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Abstract: In this paper, we construct two new families of distributions generated by the discrete
Lindley distribution. Some mathematical properties of the new families are derived. Some special
distributions from these families can be constructed by choosing some baseline distributions, such
as exponential, Pareto and standard logistic distributions. We study in detail the properties of the
two models resulting from the exponential baseline, among others. These two models have different
shape characteristics. The model parameters are estimated by maximum likelihood, and related
algorithms are proposed for the computation of the estimates. The existence of the maximum-
likelihood estimators is discussed. Two applications prove its usefulness in real data fitting.

Keywords: discrete lindley distribution; EM algorithm; existence of the maximum likelihood estimate;
moments
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1. Introduction

Compound discrete distributions serve as probabilistic models in various areas of
applications, for instance, in ecology, genetics and physics. See, for example, [1]. Distribu-
tions obtained by compounding a parent distribution with a discrete distribution are very
common in statistics and in many applied areas. Suppose we have a system consisting of
N components, the lifetime of each of which is a random variable. Let X be the maximum
lifetime of the components. Clearly, X has a compound distribution arising out of a random
number N of components; i.e., X = max{Z1, . . . , ZN}. On the other hand, in case of a
system consisting of N components whose energy consumption is a random variable, and
assuming that Z is the component whose energy consumption is minimal, we obtain the
compound distribution of Y = min{Z1, . . . , ZN}. The compounding principle is applied in
the many different areas: insurance [2], ruin problems [3], compound risk models and their
actuarial applications [4,5]. The development of the theory of compounding distribution is
skipped here, because it has been covered in detail in [6].

The random variable N is often determined by economy, customer demand, etc. There
is a practical reason why N might be considered as a random variable. A failure can occur
due to initial defects being present in the system. A discrete version of this distribution has
been studied in [7], having its applications in count data related to insurance.

We will say that random variable X possesses the discrete Lindley distribution intro-
duced by [7] if its probability mass function is given by

P(X = x) =
λx

1− log λ
[λ log λ + (1− λ)(1− log λx+1)],
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where x = 0, 1, . . . and 0 < λ < 1. The probability generating function (PGF) (see
Equation (4) in [7]) is given by the typo error. The corrected version is defined by

Φ(s) =
(λ− 1)(λs− 1)− (1− 2λ + λ2s) log(λ)

(1− λs)2(1− log(λ))
, s < 1/λ, 0 < λ < 1. (1)

In this manuscript, we consider the previously discrete Lindley distribution for the
random variable N. Why do we assume a discrete Lindley distribution? For example,
using a Poisson distribution has an important assumption: equidispersion of data. The
assumption of equidispersion is not valid in real cases. Some alternative distributions to
the model of overdispersed data are available—binomial negative, generalized Poisson
or zero inflated Poisson. However, judging by the number of parameters used, these
alternatives are more complex than the Poisson distribution. That is why we are introducing
a continuous Lindley distribution with one parameter, which is similar to the Poisson
distribution. The application of the Lindley distribution in modeling the number of claim
data is less suitable because the number of claims data is a discrete number, as opposed to
the Lindley distribution’s continuous nature. That is why we are introducing a new discrete
Lindley distribution, created through discretisation of a continuous Lindley distribution
with one parameter.

Assuming that M is the zero truncated version of N with PGF (1), we will construct
two new families of distributions: the discrete Lindley-generated families of distributions
of the first and second kinds.

The paper is organized as follows. In Section 1, we construct two discrete Lindley
generated families. Section 2 is devoted to shape characteristics. In Section 3 we de-
rive some mathematical properties of the families. Estimation issues are investigated in
Sections 4 and 5. The simulation study is presented in Section 6. Two applications to real
data are addressed in Section 7. The paper is finalized with concluding remarks.

2. Construction of the Families of Distributions

There are various methods for getting the discrete Lindley distribution. For example,
in [8], the authors considered a method of infinite series for constructing the discrete
Lindley distribution. On the other hand, in [9], the discrete Lindley distribution was built
using the survival function method. In this manuscript, we employ the so-called max-min
procedure. This construction is widely used in practice. For a comprehensive literature
review, we refer the reader to [10] and references therein.

In this section, we introduce two new families of distributions as follows. Let {Zi}i≥1
be a sequence of independent and identically distributed (iid) random variables with
baseline cumulative distribution function (CDF) F(x) = F(x; ψ), where x ∈ R and ψ is the
parameter vector. Suppose that N is a discrete random variable with the PGF Φ(s) and let
M have the zero-truncated distribution of the random variable N obtained by removing
zero from N. Then, the probability mass function (pmf) of M is given by

P(M = m) =
P(N = m)

1−Φ(0)
, m ∈ {1, 2, . . . }. (2)

In order to prove that
+∞
∑

m=1
P(M = m) = 1, let us recall that P(N = m) = Φm(0)

m! . After

some algebra, we find

P(N = m) = λm λ− 1 + log λ− 2λ log λ

log λ− 1
+

m λm(1− λ) log λ

log λ− 1
.
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Using serial representations ∑+∞
m=1 λm = λ

1−λ and ∑+∞
m=1 mλm = λ

(1−λ)2 , one can calculate

+∞

∑
m=1

P(N = m) =
λ(1− 2 log λ)

1− log λ
. (3)

Equation (3) coincides with 1−Φ(0). This completes the proof that
+∞
∑

m=1
P(M = m) = 1.

First, we introduce the family of distributions based on the maximum of random
variables. We define the random variable X = max{Zi}M

i=1 . Then, the CDF and probability
density function (PDF) of X are given by

GX(x) =
Φ[F(x)]
1−Φ(0)

, x ∈ R

and

gX(x) =
f (x)Φ′[F(x)]

1−Φ(0)
, x ∈ R,

respectively.
Further, if we suppose that the random variable N has the PGF given by (1), the CDF

and PDF of X for x ∈ R, λ ∈ (0, 1) are given by

G1(x) = G1(x; θ, λ) =
F(x)[1− λ + (3λ− 2) log(λ)− λ(1− λ + (2λ− 1) log(λ))F(x)]

(1− 2 log(λ))[1− λF(x)]2
, (4)

and

g1(x) =
f (x)[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))F(x)]

(1− 2 log(λ))[1− λF(x)]3
, (5)

respectively. We say that the family of distributions defined by (4) and (5) is the discrete
Lindley generated family of the first kind (“LiG1” for short). A random variable X having
PDF (5) is denoted by X ∼LiF1(λ, ψ).

