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Abstract: Due to the complexity of the aging process, maintaining the state of health (SOH) of
lithium-ion batteries is a significant challenge that must be overcome. This study presents a new SOH
estimation approach based on hybrid Grey Wolf Optimization (GWO) with Bayesian Regularized
Neural Networks (BRNN). The approach utilizes health features (HFs) extracted from the battery
charging-discharging process. Selected external voltage and current characteristics from the charging-
discharging process serve as HFs to explain the aging mechanism of the batteries. The Pearson
correlation coefficient, the Kendall rank correlation coefficient, and the Spearman rank correlation
coefficient are then employed to select HFs that have a high degree of association with battery
capacity. In this paper, GWO is introduced as a method for optimizing and selecting appropriate
hyper-p parameters for BRNN. GWO-BRNN updates the population through mutation, crossover,
and screening operations to obtain the globally optimal solution and improve the ability to conduct
global searches. The validity of the proposed technique was assessed by examining the NASA battery
dataset. Based on the simulation results, the presented approach demonstrates a higher level of
accuracy. The proposed GWO-BRNN-based SOH estimation achieves estimate assessment indicators
of less than 1%, significantly lower than the estimated results obtained by existing approaches. The
proposed framework helps develop electric vehicle battery prognostics and health management for
the widespread use of eco-friendly and reliable electric transportation.

Keywords: state of health estimation; lithium-ion batteries; electric vehicles; optimization; prognostics
and health management; Grey Wolf Optimizer; battery degradation; data-driven modeling

MSC: 60E05; 62N05

1. Introduction

Integrating renewable energy sources, electric vehicles (EVs), and smart grid tech-
nology is a viable paradigm in the fast-changing environment of contemporary power
networks. In tandem with these developments, lithium batteries have assumed a central
position in the fields of EVs, smart grids, and microgrids. Lithium batteries’ energy storage
capacities are significant because they allow for more effective use of renewable power,
load balancing, and improved grid stability. They are crucial to the efficient control of
energy flows and the stable power supply, allowing for the smooth incorporation of in-
termittent renewable sources into the grid. In addition, keeping an eye on and servicing
lithium batteries in such applications is crucial for keeping them running smoothly and
efficiently for as long as possible. New methods for monitoring and controlling lithium
batteries have been presented in recent literature [1–5]. These works add to the growing
body of knowledge in the field by highlighting the opportunities afforded by sophisticated
state-of-health estimation methods and the potential of lithium batteries to revolutionize

Mathematics 2023, 11, 4263. https://doi.org/10.3390/math11204263 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11204263
https://doi.org/10.3390/math11204263
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0923-1476
https://orcid.org/0009-0001-1781-1526
https://orcid.org/0000-0001-8577-4547
https://doi.org/10.3390/math11204263
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11204263?type=check_update&version=2


Mathematics 2023, 11, 4263 2 of 27

not only electrified transportation but also the broader scope of smart grid applications.
Lithium-ion batteries are often used in EVs owing to their many benefits, including high
specific energy, safety, cycle life, low pollution, and self-discharge. Electric vehicles require
a battery management system (BMS) for diagnostics, control, and protection [6–9]. The
most significant tasks of a BMS are the prediction of the battery’s remaining usable life
(RUL) and the determination of the battery’s state of health (SOH). These capabilities enable
users to replace batteries at the appropriate time and minimize disasters caused by batteries.
Predicting RUL and SOH is crucial. Battery SOH indicates a battery’s age from birth to
end of life (EOL). Real capacity/nominal capacity is SOH. The ratio of actual maximum
capacity to rated capacity is SOH. When a battery’s capacity drops below 70% or 80% of
its rated capacity, it is EOL and should be replaced. This capacity figure represents the
battery’s ultimate failure point. The SOH of a battery provides information on its age and
reliability. Because the process of a battery’s internal degeneration is so complex, the SOH
cannot be assessed directly, and predicting it continues to be challenging despite this [10].

Three classes of battery SOH estimation methods exist. Experimental open-circuit
voltage measurements, temperature, and current characterize the battery. Battery SOH
and predicted capacity are then calculated [11]. The experimental method only studies one
battery type. It is often combined with other methods due to the working environment
and equipment precision. The second method estimates battery SOH using state-of-the-
art algorithms like Kalman Filter (KF), Particle Filter (PF), and the battery model [12].
Estimating the state of charge (SOC), internal resistance, and SOH of a lithium-ion battery
using a hybrid adaptive observer and Enhanced Kalman Filter (EKF) technique is what
the authors suggest [13]. In [14], a high-fidelity reduced-order physical life model and PF
algorithm simultaneously estimated SOH and aging parameters. The method works well at
many temperatures. The model’s and filters’ precision limits the accuracy and usefulness of
battery model-based methods. For the goal of SOH estimation, the data-driven techniques
have found significant use since they employ a large number of battery data and do not
need any mechanism models or prior knowledge [15]. This is because the data-driven
approaches do not need any prior knowledge or information. In recent years, several
methods for estimating SOH have emerged, some of which are as follows: neural networks;
support vector regression; relevance vector machine; Gaussian process regression; Bayes
model; random forest; autoencoder and many more. Most data-driven approaches make
use of neural networks as an integral part of their analysis. It’s possible that employing
this method will be beneficial to batteries and other nonlinear systems. Through the use of
the significant sample approach as well as the feedforward neural network, an accurate
assessment of the state of the battery was accomplished [16].

