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Abstract: In this research paper, we present a new inertial method with a self-adaptive technique for
solving the split variational inclusion and fixed point problems in real Hilbert spaces. The algorithm
is designed to choose the optimal choice of the inertial term at every iteration, and the stepsize is
defined self-adaptively without a prior estimate of the Lipschitz constant. A convergence theorem is
demonstrated to be strong even under lenient conditions and to showcase the suggested method’s
efficiency and precision. Some numerical tests are given. Moreover, the significance of the proposed
method is demonstrated through its application to an image reconstruction issue.
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1. Introduction

In this paper, we consider the Split Variational Inclusion Problem (SVIP) introduced
by Moudafi [1], which is the problem of finding the null point of a monotone operator in a
Hilbert space whose image under a bounded linear operator belongs to another Hilbert
space. Mathematically, the problem is defined as follows: find

a∗ ∈ H1 such that 0 ∈ m1(a∗) (1)

and
b∗ = Ba∗ solves 0 ∈ m2(b∗), (2)

where 0 is called the zero vector, with H1 and H2 being both real Hilbert spaces together with
the multivalued maximal monotone mappings, mi : Hi → 2Hi where i = 1, 2. Furthermore,
the bounded linear operator is denoted by B : H1 → H2. We denote the solution set of (1)
and (2) by Γ.

An operator m : H → 2H is called:

(i) Monotone if

〈k− x, a− b〉 ≥ 0 ∀ k ∈ m(a), x ∈ m(b) ∀a, b ∈ H.

(ii) Maximal monotone if the graph of any monotone mapping does not properly contain
graph G(m) of m, where:

G(m) = {(a, k) ∈ H1 × H1 | k ∈ m(a)}.
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(iii) The symbol used to represent the solution of m when a certain value λ greater than
zero is used as a parameter is called the resolvent, which is denoted by Jm

λ :

Jm
λ (a) = (I + λm)−1(a) ∀a ∈ H.

Other nonlinear optimization problems, such as split feasibility problems, split
minimization problems, split variational inequality, split zero problems, and split
equilibrium problems, can all be generalized by the SVIP; see [2–4]. Reducing SVIPs
to split feasibility problems is important when modeling the intensity-modulating radiation
therapy (IMRT) treatment planning. Moreso, the SVIPs play important roles in formulating
many problems arising from engineering, economics, medicine, data compression, and
sensor networks [5,6].

Recently, several authors have introduced some iterative methods for solving SVIPs,
which have improved over time. In 2002, Byrne et al. [7] first introduced a weak
convergence method for solving SVIPs as follows:

an+1 = Jm1
λ (an + γB∗(Jm2

λ − I)Ban), (3)

for some parameter λ > 0, we have B∗ representing the adjoint of B together with
L = ||B∗B||, γ ∈ (0, 2

L ) and Jmi
λ = (I + λmi)

−1 known as the resolvent operator for
mi (with i = 1, 2). The sequence {an} generated by (3) was proved to converge weakly to
a∗ under some certain conditions. Moudafi [1] proposed an iterative method that helps to
solve SVIP with inverse strongly monotone operators; he also obtained weak convergence
results using the following iteration:

an+1 = U(an + γB∗(F− I)Ban) ∀n ∈ N, (4)

where λ > 0, γ ∈ (0, 2
L ) with L being the largest absolute value of the operator B∗B,

U = Jm1
λ (I − λφ) and F = Jm2

λ (I − λϕ), and Jm1
λ together with Jm2

λ are the resolvent
operators of m1 and m2, respectively. Lastly, let φ : H1 → H1 and ϕ : H2 → H2 be single-
valued operators. Marino and Xu [8] presented an iterative scheme that considers the
strong convergence of the viscosity approximation method introduced by Moudafi [9]:

an+1 = (I − αnG)Fan + αnGβ f (an) n ≥ 0, (5)

f is a function that contracts on the set H with the contraction coefficient α ∈ (0, 1). G
is a linear operator that is strongly positive and bounded on H with a constant µ. The
parameter is defined in a way that 0 < β < µ

α , exclusive. There exists a nonexpansive
mapping F and a sequence {αn} that takes values in (0, 1). The strong convergence of the
sequence {an} obtained from (5) to the fixed point a∗ ∈ Fix(F) := {a∗ : F(a∗) = a∗} has
been proven. Furthermore, a∗ serves as the unique solution of the variational inequality:

〈(G− β f )a∗, a− a∗〉 ≥ 0 , a ∈ C. (6)

The presentation of the optimality condition for the minimization problem is included
as follows:

min
a∈C

1
2
〈Ga, a〉 − h(a),

the function h is a potential function for β f , i.e.,

h(a) = {β f (a) f or a ∈ H}.
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In 2014, Kazmi and Rizvi [10] were inspired by the work of Byrne et al. (3) to propose
the following iteration for solving SVIPs. For a given a1 ∈ H1,{

kn = Jm1
λ (an + γB∗(Jm2

λ − I)Ban),
an+1 = αn f (an) + (1− αn)Skn n ≥ 1,

(7)

where α > 0, γ ∈ (0, 1
L ), L is the spectral radius of the operator B∗B and sequence {αn}

satisfies the conditions: limn→∞ αn = 0, ∑∞
n=0 αn = ∞, and ∑∞

n=0 |αn − αn−1| < ∞. The
sequences {kn}, {an} generated by (7) converges strongly to z ∈ Fix(S) ∩ Γ. Note that
algorithms (3), (4), and (7) contain a stepsize γ, which requires the computation of the
norm of the bounded linear operator; this computation is not easy to compute making
these algorithms difficult to compute. The inertial technique has been gaining attention
from researchers to enhance the accuracy and performance of various algorithms. This
technique plays a vital role in the convergence rate of the algorithms and is based on a
discrete version of a second-order dissipative dynamical system; see, for instance [11–20].
In Hilbert spaces, Chuang [21] introduced a hybrid inertial proximal algorithm for solving
SVIPs in 2017:

The proof of this proposed algorithm establishes that if {λn} ⊂ [λ, δ
‖B‖2 ] and {an}

meets a specific requirement, then sequence {an} from Algorithm 1 weakly converges to
an SVIP solution:

∞

∑
n=1
‖an − an−1‖2 < ∞. (8)

Algorithm 1 Hybrid inertial proximal algorithm.

Initialization: Choose {θn} ⊂ [0, 1), {βn} ⊂ (0, 1). Let a0, a1 ∈ H1 be arbitrary. Set n = 1.
Iterative steps: Calculate an+1 as follows:
Step 1. Set vn = an + θn(an − an−1) and compute

bn = Jm1
βn

[vn − λnB∗(I − Jm2
βn

)Bvn],

where λn > 0 satisfies

λn‖B∗(I − Jm2
βn

)Bvn − B∗(I − Jm2
βn

)Bbn‖ ≤ δ‖vn − bn‖ 0 < δ < 1

if bn = vn then stop and bn is a solution of the SVIP. Otherwise,
Step 2. Compute

an+1 = Jm1
βn

(vn − αnd(vn, bn)),

where
d(vn, bn) = vn − bn − λn[B∗(I − Jm2

βn
)Bvn − B∗(I − Jm2

βn
)Bbn],

αn =
〈vn − bn, d(vn, bn)〉
‖d(vn, bn)‖2 .

Set n = n + 1 and go to step 1.

It is easy to see that Algorithm 1 depends on a prior estimate of the norm of the
bounded operator, and the Condition (8) is too strong to verify before computation.

Furthermore, Kesornprom and Cholamjiak [22] improved the contraction step in
Algorithm 2 and introduced the following algorithm for solving the SVIP:
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Algorithm 2 Proximal type algorithms with linesearch and inertial methods.

