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Abstract: We introduce a special vector field ω on a Riemannian manifold (Nm, g), such that the Lie
derivative of the metric g with respect to ω is equal to ρRic, where Ric is the Ricci tensor of (Nm, g)
and ρ is a smooth function on Nm. We call this vector field a ρ-Ricci vector field. We use the ρ-Ricci
vector field on a Riemannian manifold (Nm, g) and find two characterizations of the m-sphere Sm(α).
In the first result, we show that an m-dimensional compact and connected Riemannian manifold
(Nm, g) with nonzero scalar curvature admits a ρ-Ricci vector field ω such that ρ is a nonconstant
function and the integral of Ric(ω, ω) has a suitable lower bound that is necessary and sufficient
for (Nm, g) to be isometric to m-sphere Sm(α). In the second result, we show that an m-dimensional
complete and simply connected Riemannian manifold (Nm, g) of positive scalar curvature admits a
ρ-Ricci vector field ω such that ρ is a nontrivial solution of the Fischer–Marsden equation and the
squared length of the covariant derivative of ω has an appropriate upper bound, if and only if (Nm, g)
is isometric to m-sphere Sm(α).
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1. Introduction

An m-dimensional complete simply connected Riemannian manifold of constant
curvature α is isometric to one of the following spaces: the m-sphere Sm(α), the Euclidean
space Rm, or the hyperbolic space Hm(α), referred to as α > 0, α = 0, or α < 0, respectively
(cf. [1]). Because of this classification, there has been an interest in obtaining necessary
and sufficient conditions on complete Riemannian manifolds so that they are isometric to
one of the three model spaces Sm(α), Rm, and Hm(α), respectively. One of most sought
questions is about obtaining different characterizations of spheres Sm(α) among complete
Riemannian manifolds. In obtaining these characterizations, most of the time, the conformal
and Killing vector fields are used on an m-dimensional complete Riemannian manifold
(Nm, g) (cf. [2–11]). A vector field u on m-Riemannian manifold (Nm, g) is a conformal
vector field if the Lie derivative £ug has the expression

£ug = 2 f g,

where f is a smooth function called the conformal factor. If f = 0 in the above definition,
then u is called a Killing vector field.

In this paper, we are interested in a vector field ω on an m-dimensional Riemannian
manifold (Nm, g) that satisfies

1
2

£ωg = ρRic, (1)

where £ωg is the Lie-derivative of the metric g with respect to ω, ρ is a smooth function,
and Ric is the Ricci tensor of (Nm, g). We call ω satisfying Equation (1) a ρ-Ricci vector
field on (Nm, g). Naturally, if (Nm, g) is an Einstein manifold, then a ρ-Ricci vector field
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ω is a conformal vector field on (Nm, g) (cf. [3,4]). If, in Equation (1), we take ρ = 0, then
the 0-Ricci vector field ω on (Nm, g) is a Killing vector field on (Nm, g) (cf. [12]). A ρ-Ricci
vector field on (Nm, g) is also a particular form of a potential field of a generalized soliton
(cf. [12]), with α = −ρ and β = γ = 0.

We could also approach to Equation (1) in another context (cf. [13]). On the m-
dimensional Riemannian manifold (Nm, g), take a smooth function ρ and consider a 1-
parameter family of metrics g(t) satisfying the generalized Ricci flow (or ρ-Ricci flow)
equation

∂tg = 2ρRic, g(0) = g. (2)

To reach a solution of above flow, we take a 1-parameter family of diffeomorphisms
ϕt : Nm → Nm generated by the family of vector fields W(t) and let σ(t) be a scale factor.
Then, we are interested in a solution of flow (2) of the form

g(t) = σ(t)ϕ∗t (g).

Differentiating the above equation with respect to t and substituting t = 0, while assuming
σ(0) = 1,

.
σ(0) = 0, W(0) = ω, and using ϕ0 = id, we obtain

£ωg− 2ρRic = 0,

which is Equation (1). Thus, a ρ-Ricci vector field ω on (Nm, g) can be considered as stable
solution of the flow (2).

We see that as a trivial example on the Euclidean space Rm, a constant vector field a is
a ρ-Ricci vector field for any smooth function ρ on Rm. Similarly on the complex Euclidean
space Cm with complex structure J and the vector field

ξ =
m

∑
i=1

zi ∂

∂zi ,

where z1, . . . , zm are Euclidean coordinates, the vector field ω = Jξ is a ρ-Ricci vector field
for any smooth function ρ on Cm.