A strategy to estimate SOH that makes use of neural networks and Markov chains may
be used to handle difficulties that are connected to unknown extreme circumstances as well
as sophisticated internal electrochemical reaction processes. The use of data-driven algo-
rithms has expanded as a result of machine learning and big data [17]. Wang et al. [18] used
differential thermal voltammetry to determine battery SOH by first extracting parameters
from the DTV curve. To estimate the battery’s SOH, a gate recurrent unit convolutional NN
method that uses charging process voltage, current, and temperature to estimate battery
SOH has been proposed by authors in [19]. Authors in [20] proposed an ARMA-ENN
fusion model to estimate SOH, taking into account the recovery of local small capacity and
the changing of complicated information during charging. The data algorithm works with-
out a battery model. Enough experimental data can also produce highly accurate results
for nonlinear systems like batteries [21]. The battery aging behavior was simulated using
regression by making use of different fitting functions in [22]. Support vector regression
(SVR) and independent component analysis (ICA) curves using incomplete charge data
were used in [23]. Similarly, an SVR concept and voltage sub-segments during constant
current charging were applied [24]. A Gaussian process regression (GPR) model with
charging curve inputs and grey relational analysis has been utilized to assess features and
SOH [25]. GPR is used to study lithium-ion battery capacity, storage temperature, and
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SOC [26,27]. They forecasted battery calendar aging under diverse settings by optimizing
feature selection using an automated relevance determination framework. GPR and elec-
trochemical impedance spectroscopy were used in [28] to estimate battery capacity using
numerous waveforms.

Using a Deep Neural Network (DNN), the authors of [29] were able to make predic-
tions about the SOH and RUL of lithium-ion batteries. The SOH and RUL may be predicted
using a modified version of the Long and Short-Term Memory (LSTM) NN technique [30].
This approach increased the LSTM NN’s ability to digest input and filter out helpful infor-
mation to improve estimate results. BPNN and an adaptive neural fuzzy reasoning system
were applied in [31] to forecast the future performance of proton exchange membrane
fuel cells. One of the NN models mentioned above with the most hidden layers is DNN.
There are not many studies on DNN, and there are not any references to them either [32].
LSTM-NN has a constant error carousel to prevent error signals from rapidly declining,
which would prevent LSTM from learning critical information and impacting network
performance [33]. The incapacity of FNN to store and make use of previous data makes the
conclusions that were predicted less accurate. In [34], an LMA-ANN and big data analysis
were used to try to anticipate the demand for home air conditioning. The approach that
was presented is not only more precise but also applicable to a wide variety of time spans.
The research demonstrates how the approach works with real-time data and produces
performance indices as a result. The Bayesian Regularized Neural Network, often known
as BRNN, has a straightforward architecture, is straightforward to compute, and has been
improved upon by a large number of academics. The capacity of BRNN to perform error
backpropagation in the opposite direction enables the refinement of estimates via parame-
ter fine-tuning [35]. The authors of [36] were able to properly anticipate electricity usage
by using instance-based learning of forecast parameters in conjunction with BRNN. The
report recommends doing an estimate of the demand for electricity and making sure that
the power system is operating efficiently. BRNN has difficulties getting the parameters
initialized properly. In order to prevent erroneous predictions caused by weight parameter
initialization, it is essential that network parameters be properly selected. Accuracy is
essential for forecasting. For more accurate predictions, conventional ANN will need to
undergo several improvements. The Grey Wolf Optimization (GWO) algorithm is used in
this study to optimize the BRNN weights and thresholds.

Battery performance may be influenced by several aspects in practical scenarios. Nu-
merous studies use the battery charging-discharging procedure as a means to extract Health
Features (HFs) that serve as indicators of battery aging, with the aim of predicting SOH.
This enables them to make predictions about the estimate of the second-order harmonics
(SOH). Subsequently, the HFs are used as examples inside data-driven algorithmic proce-
dures. Furthermore, the optimization of the methodology has become a prominent area
of research, alongside the extraction of high-frequency components, which has gained
significant attention in recent years [37,38]. In their study, the authors used the Gaussian
Process Regression (GPR) model to forecast the SOH of lithium-ion batteries. This was
accomplished by extracting three HFs from the voltage, current, and temperature profiles
observed throughout the charging and discharging processes. This enabled them to as-
certain the projected state of health (SOH) of the battery [39]. In conclusion, this work
aims to remove HFs from charging batteries. After that, a Pearson correlation analysis, a
Spearman correlation coefficient, and a Kendall rank correlation were used to investigate
the relationship between the collected HFs and the capacity of the batteries. In order to
assess the SOH of the battery, we will use highly reliable HFs that exhibit a robust capacity
correlation. The GWO technique is used to establish the weights and thresholds of the
BRNN with the aim of addressing the parameter initialization issue seen in the normal
BRNN. The estimate of SOH is conducted by using the GWO-BRNN in order to tackle the
aforementioned concerns. The battery dataset provided by NASA is used to validate the
efficacy of the proposed GWO-BRNN.



Mathematics 2023, 11, 4263 4 of 27

This paper is organized as follows: The data description, extraction of HFs for SOH
estimation, and evaluation to select HFs by using correlation analysis have been presented
in Section 2. Section 3 describes GWO-BRNN-based SOH estimation incorporating HFs
and correlation analysis. The evaluation metrics to assess the effectiveness of the proposed
methodology have been discussed in Section 4. The results and analysis of the simulation
are presented in Section 5. Section 6 has some last thoughts on the subject.

2. Selection of Health Features for SOH Estimation Based on Correlation Analysis

The most apparent sign of battery deterioration is capacity loss, which is mainly
connected to the battery’s SOH. SOH is defined by capacity and is provided by the equa-
tion below.

SOH =
Cactual
Cnom

× 100% (1)

where Cactual and Cnom stand for real and theoretical capacity, respectively.