The hazard rate function (HRF) of X can be expressed as

τ1(x) =
hF(x)[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))F(x)]

[1− λF(x)][1− 2 log(λ)− λ(1− log(λ))F(x)]
, x ∈ R, λ ∈ (0, 1). (6)

Let us study the identifiable property of the distribution given by (4) under the
exponential baseline distribution F(x; θ) = 1 − e−θx. We will get the discrete Lindley
exponential distribution of the first kind. We will designate this distribution LiE1.

Theorem 1. The LiE1 distribution is identifiable with respect to the parameters λ and θ.

Proof. Let us suppose that

G1(x; θ1, λ1) = G1(x; θ2, λ2) (7)

for all x > 0 and when F(x) is the CDF of exponential distribution. If we let x → ∞ into
both sides of (7) and after some algebra, it can be concluded that λ1 = λ2. Now it is not
hard to verify that θ1 = θ2. Hence the proof of the theorem.

Second, in [6], it was demonstrated that the random variable Y = min{Zi}M
i=1 has

CDF and PDF given by

GY(y) =
1−Φ[1− F(y)]

1−Φ(0)
, y ∈ R, (8)

and

gY(y) =
f (y)Φ′[1− F(y)]

1−Φ(0)
, y ∈ R, (9)

respectively.
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Now, inserting (1) in Equation (8), the CDF of the random variable Y becomes

G2(x) = G2(x; θ, λ) =
F(x)[1− 2 log(λ)− λ(1− log(λ))F(x)]

(1− 2 log(λ))[1− λF(x)]2
, x ∈ R, λ ∈ (0, 1), (10)

where F(x) = 1− F(x) is the survival function of the random variable Z1.
In a similar manner, by replacing (1) in the Equation (9), the PDF of Y reduces to

g2(x) =
f (x)[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))F(x)]

(1− 2 log(λ))[1− λF(x)]3
, x ∈ R, λ ∈ (0, 1). (11)

The random variable Y having the PDF (11) is called the discrete Lindley generated family
of the second kind, Y ∼LiF2(λ, ψ).

From Equations (10) and (11), the HRF of Y follows as

τ2(x) =
hF(x)[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))F(x)]

[1− λF(x)][1− λ + (3λ− 2) log(λ)− λ(1− λ + (2λ− 1) log(λ))F(x)]
, x ∈ R, λ ∈ (0, 1), (12)

where τF(x) = f (x)/F(x) is the HRF of the random variable Zi.
There are at least four motivations for having two families of distributions: Reliability:

From the stochastic representations X and Y, we note that the two families can arise in
parallel and series systems with identical components, which appear in many industrial
applications and biological organisms. The first-activation scheme: If we assume that an
individual is susceptible to a cancer type, then we can call the number of carcinogenic cells
that survived the initial treatment M, and Zi is the time needed for the i−th carcinogenic
cell to metastasise into a detectable tumour, for i ≥ 1. If we assume that {Zi}i≥1 is a
sequence of a total of iid random variables, all independent of M, where M is given by (2),
we can conclude that the time to relapse of cancer of a susceptible individual is defined by
the random variable Y. Last-activation scheme: Let us assume that M equals the number
of latent factors that have to be active by failure, and Zi is the time of disease resistance due
to the latent factor i. According to the last-activation scheme, the failure occurs once all
N factors are active. If the Zis are iid random variables that are independent of N having
the baseline distribution F, where N follows (2), the random variable X can model time to
the failure according to the last-activation scheme. The times to the last and first failures:
Let us assume that the device failure happens due to initial defects numbering M, and
that these can be identified only after causing the failure, and that they are being repaired
perfectly. We will define Zi as the time to the device failure due to the defect number i,
where i ≥ 1. Under the assumptions that the Zis are iid random variables independent of
M given by (2), the random variables X and Y are appropriate for modeling the times to
the last and first failures.

3. Shape Characteristics of the Proposed Models under the Exponential
Baseline Distribution

Let us examine the shapes of the PDF and HRF for the case of the exponential baseline
distribution. Let the random variables Z1 have the exponential distribution with scale
parameter θ > 0. If we set F(x) = 1− e−θx and replace it in (5), we will get the LiE1
distribution. Its PDF is for x > 0, θ > 0, λ ∈ (0, 1)

g1(x; θ, λ) =
θe−θx[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))(1− e−θx)]

(1− 2 log(λ))[1− λ(1− e−θx)]3
.

The exponential distribution is widely used due to its simplicity and applicability. For
its usage in the theory of the compounding distribution, we recommend [10], where it is
possible to find a long list of the corresponding references.
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In order to study the shape of the last PDF, firstly we will give the following example.
The next example will serve us to prove Theorem 2. It will play a crucial role in the study
of the inequality that is important for drawing the conclusion about the PDF’s shape.

Example 1. Suppose λ ∈ (0, 1). Find λ such that (8λ2 − 9λ + 2) log(λ) > 2λ2 − 3λ + 1.

Solution: An analytical solution of the above inequality is not possible, so we will use
numerical algorithms. Let us consider the corresponding equation (8λ2 − 9λ + 2) log(λ) =
2λ2 − 3λ + 1. Using function Solve in Mathematica software ([11]), we get that λ ≈ 0.3536.
Furthermore, using the function Reduce we see that for λ ∈ (0.3536, 1) the inequality holds.
The graphical solution is given in Figure 1.

f1( )

f2( )
0.2 0.4 0.6 0.8 1.0

-3

-2

-1

f( )

Figure 1. Graphical solution of the inequality f1(λ) > f2(λ), where f1(λ) = (8λ2 − 9λ + 2) log(λ)
and f2(λ) = 2λ2 − 3λ + 1 .

Theorem 2. The PDF of LiE1 with parameters θ > 0 and λ ∈ (0, 1) is unimodal if λ ∈ (0.3536, 1).
Otherwise, it is decreasing.

Proof. The first derivative of the logarithm of the PDF g1(x) can be represented in the form

[log g1(x)]′ =
−θs(x)

(1− λ(1− e−θx))(a + b(1− e−θx))
,

where s(x) = (a + b)(1 − λ) − 2(aλ + b)e−θx + λbe−2θx, a = 1 − λ + (3λ − 2) log(λ)
and b = −λ(1− λ + λ log(λ)). We transform the function s(x) to a quadratic function
s(y) = λby2 − 2(b + aλ)y + (a + b)(1− λ), y ∈ [0, 1]. Let y1 and y2 represent the roots
of the equation s(y) = 0. Some calculations indicate that a > 0, b < 0, b + aλ > 0 and
a + b > 0. Thus,

y1 + y2 =
2(aλ + b)

λb
< 0,

y1y2 =
(a + b)(1− λ)

λb
< 0,

so we have y1 < 0 < y2 and |y1| > y2. After some calculations, it can be shown that
discriminant D = 4(aλ + b)2 − 4λb(1− λ) is positive and that s(y) is concave. We need to
find when solution y2 ∈ (0, 1). If we set u = −b, one gets

y2 =

√
(aλ− u)2 + λu(a− u)(1− λ)− (aλ− u)

λu
.
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If y2 < 1, then √
(aλ− u)2 + λu(a− u)(1− λ) < λu + aλ− u . (13)

It is not difficult to verify that the right-hand side of the last inequality is positive and we
can quadrate (13). Then, the inequality (13) reduces to

λu(3λa− u− a) > 0.

