-HMT Cauchy–Rayleigh Proposed

AUROC 0.9964 0.9971 0.9978 0.9989

To clearly demonstrate the robustness of the algorithm proposed in this paper, Figure 10
gives the average AUROC test results of our detector and other existing detectors under
various attacks. Figure 10a evaluates the robustness of the detectors under JPEG com-
pression with the quality factor (QF) set in the range of 5 to 35. As the QF increased, the
detection performance of all the detectors improved. It is noteworthy that the detector
proposed in this paper exhibited stronger robustness compared to the other detectors.
Figure 10b investigates the performance of the detector under additive white Gaussian
noise (AWGN) attack. The proposed detector had the largest AUROC value among all the
detection algorithms under AWGN attack. The proposed detector had the largest AUROC
value among all the detection algorithms when σ = 40, and it consistently obtained the
highest AUROC value. When evaluating the performance of any watermarking method,
salt and pepper noise and Gaussian noise are considered common attacks. As can be seen in
Figure 10c,d, salt and pepper noise and Gaussian noise consistently resulted in an AUROC
value above 0.95 for our detector, which indicates that our detector had excellent noise
immunity. Shear is a common geometric attack. Figure 10e evaluates cropping, another
common geometric attack. Our detector exhibited high detection performance, with all AU-
ROC values remaining above 0.9, highlighting its robustness to cropping attacks. Figure 10f
shows the AUROC values under gamma correction, which is a method designed to increase
the accuracy of the representation of darker image values while decreasing the accuracy of
brighter image values; the tested detector maintained a high detection performance.

In Table 9, we compare the watermark detection performance of our detector with that
of the CHMM [24] and Cauchy–Rayleigh [39] detectors. Twenty images with 512× 512
pixels were used as carrier images, and the comparison experiments were carried out under
the same experimental conditions, where Pf a = 10−2.

Table 9. Average AUROC values under various attacks.

Attack Type CHMM Cauchy–Rayleigh Proposed

Median filtering WDR = −50 dB 0.9367 0.9549 0.9623
(3× 3) WDR = −45 dB 0.9511 0.9862 0.9987

Gaussian filtering WDR = −45 dB 0.9476 0.9714 0.9754
(3× 3) WDR = −40 dB 0.9643 0.9942 0.9992

JPEG compression WDR = −55 dB 0.9014 0.9422 0.9535
(QF = 30) WDR = −50 dB 0.9376 0.9716 0.9847

AWGN WDR = −50 dB 0.9422 0.9843 0.9843
σn = 10 WDR = −45 dB 0.9589 0.9877 0.9962

Salt and pepper noise WDR = −45 dB 0.9676 0.9843 0.9981
(0.01) WDR = −40 dB 0.9755 0.9936 0.9993

Rotation 0.5◦ WDR = −45 dB 0.9284 0.9743 0.9891
Rotation 1◦ WDR = −45 dB 0.8866 0.9578 0.9772

Scaling 0.5 WDR = −45 dB 0.9128 0.9416 0.9846
Scaling 2 WDR = −45 dB 0.7934 0.8423 0.9614
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Figure 10. The AUROC values corresponding to different schemes under various attacks.

Based on the above experimental results, it is evident that the proposed detector
showed excellent resistance to various attacks at different WDR values. These results
validate the effectiveness and robustness of the detector proposed in this paper.

Based on the above detailed comparison results, it can be concluded that the BKF–
Rayleigh distribution-based watermarking detector proposed in this paper exhibited su-
perior performance compared to existing methods. The contributions and improvements
of this paper can be summarized into four main aspects: Firstly, this paper utilized local
FAPHFM magnitudes in statistical image watermarking to embed the watermarking infor-
mation, which could enhance the robustness of the carrier against various attacks. Secondly,
BKF–Rayleigh distribution modeling was proposed to accurately model the local FAPHFM
magnitudes, which could accurately capture the non-Gaussian and heavy-tailed statistical
features of the local FAPHFM magnitudes and thus improve the detection performance.
Thirdly, MMLE based on the RSS parameter estimation method was adopted in this pa-
per, which could accurately estimate the statistical model parameters of BKF–Rayleigh
distribution. Finally, a new blind statistical watermark detector was developed using
BKF–Rayleigh distribution and the LO decision criterion. The detector performed well in
detecting watermark information.
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8. Conclusions

In this paper, we proposed a new watermarking algorithm to fit the amplitude coef-
ficients of FAPHFMs with the BKF–Rayleigh distribution model and design an optimal
watermark detector. Firstly, the multiplicative function was used to embed the watermark
information into the FAPHFM magnitude coefficients. Secondly, in order to realize an
accurate statistical modeling process, a BKF–Rayleigh-based statistical modeling method
was proposed, which could accurately capture the non-Gaussian distribution characteristics
of the FAPHFM magnitude values. Thirdly, MMLE based on the RSS method was chosen
to solve the model parameter estimation problem effectively. Finally, an optimal blind
watermark detector based on the BKF–Rayleigh model was designed using the LO decision
criterion. The experimental results showed that our detector outperformed the existing
watermark detection methods in terms of accuracy, imperceptibility, robustness, watermark
capacity, and time complexity.

In addition, in real life, color images are very common and widespread. In the future,
we will extend our algorithm to color images to provide greater convenience for copyright
owners. Future research will also focus on exploring and investigating more accurate
models and improving the accuracy of parameter estimation for better watermark detectors.
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