Next, we show that on the sphere Sm(α) of constant curvature α, there are many ρ-Ricci
vector fields. With the embedding i : Sm(α)→ Rm+1 and unit normal ξ and shape operator
−
√

αI, upon taking a nonzero constant vector field b on the Euclidean space Rm+1, we have
b = ω + f ξ, where f = 〈b, ξ〉 and ω is the tangential component of b to the sphere Sm(α).
We denote the induced metric on the sphere Sm(α) by g and the Riemannian connection by
D. Then, differentiating the above equation with respect to the vector field X on Sm(α), we
have

DXω = −
√

α f X, ∇ f =
√

αω, (3)

where ∇ f is the gradient of f . Using the first equation in (3), it follows that

£ωg = −2
√

α f g

and the Ricci tensor of the sphere Sm(α) is given by

Ric = (m− 1)αg.

Thus, we see that the vector field ω on the sphere Sm(α) satisfies

1
2

£ωg = ρRic, ρ = − 1
(m− 1)

√
α

f , (4)

that is, ω is a ρ-Ricci vector field on the sphere Sm(α). Indeed, for each nonzero constant
vector field on the Euclidean space Rm+1, there is a ρ-Ricci vector field on the sphere Sm(α).
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The above example naturally leads to a question: Under what conditions is a compact
and connected m-dimensional Riemannian manifold (Nm, g) admitting a ρ-Ricci vector
field ω isometric to a m-sphere Sm(α)?

There are two well-known differential equations on a Riemannian manifold (Nm, g).
The first is Obata’s differential equation, namely (cf. [6,7]),

Hess(σ) = −ασg, (5)

where σ is a non-constant smooth function, α is a positive constant, and Hess(σ) is the
Hessian of σ defined by

Hess(σ)(X, Y) = g(DX∇σ, Y),

for smooth vector fields X, Y on Nm. Obata proved that a necessary and sufficient condition
for a complete and simply connected Riemannian manifold (Nm, g) to admit a nontrivial
solution of differential Equation (5) is that (Nm, g) is isometric to the sphere Sm(α) (cf. [6,7]).
The other differential equation on (Nm, g) is the Fischer–Marsden equation (cf. [14–19])

(∆σ)g + σRic = Hess(σ), (6)

where σ is a smooth function on Nm and ∆σ = div(∇σ) is the Laplacian of σ. We shall
abbreviate the above Fischer–Marsden equation as FM-equation. Taking trace in the FM-
Equation (6), we obtain

∆σ = − τ

m− 1
σ, (7)

where τ = TrRic is the scalar curvature of the Riemannian manifold (Nm, g). It is known
that if (Nm, g) admits a nontrivial solution to the FM-equation, then the scalar curvature τ
is necessarily constant (cf. [14]).

Note that by Equation (3), the smooth function f on the sphere Sm(α) has the Hessian

Hess( f )(X, Y) = g(DX∇ f , Y) =
√

αg(DXω, Y) = −α f g(X, Y),

the Laplacian ∆ f = div
(√

αω
)
= −mα f , and Ric = (m− 1)αg. Consequently, on Sm(α),

we see that
(∆ f )g + f Ric = Hess( f ), (8)

that is, f is a solution of the FM-equation on the sphere Sm(α). If we combine the two,
namely a Riemannian manifold (Nm, g) admits a ρ-Ricci vector field ω such that ρ is a
nontrivial solution of the FM-equation on (Nm, g), and seek an additional condition under
which (Nm, g) is isometric to Sm(α), we can notice that the ρ-Ricci vector field ω on the
sphere Sm(α) is a closed vector field. Therefore, in this paper, we use the closed ρ-Ricci
vector field ω on a Riemannian manifold (Nm, g) and answer these two question in Section
3, where we find two characterizations of the sphere Sm(α).

In respect to first question raised above, in Section 3, we show that if a closed ρ-Ricci
vector field ω on an m-dimensional compact and connected Riemannian manifold (Nm, g),
m > 2 with scalar curvature τ 6= 0, and nonzero nonconstant function ρ satisfies∫

M
Ric(ω, ω) ≥ m− 1

m

∫
M
(divω)2,

then the scalar curvature τ is a positive constant τ = m(m− 1)α, and (Nm, g) is isometric
to Sm(α) (cf. Theorem 1). Also, the converse holds. Moreover, in respect to the second
question raised above, we prove that if an m-dimensional complete and simply connected
Riemannian manifold (Nm, g) with scalar curvature τ > 0 admits a closed ρ-Ricci vector
field ω such that the function ρ is a nontrivial solution of the FM-equation and the length
of covariant derivative of ω satisfies

‖∇ω‖2 ≤ 1
m

τ2ρ2,
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then τ is a positive constant τ = m(m− 1)α and (Nm, g) is isometric to Sm(α) (cf. Theorem 2),
and the converse also holds.