Let ζ, λ ∈ (0, 1), δ > 0, and sequences {βn}n∈N ∈ (0, ∞), {θn}n∈N ∈ [0, θ) ⊆ [0, 1). Take
arbitrarily a1 ∈ H1 and compute

kn = an + θn(an − an−1)

bn = Jm1
βn

(kn − ρnB∗(I − Jm2
βn

)Bkn), (9)

where ζn = δζrn and rn is considered as the smallest possible non-negative integer such
that

ρn‖B∗(I − Jm2
βn

)Bkn − B∗(I − Jm2
βn

)Bbn‖ ≤ λ‖kn − bn‖.

Define
an+1 = kn − φαnd(kn, ρn)

where φ ∈ (0, 2),

d(kn, ρn) = kn − bn − ρn(B∗(I − Jm2
βn

)Bkn − B∗(I − Jm2
βn

)Bbn)

and

αn =
〈kn − bn, d(kn, ρn)〉+ ρn‖(I − Jm2

βn
)Bbn‖2

‖d(kn, ρn)‖2 .

They also proved a weak convergence result under similar conditions as in
Algorithm 1. Let us mention that both Algorithms 1 and 2 involve a line search procedure,
which consumes extra computation time and memory during implementation. As a way to
overcome this setback, Tang [23] recently introduced a self-adaptive technique for selecting
the stepsize without a prior estimate of the Lipschitz constant nor a line search procedure
as follows (Algorithm 3) :

Algorithm 3 Self-adaptive technique method.

Initialization: Choose a sequence {ζn} that is non-negative and satisfies conditions
0 < ζn < 4, in f ζn(4− ζn) > 0. Select starting points arbitrarily a0 and set n = 0.
Iterative step: Given the current iterate an(n ≥ 0). Compute

τn =
ζn f (an)

||T(an)||2 + ||H(an)||2

and calculate the next iteration as

an+1 = Jm1
λ (I − τnB∗(I − Jm2

λ )B)an.

Stop criterion: If an+1 = an, then stop the iteration. Otherwise, set n = n + 1 and go back
to the iterative step.

where f (a) = 1
2 ||(I − Jm2

λ )Ba||2, T(a) = B∗(I − Jm2
λ )Ba and H(a) = (I − Jm1

λ )x. The author
proved that the sequence generated by Algorithm 3 converges weakly to a solution of
the SVIP. Tan, Qin, and Yao [24] introduced four self-adaptive iterative algorithms with
inertial effects to solve SVIPs in real Hilbert spaces. This algorithm does not need any
prior information about the operator norm. This means that their stepsize is self-adaptive.
The conditions assumed in performing the strong convergences of the four algorithms are
as follows:

(C1) Let the solution set of (SVIP) be nonempty, i.e., Ω 6= ∅.
(C2) Let H1 and H2 be assumed to be two real Hilbert spaces with a bounded linear

operator and its adjoint denoted by B : H1 → H2 and B∗ : H2 → H1, respectively.
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(C3) Let Ti : Hi → Hi, i = 1, 2 be the set-valued maximal monotone mappings and
f : H1 → H2 is a mapping which satisfies the p-contractive property with a constant
p ∈ [0, 1).

(C4) Let the sequence {ω̄n} be positive such that limn→∞
ω̄n
σn

= 0 where {σn} ⊂ (0, 1)
satisfies limn→∞ σn = 0 and ∑∞

n=1 σn = ∞.

Various methods inspired the first iterative algorithm. Namely, Byrne et al.’s [7]
method, the viscosity-type method, and the projection and contraction method. An it-
erative method called the self-adaptive inertial projection and contraction method is uti-
lized for solving the SVIP. A description of the initial iterative method is provided below
(Algorithm 4):

Algorithm 4 Viscocity type with projection and contraction method.

Initialization: Set λ, x, ζ > 0, χ, δ ∈ (0, 1), κ ∈ (0, 2), and let a0, a1 ∈ H.
Iterative steps: Calculate an+1 as follows:
Step 1: Given the iterates an−1 and an(n ≥ 1), set kn = an + xn(an − an−1) where

xn =

{
min{ ω̄

‖an−an−1‖
, x} if an 6= an−1,

x otherwise.
(10)

Step 2. Compute qn = JλT1 [kn − γnB∗(I − JλT2)Bkn] where γn = ζχwn and wn is the
smallest non-negative integer such that

γn‖B∗(I − JλT2)Bkn − B∗(I − JλT2)Bqn‖ ≤ δ‖kn − qn‖. (11)

If kn = qn, stop the process and consider qn a valid solution for the problem (SVIP).
Otherwise, proceed to step 3.
Step 3. Compute gn = kn − κµncn where

cn = kn − qn − γn[B∗(I − JλT2)Bkn − B∗(I − JλT2)Bqn],

µn = 〈kn−qn ,cn〉
‖cn‖2 . (12)

Step 4. Compute an+1 = ηn f (an) + (1− ηn)gn.
Go to step 1 after setting n = n + 1.

Strong convergence was obtained. The second proposed algorithm is an inertial Mann-
type projection and contraction algorithm to solve the SVIP, which is presented as follows
(Algorithm 5):

Algorithm 5 Mann-type with projection and contraction method.

Initialization: Set λ, x, ζ > 0, χ, δ ∈ (0, 1), κ ∈ (0, 2) and let a0, a1 ∈ H.
Iterative steps: To determine the upcoming iteration point an+1, follow these steps:

kn = an + kn(an − an−1),
qn = JλT1 [kn − γnB∗(I − JλT2)Bkn],
gn = kn − κµncn,
an+1 = (1− ηn − τn)kn + τngn,

(13)

where {xn}, {γn}, and {cn} are defined in (10), (11), and (12), respectively.

Strong convergence was obtained. The third proposed algorithm is an inertial Mann-
type algorithm whereby the new stepsize does not require any line search process, mak-
ing it a self-adaptive algorithm. The details of the iterative scheme are described below
(Algorithm 6):
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Algorithm 6 Inertial Mann-type with self-adaptive method.

Initialization: Set λ, x > 0, φ ∈ (0, 2) and let a0, a1 ∈ H.
Iterative steps: To determine the upcoming iteration point an+1, follow these steps:

kn = an + xn(an − an−1),
gn = JλT1 [kn − γnB∗(I − JλT2)Bkn],
an+1 = (1− ηn − τn)kn + τngn,

(14)

The sequence {xn} is given in Equation (10) and the value of the stepsize γn is modified
using the subsequent formula below:

γn =


φn‖(I−JλT2

)Bkn‖2

‖B∗(I−JλT2
)Bkn‖2 i f ‖B(I − JλT2)Bkn‖ 6= 0,

0 otherwise.
(15)

Strong convergence was obtained. The algorithm proposed fourthly is a variation of
Algorithm 6, which leverages the viscosity-type approach to prove the robust convergence
of the proposed method. We present the algorithm as follows (Algorithm 7):

Algorithm 7 New inertial viscocity method.

Initialization: Set λ, x > 0, φ ∈ (0, 2) and let a0, a1 ∈ H.
Iterative steps: To determine the upcoming iteration point an+1, follow these steps:

kn = an + xn(an − an−1),
gn = JλT1 [kn − γnB∗(I − JλT2)Bkn],
an+1 = ηn f (an) + (1− ηn)gn,

(16)

where {xn} and {γn} are defined in (10) and (15), respectively.

Strong convergence was obtained. The four algorithms contain an inertial term that plays
a role at the rate of the convergence of Algorithms 4–7. Note that the strong convergence
theorems proved for Algorithms 4–7 proposed by Tan, Qin, and Yan were obtained under
some weaker conditions. Zhou, Tan, and Li [25] proposed a pair of adaptive hybrid steepest
descent algorithms with an inertial extrapolation term for split monotone variational inclusion
problems in infinite-dimensional Hilbert spaces. These algorithms benefit from combining two
methods, the hybrid steepest descent method and the inertial method, ensuring and achieving
strong convergence theorems. Secondly, the stepsizes of the two proposed algorithms are
self-adaptive, which overcomes the difficulty of the computation of the operator norm. The
details of the first algorithm are presented as follows (Algorithm 8):

Algorithm 8 Inertial hyrbid steepest descent algorithm.