Now, the assertion of the first part of Theorem follows from Example 1.
In case λ < 0.3536, s(y) is always positive on the interval (0, 1), and hence the PDF is

decreasing.

Different shapes of the PDF in cases of LiE1 model are given in Figure 2.

0 1 2 3 4 5 6

0
.0

0
.5

1
.0

1
.5

x

f(
x
)

λ=0.15

λ=0.25

λ=0.4

λ=0.75

0 1 2 3 4 5 6

0
.0

0
.5

1
.0

1
.5

x

f(
x
)

θ=0.6

θ=1

θ=1.5

θ=2

Figure 2. The plots of the density function of the LiE1 distribution for various choices of parameters
with θ = 1 (left) and λ = 0.65 (right).

The HRF of the LiE1 distribution is

h1(x) =
θ[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))(1− e−θx)]

[1− λ(1− e−θx)][1− 2 log(λ)− λ(1− log(λ))(1− e−θx)]
, x > 0, θ > 0, λ ∈ (0, 1).

Determining the shape of a HRF of a distribution is an important issue in statistical
reliability and survival analysis. We give it for the LiE1 model in the following theorem.

Theorem 3. The HRF of the LiE1 with parameters θ > 0 and λ ∈ (0, 1) is an increasing function.

Proof. The first derivative of the log h1(x) can be represented as

[log h1(x)]′ =
−θe−θxs(x)

(a + b(1− e−θx))(1− λ(1− e−θx))(d− c(1− e−θx))
,

where a and b were defined in Theorem 2, c = λ(1− log(λ)), d = 1− 2 log(λ) and s(x) =
λbce−2θx − 2λc(a + b)e−θx + 2λac− λad− bd + λcb− ca. After extensive calculations, it
can be shown that 2λac− λad− bd + λcb− ca < 0.
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Again, using the transformation y = e−θx, where y ∈ [0, 1], we get quadratic equation
s(y) = 0 with

y1 + y2 =
2λc(a + b)

λb
< 0,

y1y2 =
2λac− λad− bd + λcb− ca

λb
> 0.

Thus, we have y1 < y2 < 0. The function s(y) is concave, and it holds that s(y) < 0 for all
y ∈ [0, 1]. Finally, the HRF is increasing. Hence, we proved Theorem.

Different shapes of the HRF in the case of the LiE1 model are outlined in Figure 3.

0 1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

h
(x

)

λ=0.2

λ=0.4

λ=0.6

λ=0.8

Figure 3. The plots of the HRF of the LiE1 distribution for various choices of parameter λ with θ = 1.

Now, we will study the shapes of the discrete Lindley exponential distribution of the
second kind (LiE2) of distribution. By replacing F(x) = e−θx in Equation (11), we obtain
the PDF of the LiE2 distribution as

g2(x; θ, λ) =
θe−θx[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))e−θx]

(1− 2 log(λ))(1− λe−θx)3 , x > 0, θ > 0, λ ∈ (0, 1).

The shapes of the LiE2 distribution are given by the following theorem.

Theorem 4. The PDF of the LiE2 with parameters θ > 0 and λ ∈ (0, 1) is a decreasing function
with limx→0 g2(x) = θ(1−λ+(λ−2) log(λ))

(1−λ)2(1−2 log(λ)) and limx→∞ g(x) = 0.

Proof. Similarly to in Theorem 2, we have

[log g2(x)]′ =
−θs(x)

(1− λe−θx)(a + be−θx)
,

where s(x) = a− 4λae−θx − 3λbλe−2θx, a = 1− λ + (3λ− 2) log(λ) and b = −λ(1− λ +
λ log(λ)). We can prove that s(x) is positive for all x > 0. Letting y = e−θx, we transform
the function s(x) to a quadratic function s(y) = bλy2 + 2(b + aλ)y + a; y ∈ [0, 1]. Let
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y1 < y2 represent the roots of the equation s(y) = 0. Since we have a > 0, b < 0 and
b + aλ > 0,

y1 + y2 =
4a
3b

< 0,

y1y2 = − a
3bλ

> 0,

which implies y1 < y2 < 0. Since bλ < 0 and the discriminant D = 4(b + aλ)2 − 4abλ is
positive, it follows that s(y) is concave and positive on [y1, y2], which means that s(y) is
positive for y ∈ [0, 1]. Finally, s(x) is positive for all x > 0 and g′2(x) < 0.

The HRF of the LiE2 distribution for x > 0, θ > 0, λ ∈ (0, 1) is given by

h2(x) = h2(x; θ, λ) =
θ[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))e−θx]

[1− λe−θx][1− λ + (3λ− 2) log(λ)− λ(1− λ + (2λ− 1) log(λ))e−θx]
.

The shape of the HRF of the LiE2 distribution is given in the following theorem.

Theorem 5. The HRF of the LiE2 distribution with parameters θ > 0 and λ ∈ (0, 1) is an
increasing function with limx→0 h2(x) = θ(1−λ+(λ−2) log(λ))

(1−λ)2(1−2 log(λ)) and limx→∞ h2(x) = θ.

Proof. We consider the logarithm of the HRF h2(x). Its first derivative can be expressed as

[log h2(x)]′ =
−θe−θxt(x)

(a + be−θx)(1− λe−θx)(a + ce−θx)
,

where a and b are defined as in the proof of the previous theorem, c = −λ[1− λ + (2λ−
1) log(λ)] and t(x) = bcλe−2θx + 2acλe−θx + a(b + aλ− c). By letting y = e−θx, we trans-
form the function t(x) to the quadratic function t(y) = bcλy2 + 2acλy + a(b + aλ − c);
y ∈ (0, 1). As before, let y1 < y2 be the roots of the equation t(y) = 0. Some calculations
indicate that a > 0, b < 0, c < 0 and b + aλ− c > 0, which implies that

y1 + y2 = −2a
b

> 0,

y1y2 =
a(b + aλ− c)

bcλ
> 0,

(1− y1)(1− y2) = 1 +
a

bcλ
(b + aλ + 2cλ− c) = 1 +

a
bc
[1− 3λ + 2λ2 − (3− 6λ + 4λ2) log(λ)] > 0.