2.1. Data Description for SOH Estimation

This study used NASA’s B5, B6, B7, and B18 battery records for its investigation and
analysis [40,41]. Many researchers in the academic world use the NASA battery dataset
as a verification dataset to ensure that their methods are accurate. The accelerated life
test platform is responsible for carrying out three distinct battery degeneration tests. This
includes the electrochemical impedance experiment, charging, and discharging. Table 1
details the conditions used in the experiments.

Table 1. Selected NASA batteries specifications for analysis.

Battery Number/Specifications B5 B6 B7 B18

Charging
Constant Current (A) 1.5 1.5 1.5 1.5

Upper Voltage Limit (V) 4.2 4.2 4.2 4.2
Cut-off Current (mA) 20 20 20 20

Discharging Constant Current (A) 2 2 2 2
Cut-off Voltage (V) 2.7 2.5 2.2 2.5

Operating
Conditions

Operating Temperature Room Temperature Room Temperature Room Temperature Room Temperature
Initial Capacity (Ah) 1.86 2.04 1.89 1.86

End of Life (EOL)
criteria (Ah) 1.40 1.40 1.40 1.40

The charging process of the B5 battery consists of two distinct stages. Initially, a
constant current (CC) mode is employed, where a current of 1.5 A is supplied to the bat-
tery until its voltage gradually reaches the charging cut-off voltage. Subsequently, the
charging process transitions to the constant voltage (CV) mode, where a current of 0.02 A
is maintained to sustain the battery’s voltage at the desired level. After twenty minutes
of relaxation, the battery is charged. CC mode discharges the battery at 2. A until the
cut-off point drains it completely. This process continues until the battery becomes de-
pleted. Figure 1 presents the experimental current and voltage parameters used by NASA.
Electrochemical impedance spectroscopy is a technique used to assess the impedance across
a frequency range spanning from 0.1 Hz to 5000 Hz.

The battery’s capacity exhibits a gradual decline over time as it undergoes charging
and discharging cycles, as evidenced by the battery capacity curve observed by NASA.
The battery’s capacity does not decline continuously, as shown in Figure 2, but rather
replenishes on its own. After the charging-discharging cycle is complete, the battery’s
capacity increases somewhat after being stored for a while. When reactants in a battery
concentrate near an electrode, the reaction weakens. Since the battery loses these reactants
during storage, its capacity increases throughout the subsequent charging-discharging
cycle [42]. In this work, we determine that a battery has reached the junk state when its
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capacity falls below 70% of its rated capacity, or 1.4 Ah, which is the NASA battery capacity
failure criterion.
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Figure 2. The battery capacity aging curve of NASA batteries of NASA batteries.

The charging current curves exhibit the process of lithium-ion battery degradation
over time. The phenomenon of aging, as depicted in Figure 3a,b, can be attributed to the rise
in internal ohmic resistance and the gradual loss of capacity resulting from internal physical
and chemical mechanisms occurring during both storage and usage. As the quantity of
cycles increases, there is a notable fluctuation in the voltage curve observed during the
processes of charging and discharging. The data presented in Figure 4a,b demonstrate that
the current curves remain consistent irrespective of the number of cycles.
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2.2. Extraction of Health Features (HFs) for SOH Estimation

Capacity: The concept of capacity is frequently employed as a key factor in the
estimation of battery health. Nevertheless, the determination of battery capacity through
direct means is not feasible in practical scenarios due to the intricate nature of the internal
reaction within the battery. Additionally, there exists a phenomenon referred to as the
self-recovery of the battery’s capacity, and the manner in which the battery is discharged
is contingent upon the prevailing operating conditions. The direct estimation of SOH
using capacity is not feasible due to the complexity of the computational process involved.
Consequently, the researchers of this study extract readily quantifiable HFs from the voltage
and current profiles observed during the process of battery charging. Battery health is
subsequently assessed by identifying HFs that exhibit a strong association with battery
capacity, employing diverse correlation coefficients.

The battery’s health is reflected in the HFs extracted during the charging-discharging
process. That which can be readily tested and monitored online, such as the battery’s
intrinsic characteristics. The equal discharge voltage duration [43], the incremental capacity
curve [44], and the peak temperature of the battery [45] are only a few examples of how
current research defines battery HFs. The driver’s actions and the surrounding environment
significantly impact the power battery’s discharge behavior during the operation of an
electric vehicle. However, there is a precise procedure for charging batteries. In addition, a
battery’s capacity to discharge energy is directly related to the quantity of energy it retains
during the charging period. Hence, the estimation of SOH and the prediction of RUL
can be accomplished by gathering HF data during the charging procedure, facilitating
investigations into battery degradation. The charging mode time, also known as the
constant current (CC) charging mode time, for lithium-ion batteries used by NASA is
denoted as HF1. Measure the duration required for the voltage to reach the charging cutoff
value of 4.2 V during a singular charging cycle. HF2 represents the voltage at 500 s during
CC charging mode. HF3 denotes the current variation during the first 1000 s of charging
in CV mode. HF4 is the voltage range associated with batteries from 3.7 V to maximum
voltage limit of 4.2 V with an interval of 0.1. R1, R2, R3, and R4 represent the ranges
of voltages from 3.7 V to 4.2 V with an increment of 0.1. NASA’s battery data HFs are
extracted as

HF1 = tmin = [ti|V(ti) = 4.2 V ], ti = 1, 2, . . . .T (2)

HF2 = V(t = 500 s) (3)
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HF3 = ∆Ii = 1.5 A− I (t = 1000 s) (4)

HF4 = ∆ti = 3.7 ≤ V ≤ 4.2 (∆V = 0.1) (5)

I represents charging current, V represents charging voltage, and T represents charging
time in this equation. The outcomes of HF extraction from NASA batteries are depicted in
Figure 5.
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The values of the results will range between 0 and 1. The formula for normalization is
as follows:

u∗ = 1− u− umin
umax − umin

(6)

where u represents the data in HFs, umin and umax represent the lowest and maximum
values in each HF curve accordingly, and u∗ represents the normalized data for HFs.