Requirements: Take arbitrary starting points a0; a1 ∈ H1. Choose sequences {αn} ⊂
[0, 1), {ηn} and {βn} in (0, 1) and γ, τ, µ > 0.
1. Set n = 1 and compute kn = an + αn(an − an−1) and adaptive stepsize

λn =

{
ηn‖(I−W2)Bkn‖2

‖B∗(I−W2)Bkn‖2 Bkn /∈ Fix(W2),

0 otherwise.
(17)

2. Compute bn = W1(kn − λnB∗(I −W2)Bkn).
3. If bn = kn, then stop. Otherwise, compute an+1 = βnτnh(bn) + (I − βnµD)bn.
4. Set n = n + 1 and return to 1.
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Strong convergence was obtained. The second proposed algorithm is presented as
follows (Algorithm 9):

Algorithm 9 Self-adaptive hybrid steepest descnt method.

Requirements: Two arbitrary starting points a0; a1 ∈ H1. Choose sequences {αn} ⊂
[0, 1), {ηn} and {βn} in (0, 1) and γ, τ, µ > 0.
1. Set n = 1 and compute kn = an + αn(an− an−1), zn = W1(kn) and adaptive stepsize

αn =

{
ηn‖(I−W2)Bzn‖2

‖B∗(I−W2)Bzn‖2 Bzn /∈ Fix(W2),

0 otherwise.
(18)

2. Compute bn = zn − λnB∗(I −W2)Bzn.
3. If bn = zn = kn, then stop. Otherwise, compute an+1 = βnτnh(bn) +

(I − βnµD)bn.
4. Set n = n + 1 and return to 1.

Strong convergence was obtained. The assumptions applied to Algorithms 8 and 9
are as follows: Let H1 and H2 denote two Hilbert spaces, and suppose that B : H1 → H2
is a linear operator that is bounded. Additionally, let B∗ be the adjoint operator of B. Let
fi : Hi → Hi be a νi-inverse strongly monotone mapping with i = 1, 2 and mi : Hi → 2Hi

be set-valued maximal monotone mappings with i = 1, 2. D : H1 → H1 is L2-Lipschitz
continuous and η-strongly mapping with L2, η > 0. Let h : H1 → H1 be L1-Lipschitz
continuous mapping with L1 > 0. Moreover, Alakoya et al. [26] introduced a method with
an inertial extrapolation technique, viscosity approximation, and contains a stepsize that is
self-adaptive; thus, the method is known as an inertial self-adaptive algorithm for solving
the SVIP (Algorithm 10):

Algorithm 10 General viscosity with self-adaptive and inertial method.

Step 0: Select a0, a1 ∈ H1, {ρn} ∈ (0, 4), {βn}, {αn} ⊂ (0, 1), {θn} ⊂ [0, θ) for some θ > 0.
Set n = 1.
Step 1: Given the (n− 1)-th and n-th iterates, set

vn = an + θn(an − an−1).

Step 2: Compute
kn = Jm1

λ (vn − τnB∗(I − Jm2
λ ))

where

τn =

{
ρng(vn)

‖T(vn)‖2+‖H(vn)‖2 if ‖T(vn)‖2 + ‖H(vn)‖2 6= 0,

0 otherwise.
(19)

Step 3: Compute

an+1 = αn f (an) + βnan + ((1− βn)I − αnG)Skn.

Set n = n + 1 and return to Step 1.

where S : H1 → H1 is a quasi-nonexpansive mapping, G : H1 → H1 is a strongly positive
mapping, and f : H1 → H1 is a contraction mapping. The convergence of a common
solution for the sequence {an} generated by Algorithm 10 was established by the authors
through proof of its strong convergence z ∈ Γ ∩ Fix(S) provided that {αn} and {θn} satisfy
lim

n→∞
θn
αn
||an − an−1|| = 0. It is clear that Algorithm 10 performs better than Algorithms 1–3

and other related methods. However, there is a need to improve the performance of
Algorithm 10 by using an optimal choice of parameters for the inertial extrapolation term.
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Based on the outcomes above, our paper presents a novel approach that utilizes
an optimal selection of inertial term and self-adaptive techniques for solving the SVIP
and fixed point problems by employing multivalued demicontractive mappings in actual
Hilbert spaces. Our algorithm enhances the results of Algorithms 1–3 and 10, and other
associated findings in the literature. We demonstrate a robust convergence outcome, subject
to certain mild conditions, and provide relevant numerical experiments to showcase the
efficiency of the proposed method. We also consider an application of our algorithm to
solving image deblurring problems to demonstrate the applicability of our results.

2. Preliminaries

In this section, we present certain definitions and fundamental outcomes that will be
employed in our ensuing analysis. Suppose that H is a real Hilbert space, and C is a subset
of H that is closed, nonempty, and convex. We use an → p and an ⇀ p to denote the strong
and weak convergences, respectively, of a sequence {an} ⊆ H to a point p ∈ H.

For every vector k̄ ∈ H, there exists a unique element PC k̄ in the subspace C such that

||PC(k̄)− k̄|| = min{||z− k̄|| : z ∈ C}.

The metric projection from H onto C is denoted as PC and can be defined by the
subsequent expression:

(i) For k̄ ∈ H and z ∈ C,

z = PC(k̄)⇔ 〈k̄− z, z− b〉 ≥ 0, ∀ b ∈ C; (20)

(ii) 〈k̄− b, PC(k̄)− PC(b)〉 ≥ ||PC(k̄)− PC(b)||2 ∀k̄, b ∈ H;
(iii) For each k̄ ∈ H and b ∈ C

||b− PC(k̄)||2 + ||k̄− PC(k̄)||2 ≤ ||k̄− b||2.

An operator F : H → H is called:

(i) α-Lipschitz if there is a positive value of α such that

||Fb− Fa|| ≤ α||b− a|| ∀b, a ∈ H

and a contraction if α ∈ (0, 1);
(ii) Nonexpansive if F is 1-Lipschitz;
(iii) Quasi-nonexpansive when its fixed point set is not empty and

‖Fb− p‖ ≤ ‖b− p‖ ∀b ∈ H, p ∈ Fix(F);

(iv) k-demicontractive if Fix(F) 6= ∅ and there exists a constant k ∈ [0, 1) such that

||Fa− p||2 ≤ ||a− p||2 + k||a− Fa||2 ∀a ∈ H, p ∈ Fix(F).

Note that the nonexpansive and quasi-nonexpansive mappings are contained in the
class of k-demicontractive mapping; we also follow the same conditions for the Hausdorff
mapping, S : H → 2H .

Suppose we have a metric space (X, d) and a family of subsets CB(X) that are both
closed and bounded. We can induce the Hausdorff metric using the metric d on any two
subsets X, Y ∈ CB(X). This metric is defined as follows:
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H(X, Y) = max

{
sup
x∈X

d(x, Y), sup
y∈Y

d(X, y)

}
,

where d(x, Y) = inf
y∈Y

d(x, y). A fixed point of a multivalued mapping S : H → CB(H) is a

point a ∈ H that belongs to Sa. If S(a) only contains a, then we refer to a as a strict fixed
point of S. The study of strictly fixed points for a specific type of contractive mappings
was first conducted by Aubin and Siegel [27]. Since then, this condition has been rapidly
applied to various multivalued mappings, such as those in [28–30].

Lemma 1. The inequalities stated below are valid in a Hilbert space denoted by H.:

(i) ||b− a||2 = ||b||2 − 2〈b, a〉+ ||a||2 ∀b, a ∈ H;
(ii) ||b + a||2 ≤ ||b||2 + 2〈a, b + a〉 ∀b, a ∈ H.