Thus, two cases can be considered, 0 < y1 < y2 < 1 and 1 < y1 < y2. The first case is not
possible, since

y1y2 − 1 =
a(b + aλ)− c(a + bλ)

bcλ
> 0,

which follows from the fact that a + bλ = (1− λ)2(1 + λ − (λ + 2) log(λ)) > 0. Thus,
1 < y1 < y2. Since bcλ > 0 and the discriminant D = −8acλ3(1− λ)2 log2(λ) is positive, it
follows that t(y) is a convex function and positive on (0, 1). This implies that t(x) is positive
for all x > 0. Finally, h′2(x) < 0, which means that the HRF is an increasing function.

Using similar calculations, we can derive the shapes of the PDF and HRF of X and Y
given by (5), (6), (11) and (12), respectively, under various baseline distributions.

Figure 4 represents plots of the LiE2 density function, while on Figure 5 we have plots
of the LiE2 hazard rate functions for various parameter values.
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Figure 4. The plots of the density function of the LiE2 distribution for various choices of parameters
with θ = 1 (left) and λ = 0.5 (right).
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Figure 5. The hazard plots of the LiE2 distribution for various choices of parameter λ with θ = 1.

Theorem 6. The LiE2 distribution function is identifiable with respect to the parameters θ and λ.

Proof. As was the case in the proof of Theorem 1, we will assume that G2(x; θ1, λ2) =
G2(x; θ2, λ2) for all x > 0 and F(x) is the CDF of an exponential distribution. As a con-
sequence, we have h2(x; θ1, λ2) = h2(x; θ2, λ2). Then, from Theorem 5, we have that
θ1 = θ2 when x → ∞. Now, since θ1 = θ2 after some algebra, it can be shown that
from h2(0; θ1, λ2) = h2(0; θ2, λ2) follows λ1 = λ2.

4. Some Mathematical Properties
4.1. Mixture Representations

In this section, we obtain a very useful representation for the LiG1 density function.
For |z| < 1 and ρ > 0, we can write

(1− z)−ρ =
∞

∑
j=0

wj zj, (14)

where wj = Γ(ρ + j)/[Γ(ρ)j!] and Γ(ρ) =
∫ ∞

0 tρ−1e−tdt is the gamma function. For
α ∈ (0, 1), we can apply (14) in Equation (5) to obtain

g1(x) = f (x) [a(λ) + b(λ) F(x)]
∞

∑
j=0

vj F(x)j, (15)
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where a(λ) = 1− λ + (3λ− 2) log(λ), b(λ) = −λ[1− λ + λ log(λ)] and

vj = vj(λ) =
Γ(j + 3) λj

2(1− 2 log(λ)) j!
.

Henceforth, Ta as a random variable will be said to have the exponentiated-F (“exp-F”)
distribution, its power parameter being a > 0, say, Ta ∼ exp− F(a), if its PDF and CDF are
given by

ha(x) = a f (x) Fa−1(x) and Ha(x) = Fa(x),

respectively.
Then, using the exp-F distribution, we can write Equation (15) as

g1(x) =
∞

∑
j=0

[tj hj+1(x) + sj hj+2(x)] =
∞

∑
j=0

pj hj+1(x), (16)

where tj = a(λ) vj/(j + 1), sj = b(λ) vj/(j + 2), pj = tj + sj−1 (for j ≥ 0) and s−1 = 0.
Equation (16) is this section’s main result. It shows that the LiF1 family density

function is a mixture of exp − F ditributions. Therefore, there are structural properties
(for instance incomplete and ordinary moments, generating functions, mean deviations)
of the LiF1 family that can be obtained from the corresponding properties of the exp-G
distribution. The exp-F mathematical properties have been studied by many authors in
recent years, such as Nadarajah and Kotz (2006). In the following sections, we provide
some mathematical properties of the LiG1 family distribution.

4.2. Moments

Henceforth, let Tj+1 have the the exp-F density hj+1(x) with power parameter j + 1,
say, Tj+1 ∼exp-F(j + 1). A first formula for the nth moment of the LiF1 family can be
obtained from (16) as

µ′n = E(Xn) =
∞

∑
j=0

pj E(Tn
j+1). (17)

Nadarajah and Kotz [12] provide explicit expressions for moments of some exponentiated
distributions. They can be used to produce µ′n.

A second formula for µ′n can be obtained from (17) in terms of the baseline quantile
function (qf) QF(u). We obtain

µ′n =
∞

∑
j=0

(j + 1) pj τ(n, j), (18)

where the integral can be expressed as a function of the F quantile function (qf), say,
QF(u) = F−1(u), as τ(n, j) =

∫ 1
0 QF(u)n ujdu.

Even though there is an infinite sum in the moments’ equation, it is not difficult to
calculate its values. For example, if we set an error to 10−6, then four iterations would be
enough for moments’ calculation.

Equations (17) and (18) can be used to directly determine the ordinary moments of
some LiF1 distributions. Three examples will be provided here. Here, we consider three
examples. LiE1 distribution moments (with scale parameter θ > 0 from the exponential
baseline distribution) are given by

µ′n =
n!
θn

∞

∑
j=0

∞

∑
i=0

(
j
i

)
(−1)i pj(j + 1)

1
(i + 1)n+1 .
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Particularly, we have

E(X) =
∞

∑
j=0

pj[ψ(j + 2)− ψ(1)],

where ψ(·) is the digamma function defined by ψ(·) = Γ
′
(·)/Γ(·).

For the discrete Lindley Pareto of the first kind (LiPa1) of distribution, the baseline
distribution is F(x) = 1− (1 + x)−ν, x > 0 and we have

µ′n =
∞

∑
j=0

n

∑
i=0

(
n
i

)
(−1)i pj(j + 1)B

(
j + 1, 1− i

ν

)
, ν > n,

where B(a, b) =
∫ 1

0 ta−1 (1− t)b−1dt is the standard beta function.
For the discrete Lindley standard logistic of the first kind (LiSL1) of distribution, the

baseline distribution is F(x) = (1 + e−x)−1 and −∞ < x < ∞. Using an integral result
from [13], we have

µ′n =
∞

∑
j=0

n

∑
i=0

(
n
i

)
(−1)2n−i j + 1

Γ(j + 2)
pjΓ

(i)
(1)Γ

(n−i)
(j+1) ,

where
Γ(m)
(a) =

∫ ∞

0
(ln x)mxa−1e−x dx.

Further, central moments, that is, moments around the mean, can also be computed.
The relation between the central moments (µr) and the moments about the origin are
given by

µr =
r

∑
k=0

(−1)k
(

r
k

)
(µ′1)

k µ′r−k.