2.3. Evaluation of HFs for SOH Estimation Based on Correlation Analysis

The Pearson correlation coefficient, often known as PCC, measures the degree to which
input parameters and electrical demand rotate linearly. This coefficient may take on values
ranging from 0 to 1, inclusive. If the correlation value is between 0.75 and 1, it is considered
to have a very strong correlation. If the value is between 0.75 and 0.5, it is considered to
have a moderate correlation; if the value is between 0.25 and 1, it is considered to have a
weak correlation. “0” implies that there is no connection, but “1” indicates that there is a
perfect correlation [36]. Calculating PCC is as follows:

{ =
Corr(U, V)

TD(X)× TD(V)
=

∑ UiVi − ∑ UiVi
m√(

∑ Ui
2 − ∑ Ui

2

m

)(
∑ Vi

2 − ∑ Vi
2

m

) (7)

The Spearman rank correlation coefficient (ρ) is a non-parametric indicator used to
assess the strong monotonic connection between two variables. There are two variables U
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(u1, u2, . . . , um), and their elements are arranged in ascending order. Equation (8) expresses
the Spearman rank correlation coefficient ρ, where wh(ui) and wh(vi) denote the new order
of ui and vi after ascending, respectively.

ρ = 1−
6 ∑M

i=1 g2
i

M(M2 − 1)

gi = wh(ui)− wh(vi) (8)

The Kendall rank correlation coefficient (£) is a non-parametric indicator that tests
the statistical dependency of two random variables by using the derived value. Any
two elements (ui,vi) and

(
uj,vj

)
are regarded as concordant pairs when ui > uj, vi > vj or

ui < uj, vi < vj; as discordant pairs when ui > uj, vi > vj or ui < uj, vi < vj. Equation (9)
expresses the Kendall rank correlation coefficient £, where A is the number of concordant
pairs, and B is the number of discordant pairs.

£ =
A− B

1
2 m(m− 1)

(9)

The values of {, ρ and £ vary from −1 to +1, with the definition stating that the
greater the proximity of the absolute value to 1, the greater the strength of the association.
Table 2 presents the results of the calculation of the correlation coefficients. Table 2 shows
that all HFs selected for this paper have absolute values of the correlation coefficient
with battery capacity greater than 0.6, and most are greater than 0.8. The selected HFs
in this study exhibit a robust correlation with battery capacity and will be employed to
estimate the SOH.

Table 2. Correlation Analysis Result with battery capacity and different HFs.

Battery Correlation/HF HF1(tmin) HF2(V) HF3V(∆Ii)
HF4 (∆V)

R1
(3.7–3.8)

R2
(3.8–3.9)

R3
(3.9–4.0)

R4
(4.0–4.1)

R5
(4.1–4.2)

B5
{ 0.847 0.896 0.996 0.817 0.694 0.964 0.924 0.588
ρ 0.770 0.931 1.060 0.874 0.841 0.891 0.996 0.643
£ 0.743 0.983 0.912 0.982 0.529 0.976 0.987 0.638

B6
{ 0.942 0.833 0.976 0.881 0.774 0.989 0.882 0.489
ρ 0.930 0.719 0.891 0.767 0.680 0.933 0.896 0.401
£ 0.893 0.855 1.000 0.873 0.611 0.919 0.997 0.574

B7
{ 0.802 0.860 0.988 0.871 0.692 0.950 0.926 0.580
ρ 0.939 0.821 0.994 0.782 0.735 0.947 0.783 0.622
£ 0.896 0.761 0.859 0.870 0.743 0.925 0.806 0.372

B18
{ 0.947 0.892 1.000 0.744 0.691 0.998 0.833 0.560
ρ 0.947 0.859 0.982 0.843 0.674 0.975 0.889 0.680
£ 0.799 0.950 0.858 0.714 0.703 0.953 0.959 0.586

The heatmap to show the relationship of battery capacity with HFs extracted for NASA
batteries is shown in Figure 6. It can be observed that all batteries HFs used in the analysis
have better correlation values greater than 75% for HF1, HF2, HF3, and voltage ranges
R1, R3, and R4. However, the voltage ranges R2 and R5 have no strong correlation with
battery capacity. They have values of less than 75%, so they are not utilized in the SOH
estimation analysis.
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3. GWO-BRNN-Based SOH Estimation Incorporating HFs and Correlation Analysis

In the second stage, we propose to apply optimal BRNN for electric demand forecast-
ing based on selected features. Supervised learning is used for network training in ANN
comprising a training set of inputs and outputs in the form {i1, s1}, {i2, s2}, {i3, s3} . . . ,

{im, sm}. It has been assumed that outputs are obtained by Qm = ∑k
m=1 imrm, where wn

is allocated weight for the nth output. Using an activation function, the hidden neurons
seek to map input and output for desired results correctly. The initial objective of the
training is to minimize the sum of squared errors Fg = ∑k

m=1(si −Qi), where Qi is the
neural network response. BRA refers to the steps taken to improve network learning using
statistical methods. The network’s weights are independent variables. In order to prevent
the prediction error associated with over-fitting, BRA uses a set of prior distributions on
the model parameters. For better generalization, the predicted output can be expressed as

E(r) =
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where 𝜎 is the number of effective parameters which is a measurement of how many pa-
rameters in the network are effectively employed in order to reduce the error function. 