We also use the following Lemmas to achieve our goal in the section on the main
results; Lemmas [31–33].

3. Main Results

In this section, we introduce our algorithm and provide its convergence analysis. First,
we prove the state of our algorithm as follows:

Let H1, H2 be two real Hilbert spaces, and the multivalued maximal monotone
operators are denoted by mi : Hi → 2Hi , where i = 1, 2. We denote the bounded linear
operator with its adjoint as B : H1 → H2 and B∗ : H2 → H1, respectively. For i = 1, . . . , m
define Si : H1 → CB(H1) be a finite family of ki-demicontractive mappings such that I − Si
is demiclosed at the point zero with Si(q) = {q} ∀q ∈ Fix(Si) and k = max{ki}. Suppose
that the solution set:

Γ = {a∗ ∈ H1 : 0 ∈ m1(a∗), 0 ∈ m2(Ba∗)} ∩
r⋂

i=1

Fix(Si) 6= ∅. (21)

Let our contraction mapping be g : H1 → H1 with a constant of σ ∈ (0, 1) and
D : H1 → H1 be a strongly non-negative operator with η > 0 being its coefficient where
this condition, 0 < ξ < η

σ , is satisfied. Moreover, let {εn}, {ρn,i}, {λn} be non-negative
sequences such that 0 < y ≤ εn, ρn,i, λn ≤ u < 1. Define the following functions:

f (a) =
1
2
||(I − Jm2

σ )Ba||2 (22)

and
T(a) = B∗(I − Jm2

λ )Ba, H(a) = (I − Jm1
λ )a. (23)

Now, we present our algorithm as follows (Algorithm 11):
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Algorithm 11 Proposed new inertial and self-adaptive method.

Step 0: Choose α > 3, ηn ∈ (0, 4) and select initial guess a0, a1 ∈ H1. Set n = 1.
Step 1: Choose θn such that 0 ≤ θn ≤ θ̄n, where θ̄n is defined below, given the
(n− 1)th and nth iterates:

θ̄n =

{
min

{
n−1

n+α−1 , εn
max{‖an−an−1‖,n2‖an−an−1‖2}

}
if an 6= an−1,

n−1
n+α−1 otherwise.

(24)

Set
vn = an + θn(an − an−1).

Step 2: Compute

τn =
ηn f (vn)

||T(vn)||2 + ||H(vn)||2

and
bn = Jm1

σ (I − τnB∗(I − Jm2
σ )B)vn

Step 3: Compute the next iterate via{
zn = ρn,0bn + ∑r

i=1 ρn,iχn,i,
an+1 = λnξg(an) + (1− λnD)zn,

(25)

where χn,i ∈ Sibn and ∑r
i=1 ρn,i = 1. Set n = n + 1 and go back to Step 1 .

To ensure our convergence outcomes, we have made assumptions on the control
parameters λn, εn, ρn,i that must meet certain conditions:

(C1) limn→∞ λn = 0 and ∑∞
n=0 λn = ∞,

(C2) lim infn→∞(ρn,0 − k)ρn,i > 0 ∀i = 1, 2, . . . , r,
(C3) εn = o(λn), i.e., limn→∞

εn
λn

= 0.

Remark 1. It is clear from (24) and Assumptions (C3), that

lim
n→∞

θn

λn
‖an − an−1‖2 ≤ lim

n→∞

θ̄n

λn
‖an − an−1‖2 ≤ lim

n→∞

εn

λn
· 1

n2 = 0

and

lim
n→∞

θn

λn
‖an − an−1‖ ≤ lim

n→∞

θ̄n

λn
‖an − an−1‖ ≤ lim

n→∞

εn

λn
= 0.

Convergence Analysis

We begin the convergence of Algorithm 11 by proving the following results.

Lemma 2. Consider the function f : H2 → R and h : H1 → R defined in (22); then, the functions
T and H defined on (23) are Lipschitz continuous.

Proof. Since T(a) = B∗(I − Jm2
σ )Ba, therefore

||T(a)− T(b)||2 = 〈B∗((I − Jm2
σ )Ba− (I − Jm2

σ )Bb), B∗((I − Jm2
σ )Ba− (I − Jm2

σ )Bb)〉
= 〈(I − Jm2

σ )(Ba− Bb), BB∗((I − Jm2
σ )Ba− (I − Jm2

σ )Bb)〉
≤ L||(I − Jm2

σ )Ba− (I − Jm2
σ )Bb||2, (26)
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where L = ||B∗B||. On the other hand,

〈T(a)− T(b), a− b〉 = 〈B∗((I − Jm2
σ )Ba− (I − Jm2

σ )Bb), a− b〉
= 〈(I − Jm2

σ )Ba− (I − Jm2
σ )Bb, Ba− Bb〉

≥ ||(I − Jm2
σ )Ba− (I − Jm2

σ )Bb||2. (27)

Combining the above formulas, we have:

〈T(a)− T(b), a− b〉 ≥ 1
L
||T(a)− T(b)||2,

T being 1
L inverse strong monotone implies that its inverse is L-Lipschitz continuous.

Furthermore,
〈T(a)− T(b), a− b〉 ≤ ||T(a)− T(b)||||a− b||,

hence
||T(a)− T(b)|| ≤ L||a− b||.

Likewise, it can be observed that the function H exhibits Lipschitz continuity.

Lemma 3. The sequence {an}, which was generated by Algorithm 11 is bounded.

Proof. Given q ∈ Γ, then

||vn − q|| = ||an + θn(an − an−1)− q||
≤ ||an − q||+ θn||an − an−1||. (28)

Since Γ 6= ∅, then q = Jm1
σ (q), Bp = Jm2

σ (Bq), and (I − Jm2
σ )Bq = Bq− Bq = 0. Note

that T(vn) = B∗(I − Jm2
σ )Bvn, I − Jm2

σ is firmly nonexpansive, therefore we obtain the
following:

〈T(vn), vn − q〉 = 〈B∗(I − Jm2
σ )Bvn, vn − q〉

= 〈(I − Jm2
σ )Bvn − (I − Jm2

σ )Bq, Bvn − Bq〉
≥ ||(I − Jm2

σ )Bvn||2

= 2 f (vn) (29)

and

||bn − q||2 = ||Jm1
σ (I − τnB∗(I − Jm2

σ )B)vn − q||2

≤ ||(I − τnB∗(I − Jm2
σ )B)vn − q||2

= ||vn − q− τnT(vn)||2

= ||vn − q||2 + τ2
n ||T(vn)||2 − 2τn〈T(vn), vn − q〉

≤ ||vn − q||2 + τ2
n ||T(vn)||2 − 4τn f (vn)

≤ ||vn − q||2 − ηn(4− ηn)
f 2(vn)

||T(vn)||2 + ||H(vn)||2
. (30)

Since 0 < ηn < 4, then ||bn − q|| ≤ ||vn − q||. We use Lemma [31] to obtain the
following results:



Mathematics 2023, 11, 4708 12 of 27

||zn − q||2 = ||ρn,0bn +
r

∑
i=1

ρn,iχn,i − q||2

≤ ρn,0||bn − q||2 +
r

∑
i=1

ρn,i||χn,i − q||2 −
r

∑
i=1

ρn,0ρn,i||bn − χn,i||2

= ρn,0||bn − q||2 +
r

∑
i=1

ρn,id(χn,i, Siq)2 −
r

∑
i=1

ρn,0ρn,i||bn − χn,i||2

≤ ρn,0||bn − q||2 +
r

∑
i=1

ρn,iH(Sibn, Siq)2 −
r

∑
i=1

ρn,0ρn,i||bn − χn,i||2

≤ ρn,0||bn − q||2 +
r

∑
i=1

ρn,i(||bn − q||2 + κid(bn, Sibn)
2)−

r

∑
i=1

ρn,0ρn,i||bn − χn,i||2

≤ ||bn − q||2 −
r

∑
i=1

(ρn,0 − κ)ρn,i||bn − χn,i||2, (31)

thus, we apply condition (C2) and have the following:

||zn − q||2 ≤ ||bn − q||2. (32)