2. Preliminaries

Let ω be a closed ρ-Ricci vector field on an m-dimensional Riemannian manifold
(Nm, g). If β is the 1-form dual to ω, that is,

β(X) = g(ω, X), X ∈ Θ(TNm), (9)

where Θ(TNm) is the space of smooth sections of the tangent bundle TNm, then we have
dβ = 0. We denote by∇X the covariant derivative operator with respect to the Riemannian
connection on (Nm, g) and notice that for the closed ρ-Ricci vector field ω, we have

2g(∇Xω, Y) = g(∇Xω, Y) + g(∇Yω, X) + g(∇Xω, Y)− g(∇Yω, X)

= (£ωg)(X, Y) + dβ(X, Y) = 2ρRic(X, Y).

Thus, for a closed ρ-Ricci vector field ω, we have

∇Xω = ρTX, X ∈ Θ(TNm), (10)

where T is a symmetric operator called the Ricci operator given by

Ric(X, Y) = g(TX, Y).

Using the expression for the curvature tensor field R of (Nm, g)

R(X, Y)Z = [∇X ,∇Y]Z−∇[X.Y]Z, X, Y, Z ∈ Θ(TNm),

and Equation (10), we obtain

R(X, Y)ω = X(ρ)TY−Y(ρ)TX + ρ((∇XT)(Y)− (∇YT)(X)), (11)

X, Y ∈ Θ(TNm), where (∇XT)(Y) = ∇XTY− T(∇XY). The scalar curvature τ of (Nm, g)
is given by τ = TrT, where TrT is the trace of the symmetric operator T. Choosing a local
frame {F1, . . . , Fm} and using the definition of the Ricci tensor Ric

Ric(X, Y) =
m

∑
j=1

g
(

R
(

Fj, X
)
Y, Fj

)
,

together with Equation (3), we conclude that

Ric(Y, ω) = Ric(Y,∇ρ)− τY(ρ) + ρg

(
Y,

m

∑
j=1

(
∇Fj T

)
(Fj)

)
− ρY(τ), (12)

where ∇ρ is the gradient of ρ. It is known that the gradient of scalar curvature τ satisfies
(cf. [1])

1
2
∇τ =

m

∑
j=1

(
∇Fj T

)
(Fj). (13)

Consequently, Equation (12) takes the form

Ric(Y, ω) = Ric(Y,∇ρ)− τY(ρ)− 1
2

ρY(τ) (14)

and we have
T(ω) = T(∇ρ)− τ∇ρ− 1

2
ρ∇τ. (15)
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3. Characterizing Spheres via ρ-Ricci Fields

Let ω be a closed ρ-Ricci vector field on an m-dimensional Riemannian manifold
(Nm, g). We shall use ρ-Ricci vector field and find two characterizations of m-sphere Sm(α).
In our first result, we prove the following result:

Theorem 1. A closed ρ-Ricci vector field ω on an m-dimensional compact and connected Rieman-
nian manifold (Nm, g), m > 2 with scalar curvature τ 6= 0 and nonzero nonconstant function ρ
satisfies ∫

M
Ric(ω, ω) ≥ m− 1

m

∫
M
(divω)2,

if and only if, τ is a positive constant m(m− 1)α, and (Nm, g) is isometric to Sm(α).