Wolves of the grey kind often congregate in packs of 5–12 individuals, with four dis-
tinct dominance levels (alpha, beta, delta, and omega). When it comes to hunting, 
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where Fr represents the total of the squared weights of the network and Fg represents the
sum of the squared errors of the network. Both
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with the objective function. The primary challenge is to find an optimal set of parameters
for the goal function. Following the collection of the data, distribution parameters are
determined by the use of statistical methods [46,47]. The probability of a distribution may
be expressed in a formula using the Bayesian rule as follows:
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where C represents the neural network architecture, G represents the data collection, and r
represents the total number of network weights. H(w|
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The best weights in this BRA framework should maximize the posterior probability
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where P is the Hessian matrix. It can be approximated as P = L′L, where L is a Jacobian
matrix. If the Levenberg–Marquardt algorithm (LMA) is used to find the minimum value of
E(r), then the Gauss–Newton approximation should be utilized in opposition to the Hessian
matrix. In LMA, the parameters that are being used at the nth iteration are updated as the
iterations go.

rm+1 = rm −
[

LT L + θ I
]−1

LTe (16)

where θ is the LMA factor that may be changed at each iteration, as described in [48]. By
plugging these numbers into Equation (14), and then solving for the lowest point, we can
determine the best values for
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where σ is the number of effective parameters which is a measurement of how many
parameters in the network are effectively employed in order to reduce the error function.

Wolves of the grey kind often congregate in packs of 5–12 individuals, with four dis-
tinct dominance levels (alpha, beta, delta, and omega). When it comes to hunting, sleeping,
and waking up, the alpha grey wolf calls the shots [49]. Pack leaders are not usually
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the strongest. Betas are second-in-command. They advise alpha wolves. Deltas perform
surveillance, protection, hunting, and caregiving. Betas precede deltas. Omega’s reign
lasted. They eat last. Grey wolves ritually hunt. Their hunting phases are [50] (1) Ap-
proaching the prey. (2) Circling and pestering the victim to cease moving. (3) Predation.
The following equations explain the hunting process if the prey is up:

→
J = 2

→
j ·
→
i 1 −

→
j , (20)

→
K = 2·

→
i 2, (21)

→
L =

∣∣∣∣→K ·→Up(s)−
→
U(s) (22)

→
U (s + 1) =

→
Up(s)−

→
J ·
→
L (23)

where J and K are coefficient vectors computed using the [0, 1] range random vectors, U
(s) is the position vector of the hunting wolf, and U (s + 1) is its updated location in the
s + 1 iteration. i1 and i2 are components of a vector that decrease from 2 to 0 over the
iterations of the method. s is the current iteration. Grey wolves optimize cost function
values by ranking them. To mimic the grey wolf social hierarchy, GWO calls the top, second,
and third solutions alpha, beta, and delta. Omegas follow alphas, betas, and deltas. We
assume the top three wolves know where the prey is in the search space since we do not
know where the prey is. Alpha, beta, and delta drive GWO searching. GWO replaces the
prey’s position with alpha, beta, and delta and updates the remaining wolves’ locations in
Equations (20)–(23). The updated rules are as follows [51,52].

→
L α =

∣∣∣∣→K1 ·
→
Ua

∣∣∣∣,
→
L β =

∣∣∣∣→K2 ·
→
Uβ −

→
U
∣∣∣∣,

→
L γ =

∣∣∣∣→K3 ·
→
Uγ −

→
U
∣∣∣∣,

(24)

→
U1 =

→
Uα −

→
J 1 ·(

→
L α ),

→
U2 =

→
Uβ −

→
J 2 ·

(→
L β

)
,

→
U3 =

→
Uγ −

→
J 3 ·
(→

L γ

)
,

(25)

→
U(s + 1) =

→
U1 +

→
U2 +

→
U3

3
(26)

where Equation (20) calculates J1, J2, and J3, while Equation (21) calculates K1, K2, and K3.
Omega is at U (s + 1). During each iteration, the GWO analyzes the cost of all possible
solutions, updates the positions of all omega wolves using Equations (24)–(26), and names
the top three solutions alpha, beta, and delta. It does this by utilizing Equations (24)–(26).
Most algorithms have a set number of iterations. Omega, a two-dimensional search agent,
moves to match alpha, beta, and delta. The alpha, beta, and delta wolves estimate the
prey’s location, while the rest of the pack randomly (and closely) update their position
around it. Wolf position vectors describe neural network weights and biases in GWO ANN.
Its dimension matches the network’s weights and biases. Network pre-prediction error
costs. After GWO iterations, the trained network’s weights and biases are based on the
wolf’s position vector with the lowest cost (alpha). GWO-BRNN-based SOH estimation is
described below.
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1. Collect information about the charging and discharging cycles of the battery, as well
as its voltage, current, and any other relevant variables.

2. Remove noise, outliers, and irrelevant features. Normalize data to avoid bias.
3. Train BRNN. BRNN processes noisy data and estimates SOH probabilistically. Popu-

late GWO: Start with random grey wolf placements and speeds.
4. Evaluate the fitness of grey wolves: Evaluate the fitness of each GW by using the

BRNN model to predict the SOH based on its position.
5. Fitness-rank alpha, beta, and delta wolves. Grey wolf fitness ranks. The GWO

algorithm will place other grey wolves.
6. Investigate the conditions that lead to the termination of the process, such as the maxi-

mum number of iterations, the convergence of the fitness function, or a predetermined
error threshold.