Follow from (28), (30), and (31) to obtain:

||an+1 − q|| = ||λn(ξg(an)Dq) + (1− λnD)(zn − q)||
≤ λn||ξg(an)− Dq||+ (1− λnη)||zn − q||

≤ λn

[
||ξ(g(an)− g(q)) + (ξg(q)− Dq)||

]
+ (1− λnη)||zn − q||

≤ λnξσ||an − q||+ λn||ξg(q)− Dq||+ (1− λnη)[||an − q||+ θn||an − an−1||]
= (1− λn(η − ξσ))||an − q||+ λn||ξg(q)− Dq||+ (1− λnη)σn||an − an−1||
= (1− λn(η − ξσ))||an − q||+

(η − ξσ)λn

{
||ξg(q)− Dq||

η − ξσ
+

(
1− λnη

η − ξσ

)
θn

λn
||an − an−1||

}
. (33)

Note that supn≥1

(
1−λnη
η−ξσ

)
θn
λn
||an − an−1|| exists by Remark 1 and let

M = max

{
||ξg(q)− Dq||

η − ξσ
, sup

n≥1

(
1− λnη

η − ξσ

)
θn

λn
||an − an−1||

}
.

Therefore, we have the following:

||an+1 − q|| ≤ (1− λn(η − ξσ))||an − q||+ λn(η − ξσ)M.

We continue and use Lemma [32] (i) to imply that {||an− p||} is bounded and therefore,
{an} is also bounded. Consequently, sequences {vn}, {zn}, and {bn} are bounded.

Lemma 4. Given {an} as the sequence generated by the proposed Algorithm 5, put sn = ||an− q||2,
ãn = 2λn(η−ξσ)

1−λnξσ , un = 1
2(η−ξσ)

(2〈ξg(q) − Dq, an+1 − q〉 + λn M1), for some M1 > 0 and

cn = θn ||an−an−1||
1−λnξσ M2 where M2 = supn≥1((1 − λnq)2(||an − q|| + ||an−1 − q||) + 2(1 −

λnq)2||an − an−1||) and q ∈ Γ.

Then, the following conclusions hold:

(i) sn+1 ≤ (1− ỹn)sn + cn + ỹnun.
(ii) −1 ≤ lim supn→∞ un < +∞.
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Proof. From Algorithm 11, we have

||vn − q||2 = ||an + θn(an − an−1)− q||2

= ||an − q||2 + 2θn〈an − q, an − an−1〉+ θ2
n||an − an−1||2. (34)

Let us use Lemma 1(i) in order to determine the following results:

2〈an − q, an − an−1〉 = −||an−1 − q||2 + ||an − q||2 + ||an − an−1||2 (35)

thus, substituting (35) into (34), we obtain

||vn − q||2 = ||an − q||2 + θn(−||an−1 − q||2 + ||an − q||2 + ||an − an−1||2) + θ2
n||an − an−1||2

≤ ||an − q||2 + θn(||an − q||2 − ||an−1 − q||2 + 2θn||an − an−1||2). (36)

Now, we follow from Lemma 1(ii) and have that

||an+1 − q||2 = ||λn(ξg(an)− Dq) + (1− λnD)(zn − q)||2

≤ (1− λnη)2||zn − q||2 + 2λn〈ξg(an)− Dq, an+1 − q〉. (37)

Follow from (30), (32), and (34) to obtain

||an+1 − q||2 ≤ (1− λnη)2||vn − q||2 + 2λn〈ξg(an)− Dq, an+1 − q〉
= (1− λnη)2(||an − q||2 + θn(||an − q||2 − ||an−1 − q||2) + 2θn||an − an−1||2) +

2λn〈ξg(an)− Dq, an+1 − q〉
= (1− λnη)2||an − q||2 + θn(1− λnη)2(||an − q||2 − ||an−1 − q||2) +

2θn(1− λnη)2||an − an−1||2 + 2λn〈ξg(an)− Dq, an+1 − q〉
≤ (1− λnη)2||an − q||2 + θn(1− λnη)2(||an − q||+ ||an−1 − q||)||an − an−1||+

2θn(1− λnη)2||an − an−1||2 + 2λn〈ξg(an)− Dq, an+1 − q〉. (38)

Also,

2〈ξg(an)− Dq, an+1 − q〉 = 2〈ξ(g(an)− g(q)) + ξg(q)− Dq, an+1 − q〉
≤ 2ξσ||an − q||||an+1 − q||+ 2〈ξg(q)− Dq, an+1 − q〉
≤ ξσ(||an − q||2 + ||an+1 − q||2) + 2〈ξg(q)− Dq, an+1 − q〉. (39)

Furthermore, substitute (39) into (38) and have that

||an+1 − q||2 ≤ [(1− λnη)2 + λnξσ]||an − q||2 + θn(1− λnη)2(||an − q||+ ||an−1 − q||)||an − an−1||+
2θn(1− λnη)2||an − an−1||2 + λnξσ||an+1 − q||2 + 2λn〈ξg(q)− Dq, an+1 − q〉

= (1− λn(2q− ξσ))||an − q||2 + (λnη)2||an − q||2 + θn[(1− λnη)2(||an − q||+ ||an−1 − q||) +
2(1− λnη)2||an − an−1||]||an − an−1||+ λnξσ||an+1 − q||2 + 2λn〈ξg(q)− Dq, an+1 − q〉

≤ (1− λn(2q− ξσ))||an − q||2 + λnξσ||an+1 − q||2 + θn[(1− λnη)2(||an − q||+ ||an−1 − q||) +
2(1− λn)

2||an − an−1||]||an − an−1||+ λn(2〈ξg(q)− Dq, an+1 − q〉+ λn M1) (40)

for some M1 ≥ 0, we have that
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||an+1 − q||2 ≤ (1− λn(2q− ξσ))

1− λnξσ
||an − q||2 + θn

1− λnξσ
||an − an−1||M2 +

λn(2〈ξg(q)− Dq, an+1 − q〉+ λn M1)

1− λnξσ

=

(
1− 2λn(η − ξσ)

1− λnξσ

)
||an − q||2 + θn

1− λnξσ
||an − an−1||M2

+
2λn(η − ξσ)

1− λnξσ

(2〈ξg(q)− Dq, an+1 − q〉+ λn M1)

2(η − ξσ)
. (41)

Furthermore, from the boundedness of {an}, it is easy to see that

sup
n≥0

un ≤ sup
n≥0

1
2(ρ− ξσ)

(2||ξg(q)− Da∗||||an+1 − q||+ M1) < ∞.

Our next objective is to demonstrate that lim supn→∞ un ≥ −1. To do so, we will
assume the opposite and suppose that lim supn→∞ un < −1, which implies that there exists
n0 ∈ N where un ≤ −1 ∀n ≥ n0. Therefore, according to (i), we can conclude that

sn+1 ≤ (1− ỹn)sn + cn + ỹnun

< (1− ỹn)sn + cn − ỹn

= cn + sn − ỹn(sn + 1)

≤ cn + sn − 2(η − ξσ)λn. (42)

By induction, we obtain

sn+1 ≤ sn0 +
r

∑
i=n0

ci − 2(η − ξσ)
r

∑
i=n0

λi ∀n ≥ n0.

Taking the limit superior of both sides of the last inequality and noting that ci
approaches 0, we obtain

lim sup
n→∞

sn ≤ sn0 − lim
n→∞

2(η − ξσ)
r

∑
i=n0

λi = −∞.

This is a contradiction of {sn} being a non-negative real sequence. Therefore, we can
conclude that lim supn→∞ un ≥ −1.

Remark 2. Given that the limn→∞ λn → 0, it becomes easier to confirm that ỹn also approaches
zero. In addition, according to Remark 1, cn approaches zero with an increasing n value.