The cumulants of the distribution can also be computed together with the skewness and
kurtosis measures. For this approach, we refer the reader to [14]. The skewness and kurtosis
plots for these distributions are sketched in Figures 6–9. We observe that various skewness
and kurtosis values can be obtained from these models.
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Figure 6. Skewness and kurtosis plots of the LiE1 distribution as a function of parameter λ.
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Figure 7. Skewness and kurtosis plots of the LiPa1 distribution as a function of parameter λ.
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Figure 8. Skewness and kurtosis plots of the LiPa1 distribution as a function of parameter ν.
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Figure 9. Skewness and kurtosis plots of the LiSL1 distribution as a function of parameter λ.
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4.3. Generating Function

As far as the moment generating function (mgf) M(t) = E(et X) of X is concerned, we
will provide two formulae. The first M(t) formula comes from (16) as

M(t) =
∞

∑
j=0

pj Mj+1(t), (19)

where Mj+1(t) is the mgf of Tj+1. Therefore, M(t) is determined by the generating function
of the exp− F(j + 1) distribution. The second M(t) formula is derived from (16)

M(t) =
∞

∑
j=0

(j + 1) pj ρ(t, j), (20)

where ρ(t, j) can be calculated from QF(x) as

ρ(t, j) =
∫ 1

0
exp{t QG(u)} ujdu. (21)

It is possible to get several mgf of some LiG1 distributions using Equations (20) and
(21), which can be used to directly obtain the mgf of several LiG1 distributions. For example,
we have the mgfs of the LiE1 (with parameter λ) and and LiSL1 as

M(t) =
∞

∑
j=0

(j + 1) B(j + 1, 1− λt) pj, t > λ,

and

M(t) =
∞

∑
j=0

(j + 1) B(t + j + 1, 1− t) pj, t < 1,

respectively.

4.4. Incomplete Moments and Mean Deviations

The shapes of many of the distributions can, for empirical reasons, be conveniently
described as incomplete moments. Such moments are important in measuring inequality,
such as income quantiles and Lorenz and Bonferroni curves, which depend on the distri-
bution incomplete moments. The n−th incomplete moment of the random variable X is
defined as

mn(y) =
∫ y

0
g1(x)dx =

∞

∑
j=0

(j + 1)
∫ F(y)

0
QF(u)n ujdu. (22)

The integral in (22) can be computed in the closed-form for several baseline F distributions.
The mean deviations about the mean (δ1 = E(|X − µ′1|)) and about the median

(δ2 = E(|X − M|)) of X can be expressed as δ1 = 2µ′1 G1(µ
′
1)− 2m1(µ

′
1) and δ2 = µ′1 −

2m1(M), respectively, where µ′1 = E(X), M = Median(X) is the median of X computed
from

G1(M) =
F(M){1− λ + (3λ− 2) log(λ)− λ[1− λ + (2λ− 1) log(λ)]F(x)}

[1− 2 log(λ)][1− λF(M)]2
= 0.5,

G1(µ
′
1) is easily calculated from (4) and m1(z) =

∫ z
−∞ x f (x)dx is the first exp-F incomplete

moment.



Mathematics 2023, 11, 290 14 of 22

We will provide two ways to compute delta1 and delta2. In the first instance, we can
derive a general equation for m1(z) from (16) by setting u = F(x) as

m1(z) =
∞

∑
j=0

(j + 1) Aj(z), (23)

where

Aj(z) =
∫ z

−∞
x hj+1(x)dx =

∫ F(z)

0
QF(u) ujdu. (24)

Equation (24) provides the basic quantity for computing the mean deviations of the exp-
F distributions. Hence, the mean deviations δ1 and δ2 depend only on the exp-F mean devia-
tions. Thus, alternative representations for δ1 and δ2 are given by
δ1 = 2µ′1G1(µ

′
1)− 2 ∑∞

j=0(j + 1) Aj(µ
′
1) and δ2 = µ′1 − 2 ∑∞

j=0(j + 1) Aj(M).
In a similar way, the mean deviations of any LiF1 distribution can be computed from

Equations (23) and (24). For example, the mean deviations of the LiE1 (with parameter λ),
LiPa1 (with parameter 0 < ν < 1) and LiSL1 are determined immediately (by using the
generalized binomial expansion) from the functions

Aj(z) = λ−1 Γ(j)
∞

∑
m=0

(−1)m {1− exp(−mλz)}
Γ(j−m) (m + 1)!

,

and

Aj(z) =
∞

∑
m=0

m

∑
r=0

(−1)m

(1− rν)

(
j + 1

m

) (
m
r

)
z1−rν,

and

Aj(z) =
1

Γ(j)

∞

∑
m=0

(−1)m Γ(j + m + 1) {1− exp(−mz)}
(m + 1)!

,

respectively.
Bonferroni and Lorenz curves defined can be given to obtain for a given probability π

by B(π) = T(q)/(πµ′1) and L(π) = T(q)/µ′1, respectively, where µ′1 = E(X) and q = Q(π)
is the LiG1-F qf at π.

5. On the Maximum-Likelihood Estimation of Parameters

We propose to use the maximum likelihood (ML) estimation method for the parameter
estimation of the introduced distributions. The log-likelihood function for the general
case (5) is given by

L(λ, ψ) = −n log(1− 2 log(λ))− 3
n

∑
i=1

log(1− λF(xi; ψ)) +
n

∑
i=1

log f (xi; ψ)

+
n

∑
i=1

log[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))F(xi; ψ)] .

In this special case, we consider the exponential baseline distribution. Thus, for the LiE1
model, the estimating equations are given by
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L(λ, θ)

∂θ
= 3λθ

n

∑
i=1

e−θxi

1− λ(1− e−θxi )
+ bθ

n

∑
i=1

e−θxi

a + b(1− eθxi )
+

n
θ
−

n

∑
i=1

xi = 0 (25)

L(λ, θ)

∂λ
= 3

n

∑
i=1

1− e−xiθ

1− λ(1− e−xiθ)
+

2n
λ(1− 2 log(λ))

+
n

∑
i=1

2− 2
λ + 3 log(λ)− (1− e−xiθ)λ log(λ)− (1− e−xiθ)(1− λ + λ log(λ))

1− λ + (−2 + 3λ) log(λ)− (1− e−xiθ)(1− λ + λ log(λ))
= 0 . (26)

Now, we will study the existence of the ML estimators when the other parameter is
known in advance (or given).

Theorem 7. If the parameter λ is known, then the Equation (25) has at least one root in the interval
(0,+∞).

Proof. One can readily verify that lim
θ→+∞

L(λ,θ)
∂θ = −

n
∑

i=1
xi and lim

θ→0+0

L(λ,θ)
∂θ = +∞. Thus,

there exists at least one root of the Equation (25).