7. Repeat steps 5–8 until termination criteria are met: Repeat steps 5–8 until the termina-
tion criteria are met.

8. Select the optimal grey wolves’ position: Select the optimal grey wolves’ position with
the highest fitness value as the predicted SOH.

9. Evaluate the prediction accuracy: Evaluate the prediction accuracy of the hybrid
GWO-BRANN model using validation and testing data.

10. Change model hyperparameters such as the number of grey wolves, learning rate,
and regularization strength to improve prediction accuracy.

11. Use the trained hybrid GWO-BRNN model to estimate lithium-ion battery SOH in
real-world applications.

4. Evaluation Metrics

We use statistical indicators to evaluate the suggested technique’s estimation. The
percentage absolute error (FAE) has been calculated using Equation (27) to test the sug-
gested method.

FAE =

∣∣∣∣Ui −Vi
Ui

∣∣∣∣× 100% (27)

where Ui and Vi represent the actual and SOH predictions by using the proposed approach,
respectively. The mean absolute error (FMAE), is the average of the absolute difference
between the actual value and the estimated value of SOH for M observations. It char-
acterizes how well the suggested approach works, in general, and is used to determine
its typical performance. As a relative error measure, the mean absolute percentage error,
abbreviated as (FMAPE), is used to contrast an estimated SOH value with an actual one.
The square root of the mean square error, denoted by the notation (FRMSE), is a metric that
determines how much the estimated value deviates from the actual value. The coefficient of
determination, R squared (R2), with a range of values from zero to one, is used to evaluate
models. Calculations are performed on all the metrics as follows [34,36]:

FMAE =
∑M

i=1(Ui −Vi )

M
(28)

FMAPE =
1
M

M

∑
i=1

∣∣∣∣Ui −Vi
Ui

∣∣∣∣× 100% (29)

FMSE =
1
M

M

∑
i=1

(Ui −Vi)
2 (30)

FRMSE =

√√√√ 1
M

M

∑
i=1

(Ui −Vi)
2 (31)
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R2 = 1− ∑M
i=1 (Ui −Vi )

2

∑M
i=1 (Ǔi −Vi )

2 (32)

where Ǔi is the mean value. In general, if the FMAE, FMAPE, and FRMSE values are less,
it indicates that the estimated performance of the approach is better. A greater impact
of model fitting is shown by bigger values of the coefficient of determination, R2. The
framework of GWO-BRNN-based SOH estimation incorporating HFs and correlation
analysis is given in Figure 7.

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 28 
 

 

fitting is shown by bigger values of the coefficient of determination, R2. The framework of 
GWO-BRNN-based SOH estimation incorporating HFs and correlation analysis is given 
in Figure 7. 

 
Figure 7. Framework of GWO-BRNN based SOH Estimation incorporating HFs and correlation 
analysis. 

5. Results Analysis and Description 
The performance of the proposed GWO-BRNN approach is evaluated using four 

NASA batteries, namely B5, B6, B7, and B18. This study partitioned the whole dataset into 
smaller subgroups to facilitate offline training and subsequent online testing. Various sets 
of sample data are used for offline training of the GWO-BRNN model to examine the SOH 
of batteries. This study employs 50%, 60%, and 70% of the whole dataset for offline model 
training, with the remaining dataset allocated for online testing. The proposed approach 
has also been compared to other methodologies using diverse evaluation indicators. The 
efficacy of a unique GWO-BRNN methodology has been verified via validation, and the 

Figure 7. Framework of GWO-BRNN based SOH Estimation incorporating HFs and correlation analysis.

5. Results Analysis and Description

The performance of the proposed GWO-BRNN approach is evaluated using four
NASA batteries, namely B5, B6, B7, and B18. This study partitioned the whole dataset into
smaller subgroups to facilitate offline training and subsequent online testing. Various sets
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of sample data are used for offline training of the GWO-BRNN model to examine the SOH
of batteries. This study employs 50%, 60%, and 70% of the whole dataset for offline model
training, with the remaining dataset allocated for online testing. The proposed approach
has also been compared to other methodologies using diverse evaluation indicators. The
efficacy of a unique GWO-BRNN methodology has been verified via validation, and the
obtained simulation outcomes have been juxtaposed with those of established techniques.
The software tool used for this analysis was MATLAB version R2023a, executed on a
processor equipped with an Intel (R) Core (TM) i7-10700 CPU operating at 2.90 GHz, and
supported by a memory capacity of 16 GB. The experimentation was conducted on a
Windows platform.

5.1. SOH Estimation Analysis Based on GWO-BRNN with Different Training Percentages

Based on the GWO-BRNN approach, the estimated SOH for B5, B6, B7, and B18
are shown in Figure 8a–d for a range of training percentages. These figures are shown
in order. These are the results of calculations that were carried out using the provided
method. These values indicate a wide range of different percentages of training across
many different specializations. Looking at Figure 8a–d, it is clear that the recommended
approach, which is based on 50%, 60%, and 70% of the training data, has a relatively high
level of accuracy. The percentages of training data used demonstrate this. Given the data
presented here, it is not difficult to see why. The difference between the three numbers
exemplifies this point perfectly. The SOH value estimated by the proposed GWO-BRNN
method after training has a high consistency with the SOH reference value, demonstrating
the GWO-BRNN technique’s effectiveness in SOH estimation. This is demonstrated by
the high consistency of the SOH reference value with the estimated SOH value. The table
below shows how consistent these values are with one another. This is supported by
the fact that the SOH reference value and the projected SOH value are highly congruent
with one another, indicating that the statement is true. Given that the SOH value and the
SOH reference value share a significant amount of similarity, it is not difficult to reach this
conclusion given that the SOH value shares this similarity. In addition to this, the quantity
of information utilized during the training process directly impacts the level of precision
that can be achieved by the predicted outcomes.
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5.2. Comparison of SOH Estimation Analysis Based on GWO-BRNN with Other Methods