Now, we present our strong convergence theorem.

Theorem 1. Given {an} as the sequence generated by the proposed Algorithm 11 and suppose
that Assumption (C1)–(C3) are satisfied. Then, {an} strongly converges to a unique point
p = PΓ(I − D + ξg)(p), which solves the variational inequality

〈(D− ξg)p, p− a〉 ≤ 0, a ∈ Γ. (43)

Proof. Given q ∈ Γ. We will use Φn to denote ||an − q||2. Below are the possible cases we
are considering.
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CASE A: We start by assuming that there exists a n0 ∈ N such that Φn is monotonically
decreasing ∀n ≥ n0. Then, limn→∞ Φn −Φn+1 → 0. Our first aim is to demonstrate that
limn→∞{||bn − vn||, ||χn,i − bn||, ||an+1 − an||} → 0.

||vn − an|| = ||an − an + θn(an − an−1)||
= θn||an − an−1|| → 0 as n→ ∞, (44)

thus, limn→∞ ||vn − an|| = 0. From Equations (30) and (37) we have that:

ηn(4− ηn)
f 2(vn)

||T(vn)||2+||H(vn)||2
≤ ||vn − q||2 − ||bn − q||2

≤ ||vn − q||2 − ||an+1 − q||2 + ||an+1 − q||2 − ||bn − q||2

≤ ||an − q||2 + θn M(||an − an−1||)− ||an+1 − q||2 + (1− λnτ)||zn − q||2+
2λn〈ξg(an)− Dq, an+1 − q〉 − ||bn − q||2

≤ Φn −Φn+1 + θn M||an − an+1||+ ||bn − q||2 − λnτ||bn − q||2+
2λn〈ξg(an)− Dq, an+1 − q〉 − ||bn − q||2 → 0 as n→ ∞.

(45)

Note that inf ηn(4− ηn) > 0 and T together with H are Lipschitz continuous, so we
obtain that:

lim
n→∞

f 2(vn) = 0.

Therefore, f (vn)→ 0 and ||bn − vn|| → 0 as n→ ∞. From (30), (31), (36), and (37), we
obtain the following results:

||an+1 − q||2 ≤ (1− λnη)2||zn − q||2 + 2λn〈ξg(an)− Dq, an+1 − q〉

≤ (1− λnη)2

{
||bn − q||2 −

r

∑
i=1

(ρn,0 − k)ρn,i||bn − χn,i||2
}
+ 2λn〈ξg(an)− Dq, an+1 − q〉

≤ (1− λnη)2
{
||an − q||2 + θn(||an − q||2 − ||an−1 − q||2)

}
+ (1− λnη)2{

2θn||an − an−1||2 −
r

∑
i=1

(ρn,0 − k)ρn,i||bn − χn,i||2
}
+ 2λn〈ξg(an)− Dq, an+1 − q〉. (46)

Hence,

(1− λnη)2
r

∑
i=1

(ρn,0 − k)ρn,i||bn − χn,i||2 ≤ (1− λnη)2||an − q||2 + θn(1− λnη)2(||an − q||2

−||an−1 − q||2) + 2θn(1− λnη)||an − an−1||2

+2λn〈ξg(an)− Dq, an+1 − q〉 − ||an+1 − q||2

≤ Φn −Φn+1 + λn M3 + θn(1− λnη)2(Φn −Φn+1)

+θn(1− λnη)2||an − an−1||2

+2λn〈ξg(an)− Dq, an+1 − q〉 → 0 as n→ ∞. (47)

Thus, by applying condition (C2), we obtain

lim
n→∞

||bn − χn,i|| = 0. (48)

We also have that

||zn − bn|| = ||ρn,0bn +
r

∑
i=1

ρn,iχn,i − bn||

≤ ρn,0||bn − bn||+
r

∑
i=1

ρn,i||χn,i − bn|| → 0, n→ ∞, (49)
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thus limn→∞ ||zn − bn|| = 0. Therefore,

lim
n→∞

||zn − an|| = lim
n→∞

(||zn − bn||+ ||bn − an||) = 0.

Finally,

||an+1 − zn|| = ||λnξg(an) + (1− λnD)zn − zn||
= λn||ξg(an)− Dzn|| → 0, n→ ∞, (50)

which results in the following:

||an+1 − an|| ≤ ||an+1 − zn||+ ||zn − an|| → 0 as n→ ∞.

As k→ ∞, the subsequence {ank}weakly converges to a∗. Denote Fnk = I− τnk B∗(I−
Jm2
σ )B, since Jm2

σ is firmly nonexpansive, hence Fnk and Jm1
σ (I − τnk B∗(I − Jm2

σ )B) are aver-
aged and nonexpansive. So the subsequence {vnk} converges weakly to a fixed point a∗ of
the operator Jm1

σ Fn. We now show that a∗ ∈ Γ that is a∗ ∈ m−1
1 (0) with Ba∗ ∈ m−1

2 (0) and
a∗ ∈ ∩r

i=1Fix(Si). From (30) we have

ηn(4− ηn)
f 2(vn)

||T(vn)||2 + ||H(vn)||2
≤ ||vn − q||2 − ||bn − q||2,

since T and H are Lipschitz continuous, thus T(vn) and H(vn) are bounded. In addition,
inf ηn(4− ηn) > 0, hence f (vn) → 0 as n → 0. Since the subsequence {ank} converges
weakly to a∗, therefore, the function f is lower semi-continuous and ‖vn − an‖ → 0 as
n→ ∞, then we can determine

0 ≤ f (a∗) ≤ lim inf
k→∞

f (vnk) = lim
n→∞

f (vn) = 0.

That is,

f (a∗) =
1
2
||(I − Jm2

σ )Ba∗||2 = 0.

This implies that Ba∗ is a fixed point of JB2
σ or (I − JB2

σ )Ba∗ = 0, then we can have
Ba∗ ∈ m−1

2 (0) or 0 ∈ m2(Ba∗). Moreover, the point a∗ is a fixed point of the opera-
tor Jm1

σ (I − τnB∗(I − Jm2
σ )B), which means that a∗ = Jm1

σ (I − τnB∗(I − Jm2
σ )B)a∗. Since

(I − Jm2
σ )Ba∗ = 0, hence (I − τnB∗(I − Jm2

σ )B)a∗ = a∗, consequently a∗ = Jm1
σ a∗, This

implies that a∗ is a stationary (fixed) point of Jm1
σ , in fact, a∗ ∈ m−1

1 (0). Furthermore, from
(48) and the fact that I − Si is demiclosed at zero, then a∗ ∈ Fix(Si) for i = 1, . . . , r. Hence
a∗ ∈ Γ.

First, we show that {an} strongly converges to a∗, where a∗ = PΓ(I − D + ξg)a∗ is the
unique solution of the variational inequality (VI):

〈(D− ξg)a∗, a∗ − a〉 ≤ 0, a ∈ Γ.

For us to achieve our goal, we prove that lim supn→∞〈(D − ξg)a∗, a∗ − an〉 ≤ 0.
Choose a subsequence {anj} of {an} such that lim supj→∞〈(D− ξg)a∗, a∗ − an〉 = limj→∞

〈(D− ξg)a∗, a∗ − anj〉. Since anj ⇀ ā and using (10), we have

lim sup
j→∞

〈(D− ξg)a∗, a∗ − an〉 = lim
j→∞
〈(D− ξg)a∗, a∗ − anj〉

= 〈(D− ξg)a∗, a∗ − ā〉
= 〈a∗ − (I − (D− ξg))a∗, a∗ − ā〉 ≤ 0. (51)
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Furthermore, we make use of Lemma 4, Lemma 4(i), and (51) to obtain that
||an − a∗|| → 0, implying that sequence {an} strongly converges to a∗. Case A is con-
cluded.