Proof. Let (Nm, g) be an m-dimensional compact and connected Riemannian manifold,
m > 2 with scalar curvature τ 6= 0 and ω be a closed ρ-Ricci vector field defined on (Nm, g)
with nonzero and nonconstant function ρ satisfying∫

M
Ric(ω, ω) ≥ m− 1

m

∫
M
(divω)2. (16)

Then using Equation (10), we have

divω = ρτ. (17)

Choosing a local orthonormal frame {F1, . . . , Fm} and using

‖T‖2 =
m

∑
j=1

g
(
TFj, TFj

)
and an outcome of Equation (10) as

(£ωg)(X, Y) = 2ρg(TX, Y), X, Y ∈ Θ(TNm),

we conclude
1
2
|£ωg|2 = 2ρ2‖T‖2. (18)

Note that, we have∥∥∥T − τ

m
I
∥∥∥2

=
m

∑
j=1

g
((

TEj −
τ

m
Ej

)
,
(

TEj −
τ

m
Ej

))
= ‖T‖2 +

1
m

τ2 − 2
m

∑
j=1

g
(

TEj,
τ

m
Ej

)
,

that is, ∥∥∥T − τ

m
I
∥∥∥2

= ‖T‖2 − 1
m

τ2. (19)

Now, using Equation (10), we have

ρ
(

TX− τ

m
X
)
=
(
∇Xω− τ

m
ρX
)

,
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which in view of a local frame {F1, . . . , Fm} on (Nm, g) implies

ρ2
∥∥∥T − τ

m
I
∥∥∥2

=
m

∑
j=1

g
(

ρ
(

TEj −
τ

m
Ej

)
, ρ
(

TEj −
τ

m
Ej

))
=

m

∑
j=1

g
(
∇Ej ω−

τ

m
ρEj,∇Ej ω−

τ

m
ρEj

)
= ‖∇ω‖2 +

1
m

τ2ρ2 − 2
m

τρdivω.

Using (17), in above equation, yields

ρ2
∥∥∥T − τ

m
I
∥∥∥2

= ‖∇ω‖2 − 1
m

τ2ρ2,

which upon integration gives∫
Nm

ρ2
∥∥∥T − τ

m
I
∥∥∥2

=
∫

Nm

(
‖∇ω‖2 − 1

m
τ2ρ2

)
. (20)

Next, we recall the following integral formula (cf. [20])∫
Nm

(
Ric(ω, ω) +

1
2
|£ωg|2 − ‖∇ω‖2 − (divω)2

)
= 0,

and employing it in Equation (20), we conclude∫
Nm

ρ2
∥∥∥T − τ

m
I
∥∥∥2

=
∫

Nm

(
Ric(ω, ω) +

1
2
|£ωg|2 − (divω)2 − 1

m
τ2ρ2

)
.

Using Equations (17) and (18) in the above equation yields∫
Nm

ρ2
∥∥∥T − τ

m
I
∥∥∥2

=
∫

Nm

(
Ric(ω, ω) + 2ρ2‖T‖2 − τ2ρ2 − 1

m
τ2ρ2

)
,

that is,∫
Nm

ρ2
∥∥∥T − τ

m
I
∥∥∥2

=
∫

Nm

(
Ric(ω, ω) + 2ρ2

(
‖T‖2 − 1

m
τ2ρ2

)
− τ2ρ2 +

1
m

τ2ρ2
)

.

In view of Equation (19), the above equation implies∫
Nm

ρ2
∥∥∥T − τ

m
I
∥∥∥2

=
∫

Nm

(
m− 1

m
τ2ρ2 − Ric(ω, ω)

)
and substituting from Equation (17), it yields∫

Nm
ρ2
∥∥∥T − τ

m
I
∥∥∥2

=
m− 1

m

∫
Nm

(divω)2 −
∫

Nm
Ric(ω, ω).

Employing inequality (16) in the above equation, we conclude

ρ2
∥∥∥T − τ

m
I
∥∥∥2

= 0.

However, ρ 6= 0 on connected Nm, gives

T =
τ

m
I. (21)



Mathematics 2023, 11, 4622 7 of 11

Taking the covariant derivative in above equation, we have

(∇XT)(Y) =
1
m

X(τ)Y

and using a frame {F1, . . . , Fm} on (Nm, g) in above equation, we have

m

∑
j=1

(
∇Ej T

)
(Ej) =

1
m
∇τ.

Using Equation (13) in this equation, we arrive at

1
2
∇τ =

1
m
∇τ

and as m > 2, we conclude ∇τ = 0. Hence, the scalar curvature τ is a constant, and it is a
nonzero constant. Now, Equations (15) and (21) imply

τ

m
ω =

τ

m
∇ρ− τ∇ρ,

that is,
ω = −(m− 1)∇ρ (22)

and it gives divω = −(m− 1)∆ρ, which, in view of Equation (17), implies τρ = −(m−
1)∆ρ, that is,

−(m− 1)ρ∆ρ = τρ2.

Integrating the above equation by parts, we arrive at

(m− 1)
∫

Nm
‖∇ρ‖2 = τ

∫
Nm

ρ2.