Theorem 8. Assuming that

n

∑
i=1

e−xiθ <
n
2

and if the parameter θ is known, then (26) has at least one root on the interval (0, 1).

Proof. Applying L’Hôpital’s rule, we get lim
λ→1−0

L(λ,θ)
∂λ = −∞ and lim

λ→0+0

L(λ,θ)
∂λ = 3

n
∑

i=1
(1−

e−xiθ)− 3n
2 .

In order to have at least one solution, it is necessary to have 3
n
∑

i=1
(1− e−xiθ) − 3n

2 > 0.

Hence the theorem.

On the other hand, the estimating equations for the LiE2 model are given by

L(λ, θ)

∂θ
= −3λθ

n

∑
i=1

e−θxi

1− λe−θxi
− bθ

n

∑
i=1

e−θxi

a + beθxi
+

n
θ
−

n

∑
i=1

xi = 0 (27)

L(λ, θ)

∂λ
= 3

n

∑
i=1

e−xiθ

1− λe−xiθ
+

2n
λ(1− 2 log(λ))

+
n

∑
i=1

2− 2
λ + 3 log(λ)− e−xiθλ log(λ)− e−xiθ(1− λ + λ log(λ))

1− λ + (−2 + 3λ) log(λ)− e−xiθ(1− λ + λ log(λ))
= 0. (28)

The next two theorems examine the existence problem of the ML estimates via (27)
and (28). Their proofs are very similar to those cases of Theorems 7 and 8, so we here omit
them.

Theorem 9. If the parameter λ is known, then the Equation (27) has at least one root on the interval
(0,+∞).

Theorem 10. If the parameter θ is known and if it is assumed that

n

∑
i=1

e−xiθ >
n
2

,

then the Equation (28) has at least one root on the interval (0, 1).
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Clearly, the log-likelihood estimating equations for the parameters are nonlinear in the
sense that the estimators cannot be obtained in closed forms. Thus, a numerical iterative
method such as the Newton–Raphson one should be used in the estimation.

6. Estimation of Parameters via the EM Algorithm

We propose to use the method of maximum likelihood in estimating the parameters
of the introduced models. The construction method of the models suggests using an
EM (expectation maximization) algorithm. In this section, we provide EM algorithms for
the estimation of the unknown parameters θ and λ for both exponential-discrete Lindley
distributions.

6.1. EM Algorithm for the LiE1 Model

The missing data random variable will be the random variable M with the zero-
truncated discrete Lindley distribution. Let us derive its probability mass function as

P(M = m) =
P(N = m)

1− P(N = 0)

=
λm−1[λ log(λ) + (1− λ)(1− (m + 1) log(λ))]

1− 2 log(λ)
, m = 1, 2, . . . ,

where N is a random variable with the discrete Lindley distribution with the parameter
λ ∈ (0, 1). Next, the random variable X = max(Z1, . . . , ZM) for a given M = m has the
CDF (1− e−θx)m. Then, the PDF of the complete-data distribution is given by

f (x, m) =
θmλm−1{λ log(λ) + (1− λ)[1− (m + 1) log(λ)]}e−θx(1− e−θx)m−1

1− 2 log(λ)
.

The marginal PDF of X is given by

fX(x) =
θe−θx{1− λ + (3λ− 2) log(λ)− (1− e−θx)λ[λ(log(λ)− 1) + 1]

}
(1− 2 log(λ))[1− (1− e−θx)λ]3

.

Then, the conditional PDF of M for given X = x is given by

fM|X(m|x) =
m(1− e−θx)m−1λm−1[1− (1− e−θx)λ]3{λ log(λ) + (1− λ)[1− (m + 1) log(λ)]}

1− λ + (3λ− 2) log(λ)− (1− e−θx)λ[λ(log(λ)− 1) + 1]
,

where m = 1, 2, 3, . . ..
The E-step of the EM algorithm requires the computation of the conditional expectation

of the random variable M for a given X = x. Now, we have

E(M|X) =

=
λ log(λ)(3− ξ2(x; λ, θ) + 4ξ(x; λ, θ))− (4ξ(x; λ, θ) + 2) log(λ) + (1− λ)(1− ξ2(x; λ, θ))

(1− ξ(x; λ, θ)){1− λ + (3λ− 2) log(λ)− ξ(x; λ, θ)[λ(log(λ)− 1) + 1]} ,

where ξ(x; λ, θ) = λ(1− e−θx).
In the M-step, we consider the complete data log-likelihood function ,which is given by

lc(θ, λ) = n log(θ) +
n

∑
i=1

log(mi)− θ
n

∑
i=1

xi +
n

∑
i=1

(mi − 1) log(1− e−θxi ) +

(
n

∑
i=1

mi − n

)
log(λ)

+
n

∑
i=1

log{λ log(λ) + (1− λ)[1− (mi + 1) log(λ)]} − n log(1− 2 log(λ)).

Maximizing the log-likelihood function lc(θ, λ), the obtained estimates in the k + 1 iteration
are given by
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θ(k+1) = n

{
nx̄−

n

∑
i=1

xi(m
(k+1)
i − 1)e−θ(k+1)xi

1− e−θ(k+1)xi

}−1

λ(k+1) =

[
n(1 + 2 log(λ(k+1)))

2 log(λ(k+1))− 1
−

n

∑
i=1

m(k+1)
i

]

×

 n

∑
i=1

(mi + 2) log(λ(k+1))− ((1− λ(k+1))/λ(k+1))(m(k+1)
i + 1)

λ(k+1) log(λ(k+1)) + (1− λ(k+1))
[
1− (m(k+1)

i + 1) log(λ(k+1))
]

−1

,

where x̄ is the sample mean and

m(k+1)
i =

{
λ(k) log(λ(k))(3− ξ2(xi; λ(k), θ(k)) + 4ξ(xi; λ(k), θ(k)))− (4ξ(xi; λ(k), θ(k)) + 2) log(λ(k))

+(1− λ(k))(1− ξ2(xi; λ(k), θ(k)))
}

/
{
(1− ξ(xi; λ(k), θ(k)))

[
1− λ(k) + (3λ(k) − 2) log(λ(k))

−ξ(xi; λ(k), θ(k))
(

λ(k)(log(λ(k))− 1) + 1
)]}

.

The solutions for these equations can be found using an iterative numerical process.
For example, one can use the uniroot function in R (R Core Team, 2020).

6.2. EM Algorithm for the LiE2 Model

In this case, the random variable Y = min(Z1, . . . , ZM) for a given M = m has the
exponential distribution with the scale parameter θm. Thus, the PDF of the hypothetical
complete-data distribution is

f (y, m) =
λm−1[λ log(λ) + (1− λ)(1− (m + 1) log(λ))]θme−θmy

1− 2 log(λ)
, y > 0, m = 1, 2, . . .