CASE B: Now we assume that {||an − q||} is not monotonically decreasing. Then for
some n0 and ∀n ≥ n0, we define φ : N→ N by the following:

φ(n) = max{t ∈ N : t ≤ n : φt ≤ φt+1}.

Moreover, φ is increasing with limn→∞ φ(n)→ ∞ and

0 ≤ ||aφ(n) − q|| ≤ ||aφ(n)+1 − q||, ∀ n ≥ n0.

We can apply a similar argument to the one used in Case A and conclude that

lim
n→∞

||bφ(n) − vφ(n)|| = lim
n→∞

||xφ(n),i − bφ(n)|| = lim
n→∞

||aφ(n)+1 − aφ(n)|| = 0.

Thus, Ωv(aφ(n)) ∈ Γ, where Ωv(aφ(n)) is the weak subsequential limit of {aφ(n)}. Also,
we have

lim sup
n→∞

〈(D− ξg)q, q− aφ(n)〉 ≤ 0. (52)

Thus, we follow from Lemma 4(i) and we have

||aφ(n)+1 − q||2 ≤
(

1− 2λφ(n)(η−ξσ)

1−λφ(n)ξσ

)
||aφ(n) − q||2 + 2λφ(n)(η−ξσ)

1−λφ(n)ξσ (2〈ξg(q)− Dq, aφ(n)+1 − q〉+ λφ(n)M)+

αφ(n)M2||aφ(n)−aφ(n)−1||
1−λφ(n)ξσ

(53)

for some M > 0 and where

M2 = supn≥1((1− λφ(n)q)
2(||aφ(n) − q||+ ||aφ(n)−1 − q||) + 2(1− λφ(n)q)

2||aφ(n) − aφ(n)−1||).

Since ||aφ(n) − q||2 ≤ ||aφ(n)+1 − q||2 then from (??), we obtain the following results:

0 ≤
(

1−
2λφ(n)(η − ξσ)

1− λφ(n)ξσ

)
||aφ(n) − q||2 +

2λφ(n)(η − ξσ)

1− λφ(n)ξσ
(2〈ξg(q)− Dq, aφ(n)+1 − q〉+ λφ(n)M) +

αφ(n)M2||aφ(n) − aφ(n)−1||
1− λφ(n)ξσ

− ||aφ(n) − q||2. (54)

Hence, we obtain:

2λφ(n)(η − ξσ

1− λφ(n)ξσ
||aφ(n) − q||2 ≤

2λφ(n)(η − ξσ)

1− λφ(n)ξσ
(2〈ξg(q)− Dq, aφ(n)+1 − q〉+ λφ(n)M) +

αφ(n)M2||aφ(n) − aφ(n)−1||
1− λφ(n)ξσ

. (55)

Therefore, we obtain the results below:

||aφ(n) − q||2 ≤ 2〈ξg(q)− Dq, aφ(n)+1 − q〉+ λφ(n)M4 +
αφ(n)M2||aφ(n) − aφ(n)−1||

2λφ(n)(η − ξσ)
. (56)

Since the sequence {aφ(n)} is bounded and limn→∞ λφ(n) → 0, it follows from
Equation (52) and Remark 1.

lim
n→∞

||aφ(n) − q|| = 0. (57)

We can conclude that ∀n ≥ no, the following statement holds:

0 ≤ ||an − q||2 ≤ max{||aφ(n) − q||2, ||aφ(n)+1 − q||2} = ||aφ(n)+1 − q||2.
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Hence, limn→∞ ||an − q|| = 0. Therefore, we imply that sequence {an} converges
strongly to q. This completes the proof.

The result presented in Theorem 1 can lead to an improvement when compared to the
findings of [26]. It is important to recall that the set of quasi-nonexpansive mappings can
be classified as 0-demicontractive. Therefore, we can utilize the same discoveries to obtain
outcomes when approximating a common solution for the SVIP, together with a restricted
number of multivalued quasi-nonexpansive mappings. The following remark highlights
our contributions to this paper:

Remark 3.

(i) A new optimal choice of the inertial extrapolation technique is introduced. This can also be
adapted for other iterative algorithms to perform better.

(ii) The algorithm obtained a strong convergence result without necessarily imposing a solid
condition on the control parameters.

(iii) The self-adaptive technique prevents the need to calculate a prior estimate of the norm of the
bounded linear operator at every iteration.

(iv) The algorithm produces suitable solutions that approximate the entire set of solutions Γ as
stated in (1), using appropriate starting points. This feature sets it apart from Tikhonov-type
regularization methods, which always converge to the same solution sequence. We find this
attribute particularly intriguing.

4. Numerical Illustrations

Let us provide some numerical examples that demonstrate the effectiveness and
efficiency of the suggested algorithms. We will compare the performance of Algorithm 11
(also known as Algorithm 11) with Algorithms 1, 2, 3 and 10 (also known as Algorithms 1,
2, 3, and 10, respectively). Kindly note that the renumbering of the article occurred due
to the change in the numbering style in the template. All codes were written in MATLAB
R2020b and performed on a PC Desktop. Intel(R) Core(TM) i7-6600U CPU @ 3.00 GHz
3.00 GHz, RAM 32.00 GB.

Example 1. Let H1 = H2 = R3 and B, m1, m2 : R3 → R3 be defined by

B =

 1 −1 0
1 2 0
0 0 3

, m1 =

 4 0 0
0 3 0
0 0 2

 and m2 =

 6 0 0
0 5 0
0 0 4

. (58)

It is easy to check that the resolvent operators concerning m1 and m2 are defined by

Jm1
σ (a) =

(
a1

1 + 4σ
,

a2

1 + 3σ
,

a3

1 + 2σ

)>
and Jm2

σ (a) =
(

a1

1 + 5σ
,

a2

1 + 5σ
,

a3

1 + 4σ

)>
for σ > 0 and a ∈ R3. Also, let Fj : R3 → 2R

3
be defined by

Fja =

{−(3j+1)x
3 , −(j + 1)a i f a ≤ 0

−(j + 1)a, −(3j+1)a
3 i f a > 0

(59)
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It is clear that T(F) = {0} andH(Fja, Fj0) = (j + 1)2|z|2. Thus,

d(a, Fja)2 =

∣∣∣∣a + (3j + 1)
3

a
∣∣∣∣2

=

∣∣∣∣ (3j + 4)
3

a
∣∣∣∣2

=

(
9j2 + 24j + 16

9

)
|a|2.

Furthermore,

H(Fja, Fj0)2 = (j + 1)2|a|2

= |a− 0|2 + (j2 + 2j)|a− 0|2

= |a− 0|2 + 9j2 + 2j
9j2 + 24j + 16

d2(a, Fja). (60)

Hence, Fj is k-demicontractive with k = (9j2+2j)
9j2+24j+16 ∈ (0.1). Moreover, the solution set

Γ = {0}. We choose the following choice of parameters for Algorithm 11: θn = 1
(n+1)2 , ηn =

2n
5n+4 , βn = 1

m+1 , λn = 1
n+1 , ξ = 1, α = 0, 2 g(a) = a

4 D(a) = a. For Algorithm 1,
we take θn = 2n

5n+4 , δ = 0.03; for Algorithm 2, we take θn = 1
(n+1)2 , δ = 0.04, λ = 0.03; for

Algorithm 3, we take ηn = 0.04; and for Algorithm 10, we take θn = 2n
5n+3 , αn = 1

n+1 , σn =
1

2‖B∗B‖2 . We test the algorithms using the following initial points:

([Case I:]) a0 = eye(3,1) and a1 = rand(3,1),

([Case II:]) a0 = rand(3,1) and a1 = rand(3,1),

([Case III:]) a0 = randn(3,1) and a1 = randn(3,1),

([Case IV:]) a0 = ones(3,1) and a1 = rand(3,1),

where “eye", “randn", “rand", and “ones" are MATLAB functions. We used ‖an+1 − an‖ <
10−6 as the stopping criterion for all the implementation. The numerical results are shown in
Table 1 and Figure 1. Furthermore, we run the algorithms for 100 randomly generated starting
points to check the performance of the algorithms using the performance profile metric introduced by
Dolan and More [34], which is widely accepted as a benchmark for comparing the performance of
algorithms. The details of the setup of the performance profile can be found in [34]. In particular,
for each algorithm s ∈ S = {1, 2, . . . , 5} and case p ∈ P = {1, . . . , 100}, we defined a parameter
tp,s which is the computation value of algorithm s ∈ S for solving problem case p ∈ P such as the
number of iterations, time of execution, or error value of Algorithm s ∈ S to solve problem p ∈ P .
The performance of each algorithm is scaled concerning the best performance of any other algorithm
in S , which yields the performance ratio

ηp,s =
tp,s

min{tp,s : s ∈ S} .