Since ρ is a nonconstant, from the above equation, we conclude the constant τ > 0. We
put τ = m(m− 1)α for a positive constant α. Now, differentiating Equation (22) and using
Equations (10) and (21), we conclude

∇X∇ρ = −αρX, X ∈ Θ(TNm),

where ρ is a nonconstant function and α > 0 is a constant. Hence, Hess(ρ) = −αρg; that is,
(Nm, g) is isometric to the sphere Sm(α) (cf. [6,7]).

Conversely, suppose that (Nm, g) is isometric to the sphere Sm(α). Then, we know
that a nonzero constant vector field b on the ambient Euclidean space Rm+1 induces a
vector field ω on the sphere Sm(α), which, according to Equation (4), is a ρ-Ricci vector
field. Clearly, the scalar curvature of Sm(α) is given by τ = m(m− 1)α 6= 0. We claim that
the function ρ is nonzero and nonconstant. If ρ = 0, then by Equation (4), we have f = 0,
which, in view of Equation (3), implies ω = 0, and this in turn will imply that the constant
vector field b = 0. This is contrary to the assumption that b is a nonzero constant vector
field. Hence, ρ 6= 0. Now, suppose ρ is a constant; then, by Equation (4), f is a constant,
and by Equation (3), we have divω = −m

√
α f , which, by Stokes’s Theorem on compact

Sm(α), would imply f = 0. This in turn, by virtue of Equation (4), implies ρ = 0, which is a
contradiction, as seen above. Hence, the function ρ is nonzero and nonconstant.

Next, using Equations (3) and (4), we have

divω = m(m− 1)αρ (23)

and it gives ∫
Sm(α)

(divω)2 = m2(m− 1)2α2
∫

Sm(α)
ρ2. (24)
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Now, using Equation (4), we have

∇ρ = − 1
(m− 1)

√
α
∇ f , (25)

which, on using Equation (3), gives

∇ρ = − 1
m− 1

ω.

Taking divergence in the above equation and using Equation (23), we conclude ∆ρ = −mαρ,
that is, ρ∆ρ = −mαρ2. Integrating this equation by parts, we conclude∫

Sm(α)
‖∇ρ‖2 = mα

∫
Sm(α)

ρ2.

Treating this equation with Equation (24), we conclude∫
Sm(α)

(divω)2 = m(m− 1)2α
∫

Sm(α)
‖∇ρ‖2. (26)

Also, using Equations (3) and (25), we have

ω = −(m− 1)∇ρ

and it changes Equation (26) to∫
Sm(α)

(divω)2 = mα
∫

Sm(α)
‖ω‖2.

Finally, using Ric(ω, ω) = (m− 1)‖ω‖2 in the above equation, we conclude∫
Sm(α)

Ric(ω, ω) =
m− 1

m

∫
Sm(α)

(divω)2

and this finishes the proof.

Next, we consider a closed ρ-Ricci vector field on a compact and connected Riemannian
manifold (Nm, g) such that the smooth function ρ is a nontrivial solution of the FM-equation
and find yet another characterization of the sphere Sm(α). Indeed we prove the following
theorem.

Theorem 2. An m-dimensional complete and simply connected Riemannian manifold (Nm, g)
with scalar curvature τ > 0 admits a closed ρ-Ricci vector field ω such that the function ρ is a
nontrivial solution of the FM-equation and the length of covariant derivative of ω satisfies

‖∇ω‖2 ≤ 1
m

τ2ρ2,

if and only if τ is a positive constant τ = m(m− 1)α and (Nm, g) is isometric to Sm(α).

Proof. Suppose (Nm, g) is an m-dimensional complete and simply connected Riemannian
manifold with scalar curvature τ > 0, and it admits a closed ρ-Ricci vector field ω, where ρ
is a nontrivial solution of the FM-Equation (6) and the length of covariant derivative of ω
satisfies

‖∇ω‖2 ≤ 1
m

τ2ρ2. (27)
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For ρ, we define the operator Bρ by

BρX = ∇X∇ρ, X ∈ Θ(TNm),

then Bρ is a symmetric operator related to Hess(ρ) by

Hess(ρ)(X, Y) = g
(

BρX, Y
)
, X, Y ∈ Θ(TNm). (28)

As ρ is a nontrivial solution of the FM-equation, using Equations (6) and (28), we have

ρTX = BρX− (∆ρ)X,

which, in view of Equation (7), becomes

BρX = ρTX− τ

m− 1
ρX. (29)

Note that owing to the fact that ρ is a nontrivial solution of the FM-equation on (Nm, g),
the scalar curvature τ is a constant and we put τ = m(m− 1)α for a constant α. Using
Equation (29), we have

BρX + αρX = ρTX− (m− 1)αρX, X ∈ Θ(TNm).