Following some calculations, we can deduce that the marginal PDF of the random variable
Y is given by

f (y) =
θe−θy[1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))e−θy]

(1− 2 log(λ))(1− λe−θy)3 , y > 0,

which implies that the conditional PDF of M for given Y = y has the form

fM|Y(m|y) =
mλm−1e−θ(m−1)y(1− λe−θy)3[λ log(λ) + (1− λ)(1− (m + 1) log(λ))]

1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))e−θy , m = 1, 2, . . .

The E-step of the EM algorithm requires the computation of the conditional expectation of
the random variable M for a given Y = y. We have that

E(M|Y = y) =
1− λ + (3λ− 2) log(λ)− 4(1− λ)λe−θy log(λ)− λ2(1− λ + λ log(λ))e−2θy

(1− λe−θy)(1− λ + (3λ− 2) log(λ)− λ(1− λ + λ log(λ))e−θy)
.

In the M-step, we need the complete data log-likelihood function, which is given by

lc(θ, λ) = n log(θ) +
n

∑
i=1

log(mi)− θ
n

∑
i=1

miyi +

(
n

∑
i=1

mi − n

)
log(λ)

+
n

∑
i=1

log[λ log λ + (1− λ)(1− (mi + 1) log(λ))]− n log(1− 2 log(λ)).

By maximizing the log-likelihood function lc(θ, λ), we obtain the estimates in the k + 1
iteration as follows:
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θ(k+1) =
n

∑n
i=1 yim

(k+1)
i

,

n

∑
i=1

λ(k+1)(m(k+1)
i + 2) log(λ(k+1))− (1− λ(k+1))(1 + m(k+1)

i )

λ(k+1) log(λ(k+1)) + (1− λ(k+1))(1− (m(k+1)
i + 1) log(λ(k+1)))

+
2n

1− 2 log(λ(k+1))
=

= n−
n

∑
i=1

m(k+1)
i ,

where

m(k+1)
i =

{
1− λ(k) + (3λ(k) − 2) log(λ(k))− 4(1− λ(k))λ(k) log(λ(k))e−θ(k)yi − λ2(k)(1− λ(k)

+λ(k) log(λ(k)))e−2θ(k)yi
}

/
{
(1− λ(k)e−θ(k)yi )(1− λ(k) + (3λ(k) − 2) log(λ(k))

−λ(k)(1− λ(k) + λ(k) log(λ(k)))e−θ(k)yi )
}

.

7. Simulation Study

In this section, we consider LiE1 and LiE2 models and present a simulation study test-
ing the performances of the estimators using the EM algorithm. We generated 10,000 random
samples in batches of 50, 100 and 200 from both models.

We can generate random numbers from the LiE1 distribution by using the inverse
transform method. Let u be a random number from the uniform distribution on [0, 1].
Employing some algebra, we have x = − log(1− y)/θ, a number from the LiE1 distribution.
Here,

y =
2λau + c−

√
∆1

2(b + λ2au)
,

where a = 1− 2 log(λ), b = λ[1− λ + (2λ− 1) log(λ)], c = 1− λ + (3λ− 2) log(λ) and
∆1 = (2λau + c)2 − 4(λ2au + b)au.

Similarly, we can generate random numbers from the LiE2 distribution by using the
inverse transform method. Let u be a random number from the uniform distribution on
[0, 1]. Following some calculations, we have y = − log(x)/θ, a number from the LiE2
distribution. Here,

x =
d + a(1− 2uλ)−

√
∆2

2(d− λ2au)
,

where d = λ[1− log(λ)] and ∆2 = [(2uλ− 1)a− d]2 − 4a(d− uaλ2)(1− u).
We used R (R Core Team, 2020) with uniroot to run the EM algorithms. We took the

parameter values as the starting points for the iterations in the algorithms. The algorithms
stopped when |λ(k+1) − λ(k)| < 10−5. The simulation results of the empirical means and
mean square errors (MSEs) are reported in Tables 1 and 2. We observe that the estimates
are close to the parameter values and the MSEs decrease with increasing sample size. This
makes the use of the EM algorithm plausible for estimation.

Table 1. Empirical means and MSEs of the maximum-likelihood estimates of the LiE1 for different
values of the parameters.

n λ θ λ̂ θ̂ λ θ λ̂ θ̂ λ θ λ̂ θ̂

50 0.6 0.5 0.5954 0.5159 0.6 1 0.5963 1.0350 0.6 2 0.5965 2.0675
(0.0163) (0.0089) (0.0161) (0.0369) (0.0159) (0.1448)

100 0.5952 0.5068 0.5957 1.0143 0.5952 2.0264
(0.0081) (0.0041) (0.0080) (0.0164) (0.0082) (0.0685)

200 0.5954 0.5020 0.5970 1.0067 0.5949 2.0058
(0.0040) (0.0020) (0.0041) (0.0083) (0.0040) (0.0334)
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Table 2. Empirical means and the MSEs of the maximum-likelihood estimates of the LiE2 for different
values of the parameters.

n λ θ λ̂ θ̂ λ θ λ̂ θ̂ λ θ λ̂ θ̂

50 0.6 0.2 0.5335 0.2379 0.6 1 0.5344 1.1898 0.8 1 0.6883 1.7007
(0.0368) (0.0119) (0.0375) (0.2993) (0.0434) (1.7356)

100 0.5526 0.2252 0.5455 1.1424 0.7331 1.4154
(0.0240) (0.0068) (0.0248) (0.1737) (0.0213) (0.7965)

200 0.5668 0.2176 0.5669 1.0838 0.7616 1.2371
(0.0127) (0.0036) (0.0128) (0.0884) (0.0093) (0.3335)

8. Real Data Fitting

In this section, we investigate the performance of the introduced distributions in
data fitting. We also compare them with their natural competitor, that is, the generalized
exponential (GE) distribution studied in [15]. The GE distribution was proposed as an
alternative to exponential, gamma and Weibull distributions. A lot of work in the literature
has shown that it is a flexible model with reverse J-shaped and positively skewed unimodal
data fitting. The PDF of the GE distribution is given by

f (x; α, θ) = αθe−θx(1− e−θx)α−1, x, α, β > 0.

We consider the maximum likelihood method in the estimation. Since we compare the
models, we used the direct maximization of the respective log-likelihood functions.

8.1. Carbon Data Set

Let us consider a data set (uncensored) from [16], which includes 100 observations
regarding breaking stress of carbon fibers in Gba. The data are given in Table 3.