Figure 9 compares the suggested strategy to four other estimate techniques and shows
how it can forecast the state of health (SOH) of four different NASA batteries (B5, B6, B7,
and B18) with a training percentage of 50%. Additionally, this figure provides a comparison
between the recommended technique and the alternative estimation methods. As can be
seen in Figure 9a–d, the strategy that has been suggested, which is based on fifty percent of
the data that were used for training, produces a high degree of accuracy when applied to
B5. This was determined by comparing the results to the original data. In the case of B18, it
has been shown that the link between the reference SOH and the anticipated SOH is not as
strong as was previously believed to be the case. The SOH value that was estimated by the
GWO-BRNN technique after training has a high consistency with the SOH reference value,
which shows that the GWO-BRNN approach is successful in SOH estimation. This is shown
by the fact that the SOH reference value has a high consistency with the calculated SOH
value. This is evident just by looking at the illustrations. This may be seen clearly when one
examines the many situations that have been presented. The performance of GA is much
lower compared to that of GWO and LMA-ANN, both of which have acquired their findings.
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Figure 9. Comparison of SOH for different batteries using different methods with 50% training
percentage (a) B5 (b) B6 (c) B7 (d) B18.

Figure 10 presents a comparison of the suggested approach to various approaches that
are currently in use, as well as an estimate of the SOH for four different NASA batteries (B5,
B6, B7, and B18) that were evaluated using the method. The amount of time that will be
devoted to training has been determined to be seventy percent of the total available time. In
comparison to the method that is only based on half of the training data, the recommended
strategy provides excellent accuracy for all of the batteries. This is because it is based on
sixty percent of the training data. Figure 10a–d provides further information on this topic.
Below is a table that presents the results of a comparison between the accuracy attained by
the proposed strategy using 60% of the training data and the technique employing 50% of
the training data.

Figure 11 illustrates the State of Health (SOH) estimates for four different types of
NASA batteries, namely B5, B6, B7, and B18. The calculations were obtained using a training
percentage of 70% and the suggested technique. The figure also includes a comparison of
these estimations with other methods. The excellent accuracy of the suggested technique
for B5 is shown in Figure 11a–d, where it is seen that the approach is based on 70% of the
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training data that are available. In comparison to B6, it has been observed that the accuracy
of the B7 SOH reference and anticipated SOH levels is somewhat lower. In contrast, the
correlation between the projected and actual state of health (SOH) values for B18 has been
shown to be the weakest. The observed correlation between the SOH value estimated
by the GWO-BRNN technique upon training and the reference SOH value indicates the
effectiveness of the GWO-BRNN methodology for estimating SOH. The provided examples
serve as illustrations of this concept. When comparing GA to LMA-ANN, it is evident
that LMA-ANN exhibits superior performance. When comparing GWO to GA, LMA-
ANN, and the projected GWO-BRNN, it can be seen that GWO exhibits the lowest level
of performance.
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In addition, the purpose of this investigation is to evaluate the anticipated state of
health (SOH) for batteries by using a variety of algorithms that have been trained on
varying percentages of data and taking into account a variety of performance assessment
markers. According to the findings, B5 has the lowest values for MAE, RMSE, and MAPE,
while also having a larger value for R square. When compared to B7 and B6, respectively,
the value of B18 is much greater. Concerning the training percentages, it can be seen that
the predicted SOH exhibits the lowest values when the training percentage is set at 70%,
as opposed to 60% and 50%, respectively. This is because 70% of the total available time
is spent in training. In addition, a thorough examination was carried out to compare and
contrast the performance evaluation metrics of the proposed GWO-BRNN with those of
the LMA-ANN, GWO, and GA. According to the findings, the GWO-BRNN performs far
better than the other approaches, displaying the lowest values across a variety of measures.
In addition, the heat map depiction of the SOH forecast is shown for batteries B5, B6, B7,
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and B18 in Figure 12 and Table 3, which may be found here. The heat map shows the results
of using different strategies and training percentages (50, 60, and 70 percent), respectively,
in terms of a variety of performance evaluation criteria. According to the findings, the
GWO-BRNN model exhibits greater performance in the context of the B5 battery when it
is trained using a percentage of 70%. The discrepancy in the accuracy of State of Health
(SOH) predictions for B7 batteries, in comparison to batteries with different percentages,
can be attributed to variations in charging and discharging behavior, as well as the internal
chemistry of the battery. These variations may arise from differences in the internal design
characteristics of the battery.
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Table 3. Comparison of SOH for batteries with different approaches and have different training
%ages in terms of different performance evaluation metrics.

Training
%ages Method

B5 B6 B7 B18

MAE
(%)

RMSE
(%)

MAPE
(%)

R-
Square

MAE
(%)

RMSE
(%)

MAPE
(%)

R-
Square

MAE
(%)

RMSE
(%)

MAPE
(%)

R-
Square

MAE
(%)

RMSE
(%)

MAPE
(%)

R-
Square

50

GWO-
BRNN 0.379 0.458 0.518 0.995 0.772 0.709 1.197 0.998 0.429 0.568 0.759 0.999 0.927 0.976 1.297 0.994

GWO 7.563 7.972 3.002 0.949 7.996 8.295 2.898 0.848 7.613 8.052 2.345 0.908 8.475 8.801 2.958 0.822

GA 3.403 4.002 4.997 0.827 5.420 5.948 7.354 0.857 3.453 5.047 5.998 0.826 5.434 6.072 7.699 0.925

LM-
ANN 2.840 3.382 3.499 0.796 3.624 3.893 5.736 0.784 2.890 3.549 4.943 0.795 4.756 4.179 6.760 0.752

60

GWO-
BRNN 0.378 0.409 0.490 0.995 0.749 0.695 1.146 0.998 0.419 0.540 1.048 0.999 0.927 0.942 1.221 0.995

GWO 5.133 2.479 2.070 0.980 7.403 1.787 2.165 0.860 6.183 3.120 1.837 0.915 7.828 2.050 2.590 0.828
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Table 3. Cont.