We select a parameter ηr such that ηr ≥ ηp,s for all p and s, and ηp,s = ηr only if solver s is
unable to solve problem p. It is worth noting that the choice of ηr does not affect the performance
evaluation, as explained in [34]. To determine an overall assessment of each solver’s performance,
we use the following measurement:

Ps(t) =
1

np
size{p ∈ P : ηp,s ≤ t},

the probability Ps(t) represents the likelihood of solver s ∈ S to achieve a performance ratio ηp,s
within a factor t ∈ R of the best possible ratio. The performance profile Ps : R → [0, 1] for a
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solver is a non-decreasing function that is piecewise continuous from the right at each breakpoint
when Ps is defined as the cumulative distribution function of the performance ratio. The probability
Ps(1) denotes the chance of the solver achieving the best performance among all solvers. The
performance profile results (Figure 2 show that Algorithm 11 has the best performance for 100% of
the cases considered in terms of the number of iterations. In contrast, Algorithm 3 has the worst
performance. Moreover, Algorithm 10 performs better than Algorithms 1–3 even in worst senerios.
Also, Algorithm 11 has the best performance for about 82% of the cases in terms of the time of
execution, followed by Algorithm 10 for about 18% of the cases. In contrast, Algorithm 3 has the
worst performance in terms of the time of execution. It is good to note that despite the self-adaptive
technique used in selecting the stepsize for Algorithm 3, its performance is relatively worse than
other methods.

Table 1. Numerical results for Example 1.

Case I Case II Case III Case IV

Algorithm 11 No of L. 13 15 17 14
CPU time (s) 0.0013 0.0076 0.0090 0.0018

Algorithm 1 No of L. 43 50 63 48
CPU time (s) 0.0282 0.0223 0.0114 0.0156

Algorithm 2 No of L. 41 48 59 46
CPU time (s) 0.0270 0.0191 0.0137 0.0166

Algorithm 3 No of L. 104 140 160 73
CPU time (s) 0.0305 0.0425 0.0278 0.0194

Algorithm 10 No of L. 28 32 37 28
CPU time (s) 0.0167 0.0161 0.0148 0.0034
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Figure 2. Performance profile results for Example 1 in terms of number of iterations (left) and time of
execution (right).

Example 2. Our algorithms are utilized to solve an image reconstruction problem that can be
modeled as the Least Absolute Selection and Shrinkage Operator (LASSO) problem described in
Tibshirani’s work [35]. Alternatively, it can be modeled as an underdetermined linear system
given by

z = ma + ε, (61)

where a is the original image in RM, m is the blurring operator in M× N(M << N), ε is noise,
and z is the degraded or blurred data which must be recovered. Typically, this can be reformulated as
a convex unconstrained minimization problem given by

min
a∈RN

{
1
2
‖ma− z‖2

2 + λ‖a‖1

}
, (62)

where λ > 0, ‖a‖2 is the Euclidean norm of a and ‖a‖1 =
N
∑

i=1
|yi| is the l1-norm of a. Various

scientific and engineering fields have found the problem to be a valuable tool. Over the years,
several iterative techniques have been developed to solve Equation (62), with the earliest being the
projection approach introduced by Figureido et al. [36]. Equivalently, the LASSO problem (62) can
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be expressed as an SVIP when C = {a ∈ Rk : ‖a‖1 ≤ t} and Q = {z}, m1 = ∂iC, m2 = ∂iQ,
where iC and iQ are the indicator functions on C and Q, respectively. We aim to reconstruct the
initial image a based on the information the blurred image z provides. The image is in greyscale and
has a width of M pixels and a height of N pixels, with each pixel value within the [0, 255] range. The
total number of pixels in the image is D = M× N. The signal-to-noise ratio, which is determined
by the amount of noise present in the restored image, is used to evaluate the quality of the resulting
image, and it is defined by

SNR = 20× log10

(
‖a‖2

‖a− a∗‖2

)
,

with a and a∗ being the original and restored images, respectively. In image restoration, the
quality of the restored image is typically measured by its signal-to-noise ratio (SNR), where a
higher SNR indicates better quality. To evaluate the effectiveness of our approach, we conducted
experiments using three test images: Cameraman (256 × 256), Medical Resonance Imaging (MRI)
(128 × 128), and Pout (400 × 318), all of which were obtained from the Image Processing Toolbox
in MATLAB. Specifically, we degraded each test image using a Gaussian 7 × 7 blur kernel with
a standard deviation of 4. We processed the algorithms using the following control parameters:
Algorithm 11: θn = 1

n2 , ηn = 2n−1
8n+7 , βn = 1

r+1 , λn = 1
100n+1 , ξ = 1, α = 0.4 g(a) =

a
8 D(a) = 2a. For Algorithm 1, we take θn = n

7n+3 , λ = 0.05; for Algorithm 2, we take
θn = 1

n2 , δ = 0.06, λ = 0.09; for Algorithm 3, we take ηn = 0.05; and for Algorithm 10, we take
θn = n

7n+3 , αn = 1
100n+1 , σn = 1

2‖B∗B‖2 . We also choose the initial values as a0 = 0 ∈ RM×N and

a1 = 1 ∈ RM×N . The numerical results are shown in Figures 3–6 and Table 2. It is easy to see
that all the algorithms efficiently reconstruct the blurred image. Though the performance of the
algorithms varies in terms of the quality of the reconstructed image, we note that Algorithm 11
was able to reconstruct the images faster than other algorithms used in the experiments. This also
emphasizes the importance of the proposed algorithm.

Figure 3. Cont.
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Figure 3. Image reconstruction using cameraman (256 × 256) image.

Figure 4. Image reconstruction using MRI (128 × 128) image.
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Figure 5. Image construction using Pout image (291 × 240).
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Figure 6. Graphs of SNR against iteration number. Top Left: Cameraman; Top Right: MRI; and
Bottom: Pout.

Table 2. Computational result for Example 2.

Algorithms
Cameraman MRI Pout

Time (s) SNR Time (s) SNR Time (s) SNR

Algorithm 11 14.2169 34.3580 2.3627 26.4215 11.3969 40.2075

Algorithm 1 16.9989 34.3517 2.7461 26.9565 12.5370 37.7244

Algorithm 2 19.6273 34.3468 2.8171 25.8976 12.3931 40.9870

Algorithm 3 18.8111 34.4365 2.7333 26.4675 13.5479 40.3109

Algorithm 10 17.3022 31.5974 2.7074 24.6775 12.3144 36.2867

5. Conclusions

Our paper proposes a novel inertial self-adaptive iterative technique that utilizes
viscosity approximation to obtain a common solution for split variational inclusion prob-
lems and fixed point problems in real Hilbert spaces. We have selected an optimal inertial
extrapolation term to enhance the algorithm’s accuracy. Additionally, we incorporated
a self-adaptive technique that allows for stepsize adjustment without relying on prior
knowledge of the norm of the bounded linear operator. Our method has been proven to
converge strongly, and we have included numerical implementations to demonstrate its
efficiency and effectiveness.
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