Table 3. Data on the breaking stress of carbon fibers.

0.39 0.81 0.85 0.98 1.08 1.12 1.17 1.18 1.22 1.25
1.36 1.41 1.47 1.57 1.57 1.59 1.59 1.61 1.61 1.69
1.69 1.71 1.73 1.80 1.84 1.84 1.87 1.89 1.92 2.00
2.03 2.03 2.05 2.12 2.17 2.17 2.17 2.35 2.38 2.41
2.43 2.48 2.48 2.50 2.53 2.55 2.55 2.56 2.59 2.67
2.73 2.74 2.76 2.77 2.79 2.81 2.82 2.83 2.85 2.87
2.88 2.93 2.95 2.96 2.97 2.97 3.09 3.11 3.11 3.15
3.15 3.19 3.19 3.22 3.22 3.27 3.28 3.31 3.31 3.33
3.39 3.39 3.51 3.56 3.60 3.65 3.68 3.70 3.75 4.20
4.38 4.42 4.70 4.90 4.91 5.08 5.56

The data were also used in [17].
We used the LiE1 distribution in fitting instead of LiE2, since the data exhibits a

unimodal shape (see Figure 10). One can also use the total time test (TTT) plot procedure
to determine an appropriate model shape.

The TTT plots were introduced by [18] for model identification purposes, that is, for
choosing a suitable lifetime distribution. These plots were studied in detail by [19]. Let
x(1) ≤ · · · ≤ x(n) denote the ordered observations from the random sample of size n. The
TTT plot is obtained in the following way:

• Let s0 = 0.
• Calculate the TTT values sj = sj−1 + (n− j + 1)(x(j) − x(j−1)) for j = 1, 2, . . . , n.
• Obtain the normalized TTT values by uj = sj/sn for j = 0, 1, 2, . . . , n.
• Plot the points (j/n, uj) for j = 0, 1, 2, . . . , n, and then join them by line segments.

A TTT plot is a diagnostic tool in the sense that it gives an insight about the aging
properties of the underlying distribution. Then, one can choose an appropriate lifetime
distribution for modeling the data. For example, when the TTT plot is concave, a life
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distribution with an increasing failure rate should be used. The TTT plot for the Carbon
data set is sketched in the lhs of Figure 10. It can be seen that it is concave. Thus, a model
with increasing failure rate like LiE1 should be used.

Further, the HRF can not only be increasing, but also be constant, decreasing or even a
U-shaped. These futures may also be inferred from the TTT plot. The HRF is constant when
the TTT plot is straight diagonal, decreases when the TTT plot is convex and is U-shaped
if the TTT plot is S-shaped—that is, first convex and then changed to a concave shape.
When the ordering is reversed in the S-shaped case, a HRF with a unimodal characteristic
is obtained.

Alternatively, we also fit LiSL1 and GE distributions to this data set and computed
the parameter estimates using the optim function in R [20]. The results are reported in
Table 4. We observe that the Lie1 distribution is better than the others according to the
Akaike information criterion (AIC). The Kolmogorov–Simirnov test statistic was 0.074605
with p-value 0.6338. Figure 10 also supports this good fit. On the other hand, the EM
algorithm gave λ̂ = 0.9415187 and θ̂ = 1.432148, which are similar values to those obtained
from direct maximization.

Table 4. Maximum-likelihood estimates with standard errors in parentheses, log-likelihood and AIC
values for Carbon data.

Model λ̂ θ̂ α̂ log-lik AIC

LiE1 0.9419 1.4344 −142.1633 288.3266
(0.0169) (0.1187)

LiSL1 0.9528 1.5067 −142.9535 289.9069
(0.0127) (0.1109)

GE 1.0132 7.7883 −146.1823 296.3646
(0.0875) (1.4962)
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Figure 10. TTT plot of the data set (on the left) and several fits for the Carbon data (on the right).

8.2. Failure Data Set

The data set is based on the number of successive failures of air conditioning systems
on 13 Boeing 720 air planes. The data set is from [21] and was recently analyzed in [22].
Since the data exhibit a reversed J-shape (see Figure 11), we used the LiE2 distribution
in fitting. TTT plot sketched in the lhs of Figure 11 also supports this conjecture, since it
produces a convex shape.

For convenience, the data are given Table 5.
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Table 5. Data on the successive failures for the air conditioning system of each member in a fleet of
13 Boeing 720 jet air planes.

194 413 90 74 55 23 97 50 359 50 130 487 57 102 15
14 10 57 320 261 51 44 9 254 493 33 18 209 41 58
60 48 56 87 11 102 12 5 14 14 29 37 186 29 104
35 98 54 100 11 181 65 49 12 239 14 18 39 3 12
5 36 79 59 33 246 1 79 3 27 201 84 27 156 21

16 88 130 14 118 44 15 42 106 46 230 26 59 153 104
20 206 5 66 34 29 26 35 5 82 31 118 326 12 54
36 34 18 25 120 31 22 18 216 139 67 310 3 46 210
57 76 14 111 97 62 39 30 7 44 11 63 23 22 23
14 18 13 34 16 18 130 90 163 208 1 24 70 16 101
52 208 95 62 11 191 14 7

The fitting results are given in Table 6. According to the AIC, the LiE2 fit is better than
the GE fit. The Kolmogorov–Simirnov test statistic is 0.050017 with a p-value of 0.7347. In
addition, the EM algorithm gave λ̂ = 0.3837683 and θ̂ = 0.007553028, which are close to
those obtained from direct maximization.

Table 6. Maximum-likelihood estimates with standard errors in parentheses, log-likelihood and AIC
values for failure data.

Model λ̂ θ̂ α̂ log-lik AIC

LiE2 0.3800 0.0076 −1033.644 2071.288
(0.1180) (0.0014)

GE 0.0102 0.9005 −1036.907 2077.814
(0.0010) (0.0852)
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Figure 11. TTT plot of the data set (on the left) and two competing fits for the Failure data (on
the right).

9. Conclusions

In this manuscript, we constructed two general probability distribution families using
the discrete Lindley distribution. The families contain a baseline distribution which can
be manipulated by the user to obtain probability distributions of different shapes. The
resulting distributions are not so complex in the sense that the number of parameters of the
baseline distribution is increased by one only. As an alternative to the direct maximization
of the log-likelihood, we constructed an EM algorithm to compute the ML estimates of
the parameters. We mainly focused on the exponential baseline distribution and used the
newly defined distributions in real data fitting.
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As a part of further research, the introduced distributions may be studied in detail
using other simple baseline distributions like Pareto. Also, the Marshall-Olkin approach of
construction of bivariate distributions can be used to define the bivariate extensions of the
models introduced.
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