Training
%ages Method

B5 B6 B7 B18

MAE
(%)

RMSE
(%)

MAPE
(%)

R-
Square

MAE
(%)

RMSE
(%)

MAPE
(%)

R-
Square

MAE
(%)

RMSE
(%)

MAPE
(%)

R-
Square

MAE
(%)

RMSE
(%)

MAPE
(%)

R-
Square

60

GA 3.389 4.070 4.051 0.896 2.531 3.660 3.960 0.895 3.439 3.511 3.710 0.895 2.601 2.812 3.717 0.986

LM-
ANN 1.169 3.189 3.087 0.804 2.557 3.065 4.050 0.813 2.219 3.137 3.115 0.803 3.839 3.936 2.615 0.904

70

GWO-
BRNN 0.283 0.375 0.417 0.995 0.720 0.687 1.142 0.998 0.333 0.527 1.047 0.999 0.978 0.928 1.213 0.995

GWO 4.507 1.951 1.201 0.983 5.469 1.767 2.117 0.905 5.557 2.251 1.817 0.927 6.720 1.770 2.500 0.837

GA 2.739 2.386 4.038 0.898 1.184 2.427 1.789 0.933 2.789 3.108 2.477 0.897 1.729 2.799 2.430 0.996

LM-
ANN 0.950 2.427 1.376 0.935 1.999 2.272 3.076 0.835 2.000 1.426 2.322 0.934 1.247 2.404 1.780 0.916
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6. Conclusions

In light of the research paper outcomes, an innovative technique called GWO-BRNN
has been proposed to determine the state of health (SOH) of a battery by extracting health
features (HFs). Since directly measuring capacity is challenging, the SOH has been approx-
imated by utilizing HFs combined with current, voltage, and time. The selection of HFs
is based on criteria such as the Pearson correlation coefficient (PCC), the Spearman rank
correlation coefficient, and the Kendall rank correlation coefficient. The BRNN algorithm is
suitable for use in time series estimation; however, a problem still needs to be solved regard-
ing the selection of appropriate hyperparameters. Consequently, the authors of this work
advise that the GWO methodology be utilized to locate the optimal values for the BRNN
model’s hyperparameters. In contrast to the conventional way, the use of GWO-BRNN has
the potential to successfully mitigate the issue of sliding towards local extremes and arrive
at the globally optimum solution. This is in contrast to the traditional method, which does
not have this capability. In order to obtain better estimate performance, the GWO approach
is used in order to fine-tune the BRNN model’s hyperparameters and attain optimal values
for them.

The SOH estimate is calculated based on the proposed method, and NASA battery
datasets are used to carry out the calculation so that the performance of the suggested
technique can be checked and evaluated. Using these datasets allows for the achievement of
the desired results. According to the findings of the comparison, the presented GWO-BRNN
approach has a higher accuracy level when compared to other methods such as LM-ANN,
GWO, and GA. These findings were found by examining the similarities and differences
between each of these approaches. For all of the batteries, the R-square value of the GWO-
BRNN approach is almost equal to 0.99, and the RMSE, MAE, and MAPE values are all less
than 1%. Additionally, the R-square value of the GWO-BRNN technique is nearly equal to
0.99. This indicates that the GWO-BRNN method is more accurate than other approaches
because of the way it is constructed. The suggested method keeps a respectable estimate
performance for the given data set. In conclusion, the proposed methodology has the
potential for real-world implementation in the future. Additionally, a training percentage
of 70% yields superior results compared to 60% and 50% for the battery datasets. Among
B5, B6, B7, and B18, the SOH prediction results for B5 demonstrate higher accuracy than
those for other batteries. Although the GWO-BRNN technique developed for evaluating
the SOH of lithium-ion batteries has notable benefits, it is crucial to acknowledge possible
limits. One notable difficulty pertains to the computational complexity associated with
optimization and selection procedures, which may need substantial computer resources.
Moreover, the BRNN model’s interpretability and the underlying aging process may
provide difficulties, given that neural networks are often regarded as opaque models. These
constraints need meticulous deliberation in striking a balance between the precision and
intricacy of the methodology. However, the technique that has been suggested continues to
show potential in the field of EV battery prognostics and health management. This has the
potential to greatly contribute to the increased use of environmentally friendly and reliable
electric transportation.

Future directions in the context of EVs can concentrate on several key areas. The
expansion of the infrastructure for charging, including the installation of fast-charging
stations and the incorporation of wireless charging technologies, will allay range anxiety
concerns and give EV owners more practical charging options. Moreover, integrating
EVs with renewable energy sources and smart grid systems will allow for intelligent
charging and vehicle-to-grid (V2G) capabilities. This will allow EVs to serve as flexible
energy storage resources and help keep the grid stable. The advancement of autonomous
driving technologies and the emergence of shared mobility services will transform the
EV landscape, increasing the accessibility, efficiency, and utilization of electric vehicles.
Ultimately, ongoing EV manufacturing and design research and development efforts will
continue to improve vehicle efficiency, aerodynamics, and lightweight materials, resulting
in more energy-efficient and environmentally friendly electric vehicles.
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