Now, using Equation (10) in the above equation, we have

BρX + αρX = ∇Xω− (m− 1)αρX, X ∈ Θ(TNm).

Taking a local frame {F1, . . . , Fm} on (Nm, g), by the above equation, we conclude

∥∥Bρ + αρI
∥∥2

=
m

∑
j=1

g
(

BρFj + αρFj, BρFj + αρFj
)

=
m

∑
j=1

g
(
∇Fj ω− (m− 1)αρFj,∇Fj ω− (m− 1)αρFj

)
= ‖∇ω‖2 + m(m− 1)2α2ρ2 − 2(m− 1)αρ(divω).

Now, using Equation (10), we have divω = τρ = m(m− 1)αρ, and inserting it in the above
equation, we arrive at ∥∥Bρ + αρI

∥∥2
= ‖∇ω‖2 −m(m− 1)2α2ρ2,

that is, ∥∥Bρ + αρI
∥∥2

= ‖∇ω‖2 − 1
m

τ2ρ2.

Using inequality (27) in the above equation results in

Bρ = −αρI,

that is,
Hess(ρ) = −αρg. (30)

Note that as τ > 0, the constant α > 0, and ρ is a nontrivial solution, ρ is a nonconstant func-
tion. Hence, by Equation (30), the complete and simply connected Riemannian manifold
(Nm, g) is isometric to the sphere Sm(α) (cf. [6,7]).
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Conversely, suppose that (Nm, g) is isometric to the sphere Sm(α). Then, by Equation (7),
the function f is a solution of FM-equation on the sphere Sm(α), which has a closed ρ-Ricci
vector field ω. The solution f of the FM-equation is related to ρ by Equation (4), that is,

f = −(m− 1)
√

αρ. (31)

In the proof of Theorem 1, we have seen that ρ is a nonconstant function on Sm(α). Moreover,
using Equation (31), we have

∆ f = −(m− 1)
√

α∆ρ, Hess( f ) = −(m− 1)
√

αHess(ρ)

and the Equation (7) takes the form

−(m− 1)
√

α(∆ρ)g + f Ric = −(m− 1)
√

αHess(ρ),

which, in view of Equation (31), changes to

(∆ρ)g + ρRic = Hess(ρ).

Hence, ρ is a nontrivial solution of the FM-equation on the sphere Sm(α). Now, the Ricci
operator T of the sphere Sm(α) is given by T = (m− 1)αI and, therefore, Equation (10) on
Sm(α) is

∇Xω = (m− 1)αρX, X ∈ Θ(TSm(α)).

Using the expression for the scalar curvature τ = m(m− 1)α for the sphere Sm(α), we have

∇Xω =
τ

m
ρX, X ∈ Θ(TSm(α)).

This proves

‖∇ω‖2 =
1
m

τ2ρ2

and completes the proof.

4. Conclusions

In the previous section, we used a closed ρ-Ricci vector field ω on an m-dimensional
Riemannian manifold (Nm, g) to find two different characterizations of an m-sphere Sm(α).
The scope of studying ρ-Ricci vector fields on a Riemannian manifold is quite modest. We
observe that, in the previous section, we restricted the ρ-Ricci vector field ω to be closed,
which simplified the expression for the covariant derivative of ω. It will be interesting to
investigate whether we could achieve similar results after removing the restriction that the
ρ-Ricci vector field ω is closed. It will be an interesting future topic to study the geometry of
an m-dimensional Riemannian manifold (Nm, g) that admits a ρ-Ricci vector field ω, which
needs not be closed. In order to simplify the findings on an m-dimensional Riemannian
manifold (Nm, g) admitting a ρ-Ricci vector field ω which is not necessarily closed, we
could impose the restriction on the Ricci operator T of (Nm, g) to be a Codazzi-type tensor,
such that it satisfies

(∇XT)(Y) = (∇YT)(X), X, Y ∈ Θ(TNm).

Note that above restriction on (Nm, g) is slightly stronger than demanding the scalar
curvature be a constant.
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